A GEnIuS approach to oil spill remediation at 18th European Forum on Eco-innovation

In light of recent local events (an oil spill in Vancouver’s [Canada] English Bay, a popular local beach [more details in my April 16, 2015 post]), it seems appropriate to mention a environmentally friendly solution to mopping up oil spills (oil spill remediation). A May 21, 2015 news item on Azonano features a presentation on the topic at hand (Note: A link has been removed),

Directa Plus at 18th European Forum on Eco-innovation to present GEnIuS, the innovative project that leads to the creation of a graphene-based product able to remove hydrocarbons from polluted water and soil.

The Forum untitled “Boosting competitiveness and innovation” is being held by the European Commission on 20th and 21st of May in Barcelona. The main purpose of this event is presenting the last developments in the eco-innovation field: an important moment where emerging and cutting-edge innovators will get in contact with new promising solutions under political, financial and technological point of view.

Directa Plus research has driven to the creation of an ecologic, innovative and highly effective oil-adsorbent, characterized by unique performances in oil adsorbency, and at the same time absence of toxicity and flammability, and the possibility to recover oil.

The creation of this graphene-based oil-adsorbent product, commercialized as Grafysorber, has been promoted by GEnIuS project and already approved by the Italian Ministry of Enviroment to be used in occasion of oil spills clean-up activities.

Giulio Cesareo, Directa Plus President and CEO, commented:

“Grafysorber embodies the nano-carbon paradox -in fact, with a nano-carbon material we are able to cut down part of damages caused by hydrocarbons, derived from carbon itself.

“Moreover, our product, once exhausted after depuration of water, finishes positively its life cycle inside the asphalt and bitumen, introducing new properties as thermal conductivity and mechanical reinforcement. I believe that every company is obliged to work following a sustainable approach to guarantee a balanced use of resources and their reuse, where possible.”

I have mentioned a Romanian project employing Directa Plus’s solution, Grafysorber in a December 30, 2014 post. At the time, the product name was called Graphene Plus and Grafysorber was a constituent of the product.

You can find more information about Graphene Eco Innovative Sorbent (GENIUS) here and about Directa Plus here. The company is located in Italy.

One final bit about oil spills and remediation, the Deepwater Horizon/Gulf/BP oil spill has spawned, amongst many others, a paper from the University of Georgia (US) noting that we don’t know that much about the dispersants used to clean up, from a May 14, 2015 University of Georgia news release on EurekAlert,

New commentary in Nature Reviews Microbiology by Samantha Joye of the University of Georgia and her colleagues argues for further in-depth assessments of the impacts of dispersants on microorganisms to guide their use in response to future oil spills.

Chemical dispersants are widely used in emergency responses to oil spills in marine environments as a means of stimulating microbial degradation of oil. After the Deepwater Horizon spill in 2010, dispersants were applied to the sea surface and deep waters of the Gulf of Mexico, the latter of which was unprecedented. Dispersants were used as a first line of defense even though little is known about how they affect microbial communities or the biodegradation activities they are intended to spur.

The researchers document historical context for the use of dispersants, their approval by the Environmental Protection Agency and the uncertainty about whether they stimulate or in fact inhibit the microbial degradation of oil in marine ecosystems.

One challenge of testing the toxicity from the use of dispersants on the broader ecosystem is the complex microbial communities of the different habitats represented in a large marine environment, such as the Gulf of Mexico. Development of model microbial communities and type species that reflect the composition of surface water, deep water, deep-sea sediments, beach sediments and marsh sediments is needed to evaluate the toxicity effects of dispersants.

“The bottom line is that we do not truly understand the full range of impacts that dispersants have on microbial communities, and we must have this knowledge in hand before the next marine oil spill occurs to support the decision-making process by the response community,” Joye said.

I hope the Canadians who are overseeing our waterways are taking note.

The use of graphene scanners in art conservation

A May 20, 2015 news item on phys.org describes a new method of examining art work without damaging it,

Museum curators, art restorers, archaeologists and the broader public will soon be able to learn much more about paintings and other historic objects, thanks to an EU project which has become a pioneer in non-invasive art exploration techniques, based on a graphene scanner.

Researchers working on INSIDDE [INtegration of cost-effective Solutions for Imaging, Detection, and Digitisation of hidden Elements in paintings], which received a EUR 2.9 million investment from FP7 ICT Research Programme, have developed a graphene scanner that can explore under the surface of a painting, or through the dirt covering an ancient object unearthed in an archaeological dig, without touching it.

‘As well as showing sketches or previous paintings that have remained hidden beneath a particular artwork, the scanner, together with post-processing techniques, will allow us to identify and distinguish brushstrokes to understand the creative process,’ explained Javier Gutiérrez, of Spanish technology company Treelogic, which is leading the project.

