A review of the nanotechnology in green technology

Michael Berger has written a Nov. 18, 2014 Nanowerk Spotlight article focusing on the ‘green’ in nanotechnology (Note: A link has been removed),

There is a general perception that nanotechnologies will have a significant impact on developing ‘green’ and ‘clean’ technologies with considerable environmental benefits. The associated concept of green nanotechnology aims to exploit nanotech-enabled innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable. These applications are expected to impact a large range of economic sectors, such as energy production and storage, clean up-technologies, as well as construction and related infrastructure industries.

A recent review article in Environmental Health (“Opportunities and challenges of nanotechnology in the green economy”) examines opportunities and practical challenges that nanotechnology applications pose in addressing the guiding principles for a green economy.

Here’s a link to and citation for the review article cited by Berger. It is more focused on occupational health and safety then the title suggests but not surprising when you realize all of the authors are employed by the US National Institute of Occupational Safety and Health (NIOSH),,

Opportunities and challenges of nanotechnology in the green economy by Ivo Iavicoli, Veruscka Leso, Walter Ricciard, Laura L Hodson, and Mark D Hoover. Environmental Health 2014, 13:78 doi:10.1186/1476-069X-13-78 Published:    7 October 2014

© 2014 Iavicoli et al.; licensee BioMed Central Ltd.

This is an open access article.

Here’s the background to the work (from the article; Note: Links have been removed),

The “green economy” concept has been driven into the mainstream of policy debate by global economic crisis, expected increase in global demand for energy by more than one third between 2010 to 2035, rising commodity prices as well as the urgent need for addressing global challenges in domains such as energy, environment and health [1-3].

The term “green economy”, chiefly relating to the principles of sustainable development, was first coined in a pioneering 1989 report for the Government of the United Kingdom by a group of leading environmental economists [1]. The most widely used and reliable definition of “green economy” comes from the United Nations Environment Programme which states that “a green economy is one that results in improved human well-being and social equity, while significantly reducing environmental risks and ecological scarcities. It is low carbon, resource efficient, and socially inclusive” [4].

The green economy concept can indeed play a very useful role in changing the way that society manages the interaction of the environmental and economic domains. In this context, nanotechnology, which is the manipulation of matter in the dimension of 1 to 100 nm, offers the opportunity to produce new structures, materials and devices with unique physico-chemical properties (i.e. small size, large surface area to mass ratio) to be employed in energy efficient as well as economically and environmentally sustainable green innovations [8-12].

Although expected to exert a great impact on a large range of industrial and economic sectors, the sustainability of green nano-solutions is currently not completely clear, and it should be carefully faced. In fact, the benefits of incorporating nanomaterials (NMs) in processes and products that contribute to outcomes of sustainability, might bring with them environmental, health and safety risks, ethical and social issues, market and consumer acceptance uncertainty as well as a strong competition with traditional technologies [13].

The present review examines opportunities and practical challenges that nano-applications pose in addressing the guiding principles for a green economy. Examples are provided of the potential for nano-applications to address social and environmental challenges, particularly in energy production and storage thus reducing pressure on raw materials, clean-up technologies as well as in fostering sustainable manufactured products. Moreover, the review aims to critically assess the impact that green nanotechnology may have on the health and safety of workers involved in this innovative sector and proposes action strategies for the management of emerging occupational risks.

The potential nanotechnology impact on green innovations

Green nanotechnology is expected to play a fundamental role in bringing a key functionality across the whole value chain of a product, both through the beneficial properties of NMs included as a small percentage in a final device, as well as through nano-enabled processes and applications without final products containing any NMs [13,14]. However, most of the potential green nano-solutions are still in the lab/start-up phase and very few products have reached the market to date. Further studies are necessary to assess the applicability, efficiency and sustainability of nanotechnologies under more realistic conditions, as well as to validate NM enabled systems in comparison to existing technologies. The following paragraphs will describe the potential fields of application for green nanotechnology innovations.

