Hands off the bubbles in my boiling water!

The discovery that boiling water bubbled was important to me. I’ve never really thought about it until now when researchers at Northwestern University have threatened to take my bubbles away, metaphorically speaking. From the Sept. 13, 2012 news item on ScienceDaily,

Every cook knows that boiling water bubbles, right? New research from Northwestern University turns that notion on its head.

“We manipulated what has been known for a long, long time by using the right kind of texture and chemistry to prevent bubbling during boiling,” said Neelesh A. Patankar, professor of mechanical engineering at Northwestern’s McCormick School of Engineering and Applied Science and co-author of the study.

This discovery could help reduce damage to surfaces, prevent bubbling explosions and may someday be used to enhance heat transfer equipment, reduce drag on ships and lead to anti-frost technologies.

The Sept. 13, 2012 news release from McCormick University (which originated the news item) provides details,

This phenomenon is based on the Leidenfrost effect. In 1756 the German scientist Johann Leidenfrost observed that water drops skittered on a sufficiently hot skillet, bouncing across the surface of the skillet on a vapor cushion or film of steam. The vapor film collapses as the surface falls below the Leidenfrost temperature. When the water droplet hits the surface of the skillet, at 100 degrees Celsius, boiling temperature, it bubbles.

To stabilize a Leidenfrost vapor film and prevent bubbling during boiling, Patankar collaborated with Ivan U. Vakarelski of King Abdullah University of Science and Technology, Saudi Arabia. Vakarelski led the experiments and Patankar provided the theory. The collaboration also included Derek Chan, professor of mathematics and statistics from the University of Melbourne in Australia.

In their experiments, the stabilization of the Leidenfrost vapor film was achieved by making the surface of tiny steel spheres very water-repellant. The spheres were sprayed with a commercially available hydrophobic coating — essentially self-assembled nanoparticles — combined with other water-hating chemicals to achieve the right amount of roughness and water repellency. At the correct length scale this coating created a surface texture full of tiny peaks and valleys.

When the steel spheres were heated to 400 degrees Celsius and dropped into room temperature water, water vapors formed in the valleys of the textured surface, creating a stable Leidenfrost vapor film that did not collapse once the spheres cooled to the temperature of boiling water. In the experiments, researchers completely avoided the bubbly phase of boiling.

To contrast, the team also coated tiny steel spheres with a water-loving coating, heated the objects to 700 degrees Celsius, dropped them into room temperature water and observed that the Leidenfrost vapor collapsed with a vigorous release of bubbles.

The scientists have provided a video illustrating their work,

This movie shows the cooling of 20 mm hydrophilic (left) and superhydrophobic (right) steel spheres in 100 C water. The spheres’ initial temperature is about 380 C. The bubbling phase of boiling is completely eliminated for steel spheres with superhydrophobic coating. (from Vimeo, http://vimeo.com/49391913)

I understand there are advantages to not having bubbles in hot water but it somehow seems wrong. I’ve given up a lot over the years: gravity, boundaries between living and non-living (that was a very big thing to give up), and other distinctions that I have made based on traditional science but, today, this is one step too far.

It may seem silly but that memory of my mother explaining that you identify boiling water by its bubbles is important to me. It was one of my first science lessons. I imagine I will recover from this moment but it does remind me of how challenging it can be when your notions of reality/normalcy are challenged by various scientific endeavours. The process can get quite exhausting as you keep recalibrating everything you ‘know’ all the time.

Leave a Reply

Your email address will not be published. Required fields are marked *