A May 19, 2015 CORDIS press release, which originated the news item, provides more details about the graphene scanner’s cabilities,

The challenge in this field is to develop advanced technologies that avoid damaging the artwork under examination. Solvents and their potential side effects are progressively being replaced by the likes of lasers, to removed dirt and varnish from paintings. Limestone-producing bacteria can be used to fill cracks in sculptures. INSIDDE is taking a step further in this direction by using terahertz, a frequency band lying between microwave and infrared in the electromagnetic spectrum.

Until graphene, considered to be one of the materials of the future, came along it was difficult to generate terahertz frequencies to acquire such detail. Graphene in this application acts as a frequency multiplier, allowing scientists to reveal previously hidden features such as brushstroke textures, pigments and defects, without harming the work.

Although X-ray and infrared reflectography are used elsewhere to carry out this type of study, they heat the object and cannot reach the intermediate layers between the gesso and the varnish in paintings, or other characteristic elements in ceramics. INSIDDE’s device, using terahertz frequency, works in these intermediate layers and does not heat the object.

In conjunction with a commercial scanner mapping the art’s upper layers, it can generate full 3D data from the object in a completely non-intrusive way and processes this data to extract and interpret features invisible to the naked eye, in a way that has never been done before.

INSIDDE is developing this technology to benefit the general public, too. The 2D and 3D digital models it is producing will be uploaded to the Europeana network and the project aims to make the results available through a smartphone and tablet app to be exploited by local and regional museums. The app is currently being trialled at one of the partners, the Asturias Fine Art Museum in Oviedo. It shows the different layers of the painting the visitor is looking at and provides additional information and audio.

The press release notes that the technology offers some new possibilities,

Although the scanner is still in its trial and calibration phase, the project participants have already unveiled some promising results. Marta Flórez, of the Asturias Fine Art Museum, explained: ‘Using the prototype, we have been able to distinguish clearly between different pigments, which in some cases will avoid having to puncture the painting in order to find out what materials the artist used.’

The prototype is also being validated with some recently unearthed 3rd Century pottery from the Stara Zagora regional history museum in Bulgaria. When the project ends in December 2015, one of the options the consortium is assessing is putting this cost-effective solution at the service of smaller local and regional museums without art restoration departments so that they too, like the bigger museums, can make important discoveries about their collections.

You can find out more about INSIDDE here.

Large(!)-scale graphene composite fabrication at the US Oak Ridge National Laboratory (ORNL)

When you’re talking about large-scale production of nanomaterials, it would be more accurate term to say ‘relatively large when compared to the nanoscale’. A May 15, 2015 news item on ScienceDaily, trumpets the news,

One of the barriers to using graphene at a commercial scale could be overcome using a method demonstrated by researchers at the Department of Energy’s Oak Ridge National Laboratory [ORNL].

Graphene, a material stronger and stiffer than carbon fiber, has enormous commercial potential but has been impractical to employ on a large scale, with researchers limited to using small flakes of the material.

Now, using chemical vapor deposition, a team led by ORNL’s Ivan Vlassiouk has fabricated polymer composites containing 2-inch-by-2-inch sheets of the one-atom thick hexagonally arranged carbon atoms. [emphasis mine]

Once you understand where these scientists are coming from in terms of the material size, it becomes easier to appreciate the accomplishment and its potential. From a May 14, 2015 ORNL news release (also on EurekAlert), which originated the news item,

The findings, reported in the journal Applied Materials & Interfaces, could help usher in a new era in flexible electronics and change the way this reinforcing material is viewed and ultimately used.

“Before our work, superb mechanical properties of graphene were shown at a micro scale [one millionth of a metre],” said Vlassiouk, a member of ORNL’s Energy and Transportation Science Division. “We have extended this to a larger scale, which considerably extends the potential applications and market for graphene.”

While most approaches for polymer nanocomposition construction employ tiny flakes of graphene or other carbon nanomaterials that are difficult to disperse in the polymer, Vlassiouk’s team used larger sheets of graphene. This eliminates the flake dispersion and agglomeration problems and allows the material to better conduct electricity with less actual graphene in the polymer.

“In our case, we were able to use chemical vapor deposition to make a nanocomposite laminate that is electrically conductive with graphene loading that is 50 times less compared to current state-of-the-art samples,” Vlassiouk said. This is a key to making the material competitive on the market.

If Vlassiouk and his team can reduce the cost and demonstrate scalability, researchers envision graphene being used in aerospace (structural monitoring, flame-retardants, anti-icing, conductive), the automotive sector (catalysts, wear-resistant coatings), structural applications (self-cleaning coatings, temperature control materials), electronics (displays, printed electronics, thermal management), energy (photovoltaics, filtration, energy storage) and manufacturing (catalysts, barrier coatings, filtration).