Intriguingly, there’s no mention (that I could find) of soil remediation (clean-up) although there is reference to water remediation.  As for occupational health and safety and nanotechnology, the authors have this to say (Note: Links have been removed),

In this context according to the proposed principles for green economy, it is important that society, scientific community and industry take advantage of opportunities of nanotechnology while overcoming its practical challenges. However, not all revolutionary changes are sustainable per se and a cautious assessment of the benefits addressing economic, social and environmental implications, as well as the occupational health and safety impact is essential [95,96]. This latter aspect, in particular, should be carefully addressed, in consideration of the expected widespread use of nanotechnology and the consequent increasing likelihood of NM exposure in both living and occupational environments. Moreover, difficulties in nano-manufacturing and handling; uncertainty concerning stability of nano-innovations under aggressive or long-term operation (i.e. in the case of supercapacitors with nano-structured electrode materials or nano-enabled construction products); the lack of information regarding the release and fate of NMs in the environment (i.e. NMs released from water and wastewater treatment devices) as well as the limited knowledge concerning the NM toxicological profile, even further support the need for a careful consideration of the health and safety risks derived from NM exposure.Importantly, as shown in Figure 1, a number of potentially hazardous exposure conditions can be expected for workers involved in nanotechnology activities. In fact, NMs may have significant, still unknown, hazards that can pose risks for a wide range of workers: researchers, laboratory technicians, cleaners, production workers, transportation, storage and retail workers, employees in disposal and waste facilities and potentially, emergency responders who deal with spills and disasters of NMs who may be differently exposed to these potential, innovative xenobiotics.

The review article is quite interesting, albeit its precaution-heavy approach, but if you don’t have time, Berger summarizes the article. He also provides links to related articles he has written on the subjects of energy storage, evaluating ‘green’ nanotechnology in a full life cycle assessment, and more.

American Association for the Advancement of Science (AAAS) 2015 meeting in San Jose, CA from Feb. 12 -16, 2014

The theme for the 2015 American Association for the Advancement of Science meeting is Innovations, Information, and Imaging and you can find the program here. A few of the talks and presentations caught my eye and I’m starting with the plenary lectures as these reflect, more or less, the interpretation of the theme and set the tone for the meeting.

Plenary lectures

President’s Address
Thursday, 12 February 2015: 6:00 PM-7:30 PM

Dr. Gerald Fink’s work in genetics, biochemistry, and molecular biology has advanced our understanding of gene regulation, mutation, and recombination. He developed a technique for transforming yeast that allowed researchers to introduce a foreign piece of genetic material into yeast cells and study the inheritance and expression of that DNA. [emphasis mine] The technique, fundamental to genetic engineering, laid the groundwork for the commercial use of yeast as biological factories for manufacturing vaccines and other drugs, and set the stage for genetic engineering in all organisms. Fink chaired a National Research Council Committee that produced the 2003 report Biotechnology Research in an Age of Terrorism: Confronting the Dual Use Dilemma, recommending practices to prevent the potentially destructive application of biotechnology research while enabling legitimate research. …

I did not include Dr.Fink’s many, many professional attributes but rest assured Dr. Fink has founded at least one research group, received many professional honours, and has multiple degrees.

Back to the plenary lectures,

Daphne Koller: The Online Revolution: Learning Without Limits
Plenary Lecture
Friday, 13 February 2015: 5:00 PM-6:00 PM

Dr. Daphne Koller is the Rajeev Motwani Professor in the Department of Computer Science at Stanford University and president and co-founder of Coursera, an online education platform. Her research focus is artificial intelligence and its applications in the biomedical sciences. She received her bachelor’s and master’s degrees from Hebrew University of Jerusalem. Koller completed her Ph.D. at Stanford under the supervision of Joseph Halpern and performed postdoctoral research at University of California, Berkeley. She was named a MacArthur Fellow in 2004 and was awarded the first ACM-Infosys Foundation Award in Computing Sciences. She co-authored, with Nir Friedman, a textbook on probabilistic graphical models and offered a free online course on the subject. She and Andrew Ng, a fellow Stanford computer science professor, launched Coursera in 2012. Koller and Ng were recognized on the 2013 Time 100 list of the most influential people in the world.

