The relationship of silver ions & nanoparticles, Nietzsche, and Rice University

My hat’s off to Mike Williams for introducing Nietzsche into a news item about silver nanoparticles and toxicity. Here’s the line from his July 11, 2012 Rice University news release (Note: I have removed some links),

Their work comes with a Nietzsche-esque warning: Use enough. If you don’t kill them, you make them stronger.

Scientists have long known that silver ions, which flow from nanoparticles when oxidized, are deadly to bacteria. Silver nanoparticles are used just about everywhere, including in cosmetics, socks, food containers, detergents, sprays and a wide range of other products to stop the spread of germs.

But scientists have also suspected silver nanoparticles themselves may be toxic to bacteria, particularly the smallest of them at about 3 nanometers. Not so, according to the Rice team that reported its results this month in the American Chemical Society journal Nano Letters.

This next bit describing the research is an example of what I find so compelling (curiosity and persistence) about science,

To figure that out, the researchers had to strip the particles of their powers. “Our original expectation was that the smaller a particle is, the greater the toxicity,” said Zongming Xiu, a Rice postdoctoral researcher and lead author of the paper. Xiu set out to test nanoparticles, both commercially available and custom-synthesized from 3 to 11 nanometers, to see whether there was a correlation between size and toxicity.

“We could not get consistent results,” he said. “It was very frustrating and really weird.”

Here’s what they did next, what they found, and the implications of their findings,

Xiu decided to test nanoparticle toxicity in an anaerobic environment – that is, sealed inside a chamber with no exposure to oxygen — to control the silver ions’ release. He found that the filtered particles were a lot less toxic to microbes than silver ions.

Working with the lab of Rice chemist Vicki Colvin, the team then synthesized silver nanoparticles inside the anaerobic chamber to eliminate any chance of oxidation. “We found the particles, even up to a concentration of 195 parts per million, were still not toxic to bacteria,” Xiu said. “But for the ionic silver, a concentration of about 15 parts per billion would kill all the bacteria present. That told us the particle is 7,665 times less toxic than the silver ions, indicating a negligible toxicity.”

“The point of that experiment,” Alvarez [Pedro Alvarez, George R. Brown Professor and chair of Rice’s Civil and Environmental Engineering Department] said, “was to show that a lot of people were obtaining data that was confounded by a release of ions, which was occurring during exposure they perhaps weren’t aware of.”

Alvarez suggested the team’s anaerobic method may be used to test many other kinds of metallic nanoparticles for toxicity and could help fine-tune the antibacterial qualities of silver particles. In their tests, the Rice researchers also found evidence of homesis; [e.g..,] E. coli became stimulated by silver ions when they encountered doses too small to kill them.

“Ultimately, we want to control the rate of (ion) release to obtain the desired concentrations that just do the job,” Alvarez said. “You don’t want to overshoot and overload the environment with toxic ions while depleting silver, which is a noble metal, a valuable resource – and a somewhat expensive disinfectant. But you don’t want to undershoot, either.”

He said the finding should shift the debate over the size, shape and coating of silver nanoparticles. [emphasis mine] “Of course they matter,” Alvarez said, “but only indirectly, as far as these variables affect the dissolution rate of the ions. The key determinant of toxicity is the silver ions. So the focus should be on mass-transfer processes and controlled-release mechanisms.”

Interestingly, this is a joint US-UK effort (US Environmental Protection Agency and the U.K. Natural Environment Research Council). H/T to Will Soutter’s July 12, 2012 news item on Azonano for the information about this latest silver nanoparticle research from Rice University. The July 11, 2012 news item on Nanowerk also features information about the silver nanoparticles, ions, and Rice University.

I have mentioned Vicki Colvin’s work previously including this Jan. 28, 2011 posting about a UK/US joint environmental research effort. I have also mentioned Pedro Alvarez a few times including this Aug. 2, 2010 posting about nanomaterials and the construction industry.

One thought on “The relationship of silver ions & nanoparticles, Nietzsche, and Rice University

  1. Pingback: Vicki Colvin’s Rice University team create a super duper antioxidant from catalytic converters found in cars | FrogHeart

Leave a Reply

Your email address will not be published. Required fields are marked *