Here’s a link to and a citation for the paper,

Strong and Electrically Conductive Graphene-Based Composite Fibers and Laminates by Ivan Vlassiouk, Georgios Polizos, Ryan Cooper, Ilia Ivanov, Jong Kahk Keum, Felix Paulauskas, Panos Datskos, and Sergei Smirnov. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.5b01367 Publication Date (Web): April 28, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Cosmetics giant, L’Oréal, to 3D print skin

L’Oréal, according to a May 19, 2015 BBC (British Broadcasting Corporation) online news item, has partnered with Organovo, a 3D bioprinting startup, to begin producing skin,

French cosmetics firm L’Oreal is teaming up with bio-engineering start-up Organovo to 3D-print human skin.

It said the printed skin would be used in product tests.

Organovo has already made headlines with claims that it can 3D-print a human liver but this is its first tie-up with the cosmetics industry.

Experts said the science might be legitimate but questioned why a beauty firm would want to print skin. [emphasis mine]

L’Oreal currently grows skin samples from tissues donated by plastic surgery patients. It produces more than 100,000, 0.5 sq cm skin samples per year and grows nine varieties across all ages and ethnicities.

Its statement explaining the advantage of printing skin, offered little detail: “Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

The beauty and cosmetics industry has a major interest in technology, especially anything to do with the skin. I’m curious as to what kind of an expert wouldn’t realize that cosmetics companies test products on skin and might like to have a ready supply. Still, I have to admit to surprise when I first (2006) started researching nanotechnology;  L’Oréal at one point was the sixth largest nanotechnology patent holder in the US (see my Nanotech Mysteries Wiki page: Marketers put the buy in nano [scroll down to Penetration subhead]). In 2008 L’Oréal company representatives were set for a discussion on their nanotechnology efforts and the precautionary principle, which was to be hosted by the Wilson Center’s Project for Emerging Nanotechnologies (PEN). The company cancelled at a rather interesting time as I had noted in my June 19, 2008 posting. (scroll down about 40% of the way until you see mention of Dr. Andrew Maynard).

Back to 3D printing technology and cosmetics giants, a May 5, 2015 Organovo/L’Oréal press release provides more detail about the deal,

L’Oreal USA, the largest subsidiary of the world’s leading beauty company, has announced a partnership with 3-D bioprinting company Organovo Holdings, Inc. (NYSE MKT: ONVO) (“Organovo”).  Developed between L’Oreal’s U.S.-based global Technology Incubator and Organovo, the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research.

This partnership marks the first-ever application of Organovo’s groundbreaking technology within the beauty industry.

“We developed our technology incubator to uncover disruptive innovations across industries that have the potential to transform the beauty business,” said Guive Balooch, Global Vice President of L’Oreal’s Technology Incubator.  “Organovo has broken new ground with 3-D bioprinting, an area that complements L’Oreal’s pioneering work in the research and application of reconstructed skin for the past 30 years. Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.

“We are excited to be partnering with L’Oreal, whose leadership in the beauty industry is rooted in scientific innovation and a deep commitment to research and development,” said Keith Murphy, Chairman and Chief Executive Officer at Organovo. “This partnership is a great next step to expand the applications of Organovo’s 3-D bioprinting technology and to create value for both L’Oreal and Organovo by building new breakthroughs in skin modeling.”

I don’t have much information about Organovo here, certainly nothing about the supposed liver (how did I miss that?), but there is a Dec. 26, 2012 posting about its deal with software giant, Autodesk.

Canadian scientists in a national protest on May 19, 2015 and some thoughts on a more nuanced discussion about ‘science muzzles’

For anyone unfamiliar with Canada’s science muzzle, government scientists are not allowed to speak directly to the media and all requests must be handled by the communications department in the ministry. For one of the odder consequences of that policy, there’s my Sept. 16, 2010 posting about a scientist who wasn’t allowed to talk to media about his research on a 13,000 year old flood that took place in the Canadian North. Adding insult to injury, his international colleagues were giving out all kinds of interviews.

Here’s a more recent incident (h/t Speaking Up For Canadian Science, May 20, 2015) recounted in a May 19, 2015 news item by  Nicole Mortillaro for CTV (Canadian television) news online ,

“Unlike Canadian scientists, I don’t have to ask permission to talk to you.”

That was one of the first things National Oceanic and Atmospheric Administration (NOAA) scientist Pieter Tans said when I called to reach him for comment about rising carbon dioxide levels reaching historic levels.

The topic itself was controversial: climate change is a hot-button topic for many. But getting in touch with NOAA was easy. In total, there were five email exchanges, all providing information about the topic and the arrangement of the interview.

Compare that to trying to get response from a Canadian federal department.

While I’ve had many frustrating dealings with various federal agencies, my most recent experience came as I was working on a story about ways Canadians could protect themselves as severe weather season approached. I wanted to mention the new federal national emergency warning system, Alert Ready. I reached out to Environment Canada for more information.