David Baker: Post-Evolutionary Biology: Design of Novel Protein Structures, Functions, and Assemblies

Plenary Lecture

Saturday, 14 February 2015: 5:00 PM-6:00 PM

Dr. David Baker is a biochemist and computational biologist whose research focuses on the prediction and design of macromolecular structures and functions. He is the director of the Rosetta Commons, a consortium of labs and researchers that develop the Rosetta biomolecular structure prediction and design program, which has been extended to the distributed computing project Rosetta@Home and the online computer game Foldit. He received his Ph.D. in biochemistry at the University of California, Berkeley and completed postdoctoral work in biophysics at University of California, San Francisco. Baker has received numerous awards in recognition of his work, including the AAAS Newcomb Cleveland Prize; the Sackler International Prize in Biophysics; the Overton Prize from the International Society of Computational Biology; the Feynman Prize from the Foresight Institute; and the Centenary Award from the Biochemical Society. He is an investigator of the Howard Hughes Medical Institute, and a member of the National Academy of Sciences and the American Academy of Arts and Sciences.[emphasis mine]

I found the mention of the Foresight Institute (a nanotechnology organization founded by Eric Drexler and Christine Petersen) quite interesting. The title of Baker’s presentation certainly brings to mind, synthetic biology.

Back to the plenary lectures,

Neil Shubin: Finding Your Inner Fish
Plenary Lecture
Monday, 16 February 2015: 8:30 AM-9:30 AM

Dr. Neil Shubin is a paleontologist and evolutionary biologist who researches the origin of animal anatomical features. He has done field work in Greenland, Africa, Asia, and North America. One of his discoveries, Tiktaalik roseae, has been described as the “missing link” between fish and land animals. He has also done important work on the developmental biology of limbs, and he uses his diverse fossil findings to devise hypotheses on how anatomical transformations occurred by way of genetic and morphogenetic processes. He is a fellow of the John Simon Guggenheim Memorial Foundation and the American Association for the Advancement of Science and a member of the National Academy of Sciences. He earned a Ph.D. in organismic and evolutionary biology from Harvard University. Shubin’s popular science book Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body was adapted for a PBS documentary series in 2014.

Here are a few presentations from the main program; this first one is a ‘conference within a conference’,

Citizen Science 2015, Day One
Pre-registration required
Wednesday, 11 February 2015: 8:30 AM-5:00 PM

Citizen science is a partnership between everyday people and professional scientists to investigate pressing questions about the world. Citizen Science 2015 invites anyone interested in such collaborations to participate in a two-day pre-conference before the AAAS Annual Meeting. All involved in any aspect of citizen science are welcome, including researchers, project leaders, educators, evaluators, designers and makers, volunteers, and more–representing a wide variety of disciplines. Join people from across the field of citizen science to discuss designing, implementing, sustaining, evaluating, and participating in projects. Share your project innovations and questions. Citizen Science 2015 is the inaugural conference and gathering of the newly formed Citizen Science Association (CSA). For additional information, including Citizen Science Conference registration, visit www.citizenscienceassociation.org.

Revolutionary Vision: Implants, Prosthetics, Smart Glasses, and the Telescopic Contact Lens
Friday, 13 February 2015: 8:00 AM-9:30 AM

According to the World Health Organization, 285 million people are estimated to be visually impaired worldwide. Age-related macular degeneration alone is the leading cause of blindness among older adults in the western world. These facts leave no question as to why the brightest minds in science and engineering are setting their sights on vision through new electronics, retinal prosthesis, wearable technologies, and even telescopic contact lenses. Researchers are bringing into focus novel electronics such as systems on plastic, which are deformable and implantable, zero-power, and wireless and have numerous applications for sight and vision. Retinal prosthesis combined with video goggles pulsing near-infrared light, meanwhile, have restored up to half of normal acuity in rats. This symposium showcases and demos the latest prototypes tackling form as well as function: smart glasses with novel display architecture that make them small and light while maintaining an optimal field of view. These breakthroughs not only help subjects see but also hold promise for noninvasive continuous monitoring of eye health. Scientists will reveal the first-ever telescopic contact lens, which magnifies 2.8 times and offers hope for millions suffering from macular degeneration and seeking alternatives to bulky glasses and invasive surgery. These advances reveal the great promise that science holds for the visually impaired — truly a sight to behold.
Organizer:
Megan Williams, swissnex
Co-organizers:
Christian Simm, swissnex
and Melanie Picard, swissnex
Moderator:
Christian Simm, swissnex
Speakers:
Daniel Palanker, Stanford University
Restoration of Sight with Photovoltaic Subretinal Prosthesis
Eric Tremblay, Swiss Federal Institute of Technology (EPFL)
Smart Glasses and Telescopic Contact Lenses for Macular Degeneration
Giovanni Antonio Salvatore, ETH Zurich
The Next Technological Leap in Electronics

