Nanocellulose as scaffolding for nerve cells

Swedish scientists have announced success with growing nerve cells using nanocellulose as the scaffolding. From the March 19, 2012 news item on Naowerk,

Researchers from Chalmers and the University of Gothenburg have shown that nanocellulose stimulates the formation of neural networks. This is the first step toward creating a three-dimensional model of the brain. Such a model could elevate brain research to totally new levels, with regard to Alzheimer’s disease and Parkinson’s disease, for example.

“This has been a great challenge,” says Paul Gatenholm, Professor of Biopolymer Technology at Chalmers.?Until recently the cells were dying after a while, since we weren’t able to get them to adhere to the scaffold. But after many experiments we discovered a method to get them to attach to the scaffold by making it more positively charged. Now we have a stable method for cultivating nerve cells on nanocellulose.”

When the nerve cells finally attached to the scaffold they began to develop and generate contacts with one another, so-called synapses. A neural network of hundreds of cells was produced. The researchers can now use electrical impulses and chemical signal substances to generate nerve impulses, that spread through the network in much the same way as they do in the brain. They can also study how nerve cells react with other molecules, such as pharmaceuticals.

I found the original March 19, 2012 press release  and an image on the University of Chalmers website,

Nerve cells growing on a three-dimensional nanocellulose scaffold. One of the applications the research group would like to study is destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. Synapses are the connections between nerve cells. In the image, the functioning synapses are yellow and the red spots show where synapses have been destroyed. Illustration: Philip Krantz, Chalmers

This latest research from Gatenholm and his team will be presented at the American Chemical Society annual meeting in San Diego, March 25, 2012.

The research team from Chalmers University and its partners are working on other applications for nanocellulose including one for artificial ears. From the Chalmers University Jan. 22, 2012 press release,

As the first group in the world, researchers from Chalmers will build up body parts using nanocellulose and the body’s own cells. Funding will be from the European network for nanomedicine, EuroNanoMed.

Professor Paul Gatenholm at Chalmers is leading and co-ordinating this European research programme, which will construct an outer ear using nanocellulose and a mixture of the patient’s own cartilage cells and stem cells.

Previously, Paul Gatenholm and his colleagues succeeded, in close co-operation with Sahlgrenska University Hospital, in developing artificial blood vessels using nanocellulose, where small bacteria “spin” the cellulose.

In the new programme , the researchers will build up a three-dimensional nanocellulose network that is an exact copy of the patient’s healthy outer ear and construct an exact mirror image of the ear. It will have sufficient mechanical stability for it to be used as a bioreactor, which means that the patient’s own cartilage and stem cells can be cultivated directly inside the body or on the patient, in this case on the head. [Presumably the patient has one ear that is healthy and the researchers are attempting to repair or replace an unhealthy ear on the other side of the head.]

As for the Swedish perspective on nanocellulose (from the 2010 press release),

Cellulose-based material is of strategic significance to Sweden and materials science is one of Chalmers eight areas of advance. Biopolymers are highly interesting as they are renewable and could be of major significance in the development of future materials.

Further research into using the forest as a resource for new materials is continuing at Chalmers within the new research programme that is being built up with different research groups at Chalmers and Swerea – IVF. The programme is part of the Wallenberg Wood Science Center, which is being run jointly by the Royal Institute of Technology in Stockholm and Chalmers under the leadership of Professor Lars Berglund at the Royal Institute of Technology.

The 2012 press release announcing the work on nerve cells had this about nanocellulose,

Nanocellulose is a material that consists of nanosized cellulose fibers. Typical dimensions are widths of 5 to 20 nanometers and lengths of up to 2,000 nanometers. Nanocellulose can be produced by bacteria that spin a close-meshed structure of cellulose fibers. It can also be isolated from wood pulp through processing in a high-pressure homogenizer.

I last wrote about the Swedes and nanocellulose in a Feb. 15, 2012 posting about recovering it (nanocellulose) from wood-based sludge.

As for anyone interested in the Canadian scene, there is an article by David Manly in the Jan.-Feb. 2012 issue of Canadian Biomass Magazine that focuses largely on economic impacts and value-added products as they pertain to nanocellulose manufacturing production in Canada. You can also search this blog as I have covered the nanocellulose story in Canada and elsewhere as extensively as I can.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>