You’d think the federal government would want to let Canadians know about a new national emergency warning system and they do, in their fashion. For the whole story, there’s Mortillaro’s piece (which has an embedded video and more) but for the fast version, Mortillaro contacted the communications people a day before her Friday deadline asking for a spokesperson. The communications team missed the deadline although they did find a spokesperson who would be available on the Monday. Strangely or not, he proved to be hesitant to talk about the new system.

Getting back to the science muzzle protest of 2015 and the muzzle itself, there’s a May 17, 2015 article by Ivan Semeniuk for the Globe and Mail providing more detail about the muzzle and the then upcoming protest organized by the Professional Institute of the Public Service of Canada (PIPSC) currently in contract negotiations with the federal government. (Echoing what I said in my Dec. 4, 2014 posting about the contract negotiations, the union is bargaining for the right to present science information which is unprecedented in Canada (and, I suspect, internationally). Back to Semeniuk’s article,

With contract negotiations set to resume this week, there will also be a series of demonstrations for the Ottawa area on Tuesday to focus attention on the issue.

If successful, the effort could mark a precedent-setting turn in what the government’s critics portray as a struggle between intellectual independence and political prerogative.

“Our science members said to us: What’s more important than anything else is our ability to do our jobs as professionals,” said Peter Bleyer, an adviser with the Professional Institute of the Public Service of Canada, whose membership includes some 15,000 scientists and engineers.

Government scientists have always been vulnerable to those who hold the reins of power, but tensions have grown under the Conservatives. After the Tories enacted a wave of research program and facility cancellations in 2012, stories began to emerge of researchers who were blocked from responding to media requests about their work.

The onerous communications protocols apply even for stories about scientific advancements that are likely to reflect positively on the federal government. Last month [April 2015], after it was announced that Canada would become a partner in the Thirty Meter Telescope, The Globe and Mail had to appeal to the Prime Minister’s Office to facilitate an interview with the National Research Council astronomer leading the development of the telescope’s sophisticated adaptive-optics system.

Federal Information Commissioner Suzanne Legault is currently conducting an investigation into complaints that scientists have been muzzled by the Conservative government.

As Semeniuk notes at the end of his article in a quote from the US-based Union of Concerned Scientists’ representative, the problem is not new and not unique to Canada. For a ‘not unique’ example, the UK government seems to be interested in taking a similar approach to ‘muzzling’ scientists, according to an April 1, 2015 post by Glyn Moody for Techdirt (Note: Links have been removed),

Techdirt has been following for a while Canada’s moves to stop scientists from speaking out about areas where the facts of the situation don’t sit well with the Canadian government’s dogma-based policies. Sadly, it looks like the UK is taking the same route. It concerns a new code for the country’s civil servants, which will also apply to thousands of publicly-funded scientists. As the Guardian reports:

Under the new code, scientists and engineers employed at government expense must get ministerial approval before they can talk to the media about any of their research, whether it involves GM crops, flu vaccines, the impact of pesticides on bees, or the famously obscure Higgs boson.

The fear — quite naturally — is that ministers could take days before replying to requests, by which time news outlets will probably have lost interest. As a result of this change, science organizations have sent a letter to the UK government, expressing their “deep concern” about the code. …

As for ‘not new’, there’s always a tension between employer and employee about what constitutes free speech. Does an employee get fired for making gross, sexist comments in their free time at a soccer game? The answer in Ontario, Canada is yes according to a May 14, 2015 article by Samantha Leal for Marie Claire magazine. Presumably there will be a law suit and we will find out if the firing is legally acceptable. Or more cynically, this may prove to be a public relations ploy designed to spin the story in the employer’s favour while the employee takes some time off and returns unobtrusively at a later date.

I have a couple of final comments about free speech and employers’ and employees’ rights and responsibilities.First, up until the muzzles were applied, the Canadian government and its scientists seemed to have had a kind of unspoken agreement as to what constituted fair discussion of scientific research in the media. I vaguely recall a few kerfuffles over the years but nothing major. (If someone can recall an incident where a scientist working for the Canadian government seriously embarrassed it, please let me know in the comments.)  So, this relatively new enthusiasm for choking off  media coverage of Canadian science research seems misplaced at best. Unfortunately, it has exacerbated standard tensions about what employees can and can’t say to new heights. Attempting to entrench the right to share science research in a bureaucratic process (a union contract) seems weirdly similar to the Harper government’s approach, which like the union’s proposition added a bureaucratic layer.

As for my second thought, I’m wondering how many people who cheered that soccer fan’s firing for making comments (albeit sexist comments) in his free time are protesting for free speech for Canadian government scientists.

It comes down to* matters of principle. Which ones do we want to follow and when do we apply them? Do principles apply only for those people and ideas we find acceptable?

I just wish there was a little more nuance brought to the ‘science muzzle in Canada’ discussion so we might veer away from heightened adversarial relationships between the government and its scientists.

* The phrase was originally published as “to a matters of principle …” and was corrected on May 22, 2015.