Celebration of 2015: The International Year of Light
Friday, 13 February 2015: 8:30 AM-11:30 AM

In recognition that light-based science and technologies play a critical role in our daily lives, the United Nations passed a resolution declaring 2015 the International Year of Light. The UN resolution states that “applications of light science and technology are vital for existing and future advances in medicine, energy, information and communications, fiber optics, astronomy, agriculture, archaeology, entertainment, and culture.” Hundreds of science and engineering organizations across the globe signed on in support of the International Year of Light 2015 and will be raising awareness of light-based science and technology throughout the year. This symposium brings together speakers from diverse fields to illustrate the many sectors that are influenced by optics and photonics.
Organizer:
Martha Paterson, The Optical Society (OSA)
Co-organizers:
Anthony Johnson, University of Maryland
and Phil Bucksbaum, Stanford University
Moderator:
Anthony Johnson, University of Maryland
Speakers:
Elizabeth Hillman, Columbia University
Optics in Neuroscience
Warren Warren, Duke University
Applying Nonlinear Laser Microscopy to Melanoma Diagnosis and Renaissance Art Imaging
Uwe Bergmann, SLAC National Accelerator Laboratory
X-Ray Laser Research: Lighting Our Future
Alan Eli Willner, University of Southern California
Optical Communications
Christopher Stratas , Flextronics
LED Lighting and Energy Efficiency
R. Rox Anderson, Harvard Medical School
Lasers in Medicine

I last mentioned the upcoming International Year of Light in a Nov. 7, 2014 post about the Nanoscale Informal Science Education Network (NISENet) newsletter. For anyone who has difficulty connecting nano with light, remember the Lycurgus Cup (Sept. 21, 2010 post) infused with gold and silver nanoparticles and which appears either green or red depending on how the light is shone?

Back to the programme,

The Future of the Internet: Meaning and Names or Numbers?
The Future of Computing
Friday, 13 February 2015: 10:00 AM-11:30 AM

Information-centric networking (ICN) is a new, disruptive technology that holds the promise of eliminating many of the internet’s current technical shortcomings. The idea is based on two simple concepts: addressing information by its name rather than by its location, and adding computation and memory to the network, especially at the edge. The implications for network architects are far reaching and offer both elegant solutions and perplexing implementation challenges. The field of ICN research is active, including hundreds of projects at leading academic, industrial, and government laboratories around the world. This session will explore the motivations and current state-of-the-art in ICN research from multiple perspectives and approaches. The speakers in this session have contributed to every facet of the internet’s evolution since its inception.
Organizer:
Glenn T. Edens, PARC Xerox
Co-Organizer:
J.J. Garcia-Luna-Aceves, University of California, Santa Cruz
Speakers:
Vinton Cerf, Google Inc.
Digital Vellum
David Oran, Cisco Systems
Information-Centric Networking: Is It Ready for Prime Time? Will It Ever Be?
Glenn T. Edens, PARC Xerox
Information-Centric Networking: Towards a Reliable and Robust 21st Century Internet

It seems odd that the speakers come from industry/business exclusively.

Comics, Zombies, and Hip-Hop: Leveraging Pop Culture for Science Engagement
Friday, 13 February 2015: 1:00 PM-2:30 PM