McGill University researchers put the squeeze Tomonaga-Luttinger theory in quantum mechanics

McGill University (Montréal, Québec, Canada) researchers testing the Tomonaga-Luttinger theory had international help according to a May 15, 2015 news item on ScienceDaily,

We all know intuitively that normal liquids flow more quickly as the channel containing them tightens. Think of a river flowing through narrow rapids.

But what if a pipe were so amazingly tiny that only a few atoms of superfluid helium could squeeze through its opening at once? According to a longstanding quantum-mechanics model, the superfluid helium would behave differently from a normal liquid: far from speeding up, it would actually slow down.

For more than 70 years, scientists have been studying the flow of helium through ever smaller pipes. But only recently has nanotechnology made it possible to reach the scale required to test the theoretical model, known as the Tomonaga-Luttinger theory (after the scientists who developed it).

Now, a team of McGill University researchers, with collaborators at the University of Vermont and at Leipzig University in Germany, has succeeded in conducting experiments with the smallest channel yet – less than 30 atoms wide. In results published online today in Science Advances, the researchers report that the flow of superfluid helium through this miniature faucet does, indeed, appear to slow down.

A May 15, 2015 University of McGill news release (also on EurekAlert), which originated the news item, expands on the theme and notes this is one step on the road to proving the theory,

“Our results suggest that a quantum faucet does show a fundamentally different behaviour,” says McGill physics professor Guillaume Gervais, who led the project. “We don’t have the smoking gun yet. But we think this a great step toward proving experimentally the Tomonaga-Luttinger theory in a real liquid.”

The zone where physics changes

Insights from the research could someday contribute to novel technologies, such as nano-sensors with applications in GPS systems. But for now, Gervais says, the results are significant simply because “we’re pushing the limit of understanding things on the nanoscale. We’re approaching the grey zone where all physics changes.”

Prof. Adrian Del Maestro from the University of Vermont has been employing high-performance computer simulations to understand just how small the faucet has to be before this new physics emerges. “The ability to study a quantum liquid at such diminutive length scales in the laboratory is extremely exciting as it allows us to extend our fundamental understanding of how atoms cooperate to form the superfluid state of matter,” he says. “The superfluid slowdown we observe signals that this cooperation is starting to break down as the width of the pipe narrows to the nanoscale” and edges closer to the exotic one-dimensional limit envisioned in the Tomonaga-Luttinger theory.

Building what is probably the world’s smallest faucet has been no simple task. Gervais hatched the idea during a five-minute conversation over coffee with a world-leading theoretical physicist. That was eight years ago. But getting the nano-plumbing to work took “at least 100 trials – maybe 200,” says Gervais, who is a fellow of the Canadian Institute for Advanced Research.

A beam of electrons as drill bit

Using a beam of electrons as a kind of drill bit, the team made holes as small as seven nanometers wide in a piece of silicon nitride, a tough material used in applications such as automotive diesel engines and high-performance ball bearings. By cooling the apparatus to very low temperatures, placing superfluid helium on one side of the pore and applying a vacuum to the other, the researchers were able to observe the flow of the superfluid through the channel. Varying the size of the channel, they found that the maximum speed of the flow slowed as the radius of the pore decreased.

The experiments take advantage of a unique characteristic of superfluids. Unlike ordinary liquids – water or maple syrup, for example – superfluids can flow without any viscosity. As a result, they can course through extremely narrow channels; and once in motion, they don’t need any pressure to keep going. Helium is the only element in nature known to become a superfluid; it does so when cooled to an extremely low temperature.

An inadvertent breakthrough

For years, however, the researchers were frustrated by a technical glitch: the tiny pore in the silicon nitride material kept getting clogged by contaminants. Then one day, while Gervais was away at a conference abroad, a new student in his lab inadvertently deviated from the team’s operating procedure and left a valve open in the apparatus. “It turned out that this open valve kept the hole open,” Gervais says. “It was the key to getting the experiment to work. Scientific breakthroughs don’t always happen by design!”

Prof. Bernd Rosenow, a quantum physicist at Leipzig University’s Institute for Theoretical Physics, also contributed to the study.

Here’s a link to and a citation for the paper,

Critical flow and dissipation in a quasi–one-dimensional superfluid by Pierre-François Duc, Michel Savard, Matei Petrescu, Bernd Rosenow, Adrian Del Maestro, Guillaume Gervais. Science Advances 15 May 2015: Vol. 1 no. 4 e1400222 DOI: 10.1126/sciadv.1400222

This is an open access paper.

Feel good about Canadian youth and science—a couple of stories

I’ve got two items (h/t to Speaking for Canadian Science) which highlight exciting, recent news about Canadian youth and science. The first item concerns Intel’s International Science and Engineering Fair and the impact Canadian young scientists had on the 2015 edition of the fair. From a May 15, 2015 news item on CNN,

A Vancouver [Canada] high school student was awarded first place for engineering a new air inlet system for airplane cabins to improve air quality and curb disease transmission at this year’s Intel International Science and Engineering Fair, a program of Society for Science & the Public.

Raymond Wang, 17, invented a system that improves the availability of fresh air in the cabin by more than 190 percent while reducing pathogen inhalation concentrations by up to 55 times compared to conventional designs, and can be easily and economically incorporated in existing airplanes. Wang received the Gordon E. Moore Award of US$75,000, named in honor of the Intel co-founder and fellow scientist.

“Using high-fidelity computational fluid dynamics modeling and representative physical simulations, Raymond’s work has significantly enhanced our understanding of how disease-causing pathogens travel via circulating airflow in aircraft cabins, and has also helped him to develop multiple approaches for reducing disease transmission in these types of settings,” said Scott Clary, Ph.D., Intel International Science Engineering Fair 2015 engineering mechanics category co-chair and electromechanical engineering manager at Lockheed Martin Missiles and Fire Control.

Team Canada had a superior showing at this year’s fair with 11 students winning awards.

Nicole Ticea, 16, also of Vancouver, received one of two Intel Foundation Young Scientist Awards of US$50,000 for developing an inexpensive, easy-to-use testing device to combat the high rate of undiagnosed HIV infection in low-income communities. Her disposable, electricity-free device provides results in an hour and should cost less than US$5 to produce. Ticea has already founded her own company, which recently received a US$100,000 grant to continue developing her technology.

“With a focus on science, technology, education and math, key pillars of a competitive and robust Canadian economy, these students showcase how competitive Canadians can be on a global scale,” said Nancy Demerling, marketing manager, Intel Canada.

Additional awards were presented to the following Canadian students:

  • Candace Brooks-Da Silva (Windsor, ON): Second Award of $500, Society of Experimental Test Pilots; Top Award of $5,000, National Aeronautics and Space Administration; Alternate for CERN trip, European Organization for Nuclear Research-CERN; Second Award of $1,500, Engineering Mechanics
  • Emily Cross (Thunder Bay, ON): First Award of $1,000, American Geosciences Institute; Fourth Award of $500, Earth and Environmental Sciences
  • Benjamin Friesen (Grimsby, ON): Award of $5,000 for outstanding project in the systems software category, Oracle Academy
  • Ann Makosinski (Victoria): First Award of $500, Patent and Trademark Office Society; Fourth Award of $500, Energy: Physical
  • Daniel McInnis (Ottawa): Third Award of $1,000, Computational Biology and Informatics
  • Aditya Mohan (Ottawa): First Award of $2,000, American Association of Pharmaceutical Scientists; First Award of $3,000, Biomedical and Health Sciences
  • Janice Pang (Coquitlam, BC): Fourth Award of $500, Biomedical and Health Sciences
  • Amit Scheer (Ottawa): Second Award of $1,500, Biomedical and Health Sciences
  • Duncan Stothers (Vancouver): Sustainable Design In Transportation, First Award $2,500, Alcoa Foundation; Second Award of $1,500, Society for Experimental Mechanics, Inc.; Second Award of $1,500, Engineering Mechanics
  • Nicole Ticea (Vancouver): USAID Global Development Innovation award of $10,000, U.S. Agency for International Development; Award of $1,200, China Association for Science and Technology (CAST); Intel International Science and Engineering Fair Best of Category Award of $5,000, Biomedical and Health Sciences; First Award of $3,000, Biomedical and Health Sciences; Cultural and Scientific Visit to China Award, Intel Foundation Cultural and Scientific Visit to China Award $8,000
  • Raymond Wang (Vancouver): First Award of $1,000, Society of Experimental Test Pilots; Third Award of $1,000, National Aeronautics and Space Administration; Intel International Science and Engineering Fair Best of Category Award of $5,000, Engineering Mechanics; First Award of $3,000, Engineering Mechanics; Cultural and Scientific Visit to China Award, Intel Foundation Cultural and Scientific Visit to China Award $8,000

This year’s Intel International Science and Engineering Fair featured approximately 1,700 young scientists selected from 422 affiliate fairs in more than 75 countries, regions and territories.

The Intel International Science and Engineering Fair 2015 is funded jointly by Intel and the Intel Foundation with additional awards and support from dozens of other corporate, academic, governmental and science-focused organizations. This year, approximately US$4 million was awarded.

Two provinces seem to have dominated the Canadian field, Ontario and British Columbia. The lack of representation at the award-winning level from the other provinces may signify a lack of awareness in the Prairies, Québec, the North, and the Maritimes, about the festival and, consequently, fewer entries from those provinces and territories. On a whim, I searched for an Intel Canada presence and there is one, in British Columbia. Interesting but not conclusive. In any event, congratulations to all the students who won and those who participated!