Access to quality scientific information is progressively more important in society today. The critical ways information can be used range from increasing scientific literacy and developing the public’s understanding of behaviors that promote health and well-being, to increasing interest in careers in science and success in school — particularly among students traditionally underrepresented in the sciences. Traditional forms of scientific communication — textbooks, talks, and articles in the lay press — succeed at reaching some, but leave many others in the dark. Recent research also indicates that scientists have a narrow view of outreach, mostly considering it as simply giving a talk at a school. However, new forms of culturally relevant engagement for K-12 students are emerging — comic books with rich scientific content that have been demonstrated to increase student engagement, novel workshops (for settings in and out of school) that interweave STEM  exploration with creative writing to build students’ scientific and written literacy, and connecting hip-hop culture and the classroom through rap — while engaging students as co-teachers and translators to help their peers learn science.
Organizer:
Rebecca L. Smith, University of California
Co-Organizer:
Kishore Hari, University of California
Moderator:
Rebecca L. Smith, University of California
Speakers:
Judy Diamond, University of Nebraska State Museum
Engaging Teenagers with Science Through Comics
Julius Diaz Panoriñgan, 826LA
Developing Multiple Literacies with Zombies, Space Exploration, and Superheroes
Tom McFadden, Nueva School
Science Rapping from Auckland to Oakland

Tom McFadden, one of the speakers, has been mentioned here on more than one occasion (most recently in a May 30, 2014 post).

Back to the program,

Citizen Science from the Zooniverse: Cutting-Edge Research with 1 Million Scientists
Friday, 13 February 2015: 1:30 PM-4:30 PM

Citizen science (CS) involves public participation and engagement in scientific research in a way that makes it possible to perform tasks that a small number of researchers could not accomplish alone, makes the research more democratic, and potentially educates the participants. Volunteers simply need access to a computer or tablet to become involved and assist research activities. The presence of massive online datasets and the availability of high-speed internet access provide many opportunities for citizen scientists to work on projects analyzing and interpreting data — especially images — in astronomy, biology, climate science, and other fields. The growing phenomenon of CS has drawn the interest of social scientists who study the efficacy of CS projects, motivations of participants, and applications to industry and policymaking. CS clearly has considerable potential in the era of big data. Galaxy Zoo is an example of a successful CS project; it invites volunteers to visually classify the shapes and structures of galaxies seen in images from optical surveys. The project resulted in catalogs of hundreds of thousands of classified galaxies, allowing for novel statistical analyses and the identification of rare objects. Its popularity led to the Zooniverse, a suite of projects in a diverse and interdisciplinary range of fields. This symposium will demonstrate how CS is becoming a vital tool and highlight the work of a variety of researchers.
Organizer:
Ramin A. Skibba, University of California
Speakers:
Laura Whyte, Adler Planetarium
Introduction to Citizen Science and the Zooniverse
Brooke Simmons, University of Oxford
The Scientific Impact of Galaxy Zoo
Alexandra Swanson, University of Minnesota
Photographing Carnivores with Snapshot Serengeti
Kevin Wood, University of Washington
Old Weather: Studying Historical Weather Patterns with Ship Logbooks
Paul Pharoah, University of Cambridge
Contributing to Cancer Research with Cell Slider
Philip Marshall, Stanford University
Using Space Warps To Find Gravitational Lenses

The Zooniverse has been mentioned here before, most recently in a March 17, 2014 post about the TED 2014 conference held in Vancouver (Canada),

Robert Simpson talked about citizen science, the Zooniverse project, and astronomy.  I have mentioned Zooniverse here (a Jan. 17, 2012 posting titled: Champagne galaxy, drawing bubbles for science and a Sept. 17, 2013 posting titled: Volunteer on the Plankton Portal and help scientists figure out ways to keep the ocean healthy.  Simpson says there are 1 million people participating in various Zooniverse projects and he mentioned that in addition to getting clicks and time from people, they’ve also gotten curiosity. That might seem obvious but he went on to describe a project (the Galaxy Zoo project) where the citizen scientists became curious about certain phenomena they were observing and as a consequence of their curiosity an entirely new type of galaxy was discovered, a pea galaxy. From the Pea Galaxy Wikipedia entry (Note: Links have been removed),

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of Luminous Blue Compact Galaxy which is undergoing very high rates of star formation.[1] Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

Pea Galaxies were first discovered in 2007 by the volunteer users within the forum section of the online astronomy project Galaxy Zoo (GZ).[2]

Here’s the last presentation I’m featuring in this post and it has a ‘nano’ flavour,

Beyond Silicon: New Materials for 21st Century Electronics
Saturday, 14 February 2015: 8:00 AM-9:30 AM

Silicon Valley gets its name from the element found at the heart of all microelectronics. For decades, pure silicon single crystals have been the basis for computer chips. But as chips become smaller and faster, doubling the number of transistors on integrated circuits every two years in accordance with Moore’s law, silicon is nearing its practical limits. Scientists are exploring radical new materials and approaches to take over where silicon leaves off — from graphene, a honeycombed sheet of carbon just one atom thick, to topological insulators that conduct electricity perfectly on their surfaces and materials that use the electron’s spin, rather than its charge, to store information. Beyond graphene, scientists are investigating relatively new types of two-dimensional materials that have graphene-like structures and are also semiconducting, making them a natural fit for advanced electronics. This session will describe theoretical and experimental progress in materials beyond silicon that hold promise for continued improvement in computer performance.
Organizer:
Glennda Chui, SLAC National Accelerator Laboratory
Discussant:
Shoucheng Zhang, Stanford University
Speakers:
Stuart S.P. Parkin, IBM Research
Spintronic and Ionitronic Materials and Devices
Joshua Goldberger, Ohio State University
Beyond Graphene: Making New Two-Dimensional Materials for Future Electronics
Elsa Reichmanis, Georgia Institute of Technology
Active Organic and Polymer Materials for Flexible Electronics

There are some very intriguing presentations and one theme not featured here: data visualization (several presentations about visualizing data and/or science can be found). you can explore for yourself, here’s the online program.

RNA interference: a Tekmira deal and a new technique births Solstice Biologics

I have two news items concerning ribonucleic acid interference (RNAi). The first item features Tekmira Pharmaceuticals Corporation (a Canadian company located in the Vancouver area) and a licencing deal with Dicerna Pharmaceuticals (Massachusetts, US), according to a Nov. 18, 2014 news item on Azonano,

Tekmira Pharmaceuticals Corporation a leading developer of RNA interference (RNAi) therapeutics, today announces a licensing and collaboration agreement with Dicerna Pharmaceuticals, Inc. Tekmira has licensed its proprietary lipid nanoparticle (LNP) delivery technology for exclusive use in Dicerna’s primary hyperoxaluria type 1 (PH1) development program.

Under the agreement, Dicerna will pay Tekmira $2.5 million upfront and payments of $22 million in aggregate development milestones, plus a mid-single-digit royalty on future PH1 sales. This new partnership also includes a supply agreement with Tekmira providing clinical drug supply and regulatory support in the rapid advancement of the product candidate.

The agreement announced today follows the successful testing and demonstration of positive results combining Tekmira’s LNP technology with DCR-PH1 in pre-clinical animal models.

I don’t entirely understand what they mean by “pre-clinical animal models” as I’ve not noticed the term “pre-clinical” applied to animal testing before this. It’s possible they mean they’ve run tests on animals (in vivo) and are now proceeding to human clinical trials or it could mean they’ve run in silico (computer modeling) or in vitro (test tube/test slide) tests and are now proceeding to animal tests. If anyone should have some insights, please do share them with me in the comments section.

A Nov. 17, 2014 Tekmira news release, which originated the news item, describes the deal in more detail,

Dicerna will use Tekmira’s third generation LNP technology for delivery of DCR-PH1, Dicerna’s Dicer substrate RNA (DsiRNA) molecule, for the treatment of PH1, a rare, inherited liver disorder that often results in kidney failure and for which there are no approved therapies.

“This new agreement validates our leadership position in RNAi delivery with LNP technology, and it underscores the significant value we can bring to partners who leverage our technology. Our LNP technology is enabling the most advanced applications of RNAi therapeutics in the clinic, and it continues to do so. We are excited to be working with Dicerna to be able to advance a needed therapeutic for the treatment of PH1,” said Dr. Mark J. Murray, Tekmira’s President and CEO.

“As a core pillar of our business strategy, we continue to engage in partnerships where our technology improves the risk profile and accelerates the development programs of our collaborators and provides meaningful non-dilutive financing to TKMR,” added Dr. Murray.

“Dicerna is focused on realizing the full clinical potential of our proprietary pipeline of highly targeted RNAi therapies by applying proven technologies,” said Douglas Fambrough, Ph.D., Chief Executive Officer of Dicerna. “By drawing on Tekmira’s extensive and deep experience with lipid nanoparticle delivery to the liver, the agreement will streamline the development path for DCR-PH1. We look forward to initiating Phase 1 trials of DCR-PH1 in 2015, aiming to fill a high unmet medical need for patients with PH1.”