There was another science fair, this one, the Canada Wide Science Fair (CWSF), took place in Fredericton, New Brunswick (Maritimes). From a May 12, 2015 news item on the CBC (Canadian Broadcasting Corporation) news website,

Almost 500 provincial science fair winners are competing for more than $1 million in prizes, scholarships and awards this week in the Canada Wide Science Fair in Fredericton.

The Currie Center at the University of New Brunswick is packed with booths in neat rows with topics ranging from preventing ice drownings to better ways to carry a kayak.

Paransa Subedi, a Winnipeg student, is studying how much sugar gets into your blood stream from breakfast cereal.

“We know that Rice Krispies have very little added sugar, but the thing is its all starches, so over time it has a high glycemic response,” she says, as she cuts up a cereal box to add to her display.

Judging is happening all day on Tuesday. Four judges will look at each project and they will reach a consensus to determine the winner.

Judith Soon, a national judge, says 50 per cent of the mark is for the “creative spark.”

“The most important part is being creative and original and it has to be their idea,” she said.

A May 15, 2015 CWSF news item by Dominic Tremblay for the Youth Science Canada (the CWSF’s parent organization) website lists the 2015 winners of the top prizes,

The Best Project Award went to:

Austin Wang from Vancouver, BC, for his project: A Novel Method to Identify Genes in Electron Transfer of Exoelectrogens. Austin’s project identified genes in bacteria that are responsible for generating power in a microbial fuel cell. His work is making an incredible impact on understanding the biology of how these systems work.

Platinum Awards of $1,000 were awarded to: 

Rebecca Baron from Vancouver, BC, for her project: Root Microbiomics: The Next Big Thing? Her project looked at using a common household plant to remove toxins from the air. She found that the microbes in the root of a particular plant are highly successful in removing airborne formaldehyde. Her work has the potential to make an impact on bioremediation of indoor air quality.

Marcus Deans from Windsor, Ontario for his project: NOGOS: A Novel Nano-Oligosaccharide Doped Graphene Sand Composite Water. For his project he created a filter out of sugar and sand that can successfully clean water to commercial standards, all with materials under $20 total. He hopes that his work can go a long way to providing cheap and effective water filters for the developing world.

Congratulations to the top prize winners, winners, and all the participants!

You can find the full list of 2015 award recipients here. where you will find several other provinces also well represented.

I sing the body cyber: two projects funded by the US National Science Foundation

Points to anyone who recognized the reference to Walt Whitman’s poem, “I sing the body electric,” from his classic collection, Leaves of Grass (1867 edition; h/t Wikipedia entry). I wonder if the cyber physical systems (CPS) work being funded by the US National Science Foundation (NSF) in the US will occasion poetry too.

More practically, a May 15, 2015 news item on Nanowerk, describes two cyber physical systems (CPS) research projects newly funded by the NSF,

Today [May 12, 2015] the National Science Foundation (NSF) announced two, five-year, center-scale awards totaling $8.75 million to advance the state-of-the-art in medical and cyber-physical systems (CPS).

One project will develop “Cyberheart”–a platform for virtual, patient-specific human heart models and associated device therapies that can be used to improve and accelerate medical-device development and testing. The other project will combine teams of microrobots with synthetic cells to perform functions that may one day lead to tissue and organ re-generation.

CPS are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

“NSF has been a leader in supporting research in cyber-physical systems, which has provided a foundation for putting the ‘smart’ in health, transportation, energy and infrastructure systems,” said Jim Kurose, head of Computer & Information Science & Engineering at NSF. “We look forward to the results of these two new awards, which paint a new and compelling vision for what’s possible for smart health.”

Cyber-physical systems have the potential to benefit many sectors of our society, including healthcare. While advances in sensors and wearable devices have the capacity to improve aspects of medical care, from disease prevention to emergency response, and synthetic biology and robotics hold the promise of regenerating and maintaining the body in radical new ways, little is known about how advances in CPS can integrate these technologies to improve health outcomes.

These new NSF-funded projects will investigate two very different ways that CPS can be used in the biological and medical realms.

A May 12, 2015 NSF news release (also on EurekAlert), which originated the news item, describes the two CPS projects,

Bio-CPS for engineering living cells

A team of leading computer scientists, roboticists and biologists from Boston University, the University of Pennsylvania and MIT have come together to develop a system that combines the capabilities of nano-scale robots with specially designed synthetic organisms. Together, they believe this hybrid “bio-CPS” will be capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.

“We bring together synthetic biology and micron-scale robotics to engineer the emergence of desired behaviors in populations of bacterial and mammalian cells,” said Calin Belta, a professor of mechanical engineering, systems engineering and bioinformatics at Boston University and principal investigator on the project. “This project will impact several application areas ranging from tissue engineering to drug development.”

The project builds on previous research by each team member in diverse disciplines and early proof-of-concept designs of bio-CPS. According to the team, the research is also driven by recent advances in the emerging field of synthetic biology, in particular the ability to rapidly incorporate new capabilities into simple cells. Researchers so far have not been able to control and coordinate the behavior of synthetic cells in isolation, but the introduction of microrobots that can be externally controlled may be transformative.