The news release also provides a high level description of the various technologies being researched and brought to market and a bit more information about the liver disorder being addressed by this research,

About RNAi

RNAi therapeutics have the potential to treat a number of human diseases by “silencing” disease-causing genes. The discoverers of RNAi, a gene silencing mechanism used by all cells, were awarded the 2006 Nobel Prize for Physiology or Medicine. RNAi trigger molecules often require delivery technology to be effective as therapeutics.

AboutTekmira’s LNP Technology

Tekmira believes its LNP technology represents the most widely adopted delivery technology for the systemic delivery of RNAi triggers. Tekmira’s LNP platform is being utilized in multiple clinical trials by Tekmira and its partners. Tekmira’s LNP technology (formerly referred to as stable nucleic acid-lipid particles, or SNALP) encapsulates RNAi triggers with high efficiency in uniform lipid nanoparticles that are effective in delivering these therapeutic compounds to disease sites. Tekmira’s LNP formulations are manufactured by a proprietary method which is robust, scalable and highly reproducible, and LNP-based products have been reviewed by multiple regulatory agencies for use in clinical trials. LNP formulations comprise several lipid components that can be adjusted to suit the specific application.

About Primary Hyperoxaluria Type 1 ( PH1)

PH1 is a rare, inherited liver disorder that often results in severe damage to the kidneys. The disease can be fatal unless the patient undergoes a liver-kidney transplant, a major surgical procedure that is often difficult to perform due to the lack of donors and the threat of organ rejection. In the event of a successful transplant, the patient must live the rest of his or her life on immunosuppressant drugs, which have substantial associated risks. Currently, there are no FDA approved treatments for PH1.

PH1 is characterized by a genetic deficiency of the liver enzyme alanine:glyoxalate-aminotransferase (AGT), which is encoded by the AGXT gene. AGT deficiency induces overproduction of oxalate by the liver, resulting in the formation of crystals of calcium oxalate in the kidneys. Oxalate crystal formation often leads to chronic and painful cases of kidney stones and subsequent fibrosis (scarring), which is known as nephrocalcinosis. Many patients progress to end-stage renal disease (ESRD) and require dialysis or transplant. Aside from having to endure frequent dialysis, PH1 patients with ESRD may experience a build-up of oxalate in the bone, skin, heart and retina, with concomitant debilitating complications. While the true prevalence of primary hyperoxaluria is unknown, it is estimated to be one to three cases per one million people.1 Fifty percent of patients with PH1 reach ESRD by their mid-30s.2

About DCR-PH1

Dicerna is developing DCR-PH1, which is in preclinical development, for the treatment of PH1. DCR-PH1 is engineered to address the pathology of PH1 by targeting and destroying the messenger RNA (mRNA) produced by HAO1, a gene implicated in the pathogenesis of PH1. HAO1 encodes glycolate oxidase, a protein involved in producing oxalate. By reducing oxalate production, this approach is designed to prevent the complications of PH1. In preclinical studies, DCR-PH1 has been shown to induce potent and long-term inhibition of HAO1 and to significantly reduce levels of urinary oxalate, while demonstrating long-term efficacy and tolerability in animal models of PH1.

About Dicerna’s Dicer Substrate Technology

Dicerna’s proprietary RNAi molecules are known as Dicer substrates, or DsiRNAs, so called because they are processed by the Dicer enzyme, which is the initiation point for RNAi in the human cell cytoplasm. Dicerna’s discovery approach is believed to maximize RNAi potency because the DsiRNAs are structured to be ideal for processing by Dicer. Dicer processing enables the preferential use of the correct RNA strand of the DsiRNA, which may increase the efficacy of the RNAi mechanism, as well as the potency of the DsiRNA molecules relative to other molecules used to induce RNAi.

You can find more information about Tekmira here and about Dicerna here. I mentioned Tekmira previously in a Sept. 28, 2014 post about Ebola and treatments.