In this new project, the team will focus on bio-CPS with the ability to sense, transport and work together. As a demonstration of their idea, they will develop teams of synthetic cell/microrobot hybrids capable of constructing a complex, fabric-like surface.

Vijay Kumar (University of Pennsylvania), Ron Weiss (MIT), and Douglas Densmore (BU) are co-investigators of the project.

Medical-CPS and the ‘Cyberheart’

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care and potentially speed up disease diagnosis and prevention. [emphasis mine]

Extending these efforts, researchers from seven leading universities and centers are working together to develop far more realistic cardiac and device models than currently exist. This so-called “Cyberheart” platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design safe, patient-specific device therapies, thereby lowering the risk to the patient.

“Innovative ‘virtual’ design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible,” said Scott Smolka, a professor of computer science at Stony Brook University and one of the principal investigators on the award.

The group’s approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

“We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification,” Smolka said.

The team will develop virtual device models which can be coupled together with virtual heart models to realize a full virtual development platform that can be subjected to computational analysis and simulation techniques. Moreover, they are working with experimentalists who will study the behavior of virtual and actual devices on animals’ hearts.

Co-investigators on the project include Edmund Clarke (Carnegie Mellon University), Elizabeth Cherry (Rochester Institute of Technology), W. Rance Cleaveland (University of Maryland), Flavio Fenton (Georgia Tech), Rahul Mangharam (University of Pennsylvania), Arnab Ray (Fraunhofer Center for Experimental Software Engineering [Germany]) and James Glimm and Radu Grosu (Stony Brook University). Richard A. Gray of the U.S. Food and Drug Administration is another key contributor.

It is fascinating to observe how terminology is shifting from pacemakers and deep brain stimulators as implants to “CPS such as wearable sensors and implantable devices … .” A new category has been created, CPS, which conjoins medical devices with other sensing devices such as wearable fitness monitors found in the consumer market. I imagine it’s an attempt to quell fears about injecting strange things into or adding strange things to your body—microrobots and nanorobots partially derived from synthetic biology research which are “… capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.” They’ve also sneaked in a reference to synthetic biology, an area of research where some concerns have been expressed, from my March 19, 2013 post about a poll and synthetic biology concerns,

In our latest survey, conducted in January 2013, three-fourths of respondents say they have heard little or nothing about synthetic biology, a level consistent with that measured in 2010. While initial impressions about the science are largely undefined, these feelings do not necessarily become more positive as respondents learn more. The public has mixed reactions to specific synthetic biology applications, and almost one-third of respondents favor a ban “on synthetic biology research until we better understand its implications and risks,” while 61 percent think the science should move forward.

I imagine that for scientists, 61% in favour of more research is not particularly comforting given how easily and quickly public opinion can shift.

A May 27, 2015 presentation on Bruno Pontecorvo in Vancouver (Canada)

A movie about Bruno Pontecorvo (a mover and shaker in the world of neutrino physics) is being hosted by ARPICO (Society of Italian Researchers and Professionals in Western Canada) on Wednesday, May 27, 2015. From a May 12, 2015 ARPICO announcement,

Maksimovic – The story of Bruno Pontecorvo

Prof. Samoil Bilenky will introduce a short movie on the life of Bruno Pontecorvo.

The movie will trace the main points of Bruno Pontecorvo’s life, a nuclear physicist, born in 1913 in Pisa (Italy) and dead in 1993 in Dubna (Russia).
Samoil Bilenky worked with Pontecorvo from 1975 until 1989 in Dubna where they developed the theory of neutrino masses and oscillations and proposed experiments on the search for neutrino oscillations.

The impact of Bruno Pontecorvo on neutrino physics is well recognized in the Scientific Community.

Prof. Samoil Bilenky obtained his doctoral degree at JINR (Joint Institute for Nuclear Research) in Dubna and collaborated with Bruno Pontecorvo for over a decade. He was also professor at the Moscow State University and later at SISSA (Scuola Internazionale Superiore di Studi Avanzati) in Italy. He has been a visiting scientist at TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) in Canada, at DESY (Deutsches Elektronen-Synchrotron) in Germany, at the University of Valencia (Spain), the University of Turin (Italy) and at the TU Munich (Germany).
In 2002 prof. Samoil Bilenky received the Bruno Pontecorvo Prize and in 1999 he received the Humboldt Research Award.

Here are location and other event details,

The story of Bruno Pontecorvo
  • May 27, 2015 – 7:15pm
  • Activity Room, Main Level – 480 Broughton St, Vancouver, BC
  • Underground pay parking is available – EasyPark – Lot 64
    Everyone is invited to a no-host dinner with the Board of Directors afterwards.

Enjoy!