Further south at the University of California at San Diego (UCSD), researcher and founder of Solstice Biologics, Dr Steven Dowdy has developed and patented a new technique for delivering RNAi drugs into cells according to a Nov. 18, 2014 news item on Azonano,

Small pieces of synthetic RNA trigger a RNA interference (RNAi) response that holds great therapeutic potential to treat a number of diseases, especially cancer and pandemic viruses. The problem is delivery — it is extremely difficult to get RNAi drugs inside the cells in which they are needed. To overcome this hurdle, researchers at University of California, San Diego School of Medicine have developed a way to chemically disguise RNAi drugs so that they are able to enter cells. Once inside, cellular machinery converts these disguised drug precursors — called siRNNs — into active RNAi drugs. …

A Nov. 17, 2014 UCSD news release (also on EurekAlert) by Heather Buschman, which originated the news item, describes the issues with delivering RNAi drugs to cells and the new technique,

“Many current approaches use nanoparticles to deliver RNAi drugs into cells,” said Steven F. Dowdy, PhD, professor in the Department of Cellular and Molecular Medicine and the study’s principal investigator. “While nanotechnology protects the RNAi drug, from a molecular perspective nanoparticles are huge, some 5,000 times larger than the RNAi drug itself. Think of delivering a package into your house by having an 18-wheeler truck drive it through your living room wall — that’s nanoparticles carrying standard RNAi drugs. Now think of a package being slipped through the mail slot — that’s siRNNs.”

The beauty of RNAi is that it selectively blocks production of target proteins in a cell, a finding that garnered a Nobel Prize in 2006. While this is a normal process that all cells use, researchers have taken advantage of RNAi to inhibit specific proteins that cause disease when overproduced or mutated, such as in cancer. First, researchers generate RNAi drugs with a sequence that corresponds to the gene blueprint for the disease protein and then delivers them into cells. Once inside the cell, the RNAi drug is loaded into an enzyme that specifically slices the messenger RNA encoding the target protein in half. This way, no protein is produced.

As cancer and viral genes mutate, RNAi drugs can be easily evolved to target them. This allows RNAi therapy to keep pace with the genetics of the disease — something that no other type of therapy can do. Unfortunately, due to their size and negatively charged chemical groups (phosphates) on their backbone, RNAi drugs are repelled by the cellular membrane and cannot be delivered into cells without a special delivery agent.

It took Dowdy and his team, including Bryan Meade, PhD, Khirud Gogoi, PhD, and Alexander S. Hamil, eight years to find a way to mask RNAi’s negative phosphates in such a way that gets them into cells, but is still capable of inducing an RNAi response once inside.

In the end, the team added a chemical tag called a phosphotriester group. The phosphotriester neutralizes and protects the RNA backbone — converting the ribonucleic acid (RNA) to ribonucleic neutral (RNN), and thus giving the name siRNN. The neutral (uncharged) nature of siRNNs allows them to pass into the cell much more efficiently. Once inside the cell, enzymes cleave off the neutral phosphotriester group to expose a charged RNAi drug that shuts down production of the target disease protein. siRNNs represent a transformational next-generation RNAi drug.

“siRNNs are precursor drugs, or prodrugs, with no activity. It’s like having a tool still in the box, it won’t work until you take it out,” Dowdy said. “Only when the packaging — the phosphotriester groups — is removed inside the cells do you have an active tool or RNAi drug.”

The findings held up in a mouse model, too. There, Dowdy’s team found that siRNNs were significantly more effective at blocking target protein production than typical RNAi drugs — demonstrating that once siRNNs get inside a cell they can do a better job.

“There remains a lot of work ahead to get this into the clinics. But, in theory, the therapeutic potential of siRNNs is endless,” Dowdy said. “Particularly for cancer, viral infections and genetic diseases.”

The siRNN technology forms the basis for Solstice Biologics, a biotech company in La Jolla, Calif. that is now taking the technique to the next level. Dowdy is a co-founder of Solstice Biologics and serves as a Board Director.

Here’s a link to and a citation for the research paper,

Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications by Bryan R Meade, Khirud Gogoi, Alexander S Hamil, Caroline Palm-Apergi, Arjen van den Berg, Jonathan C Hagopian, Aaron D Springer, Akiko Eguchi, Apollo D Kacsinta, Connor F Dowdy, Asaf Presente, Peter Lönn, Manuel Kaulich, Naohisa Yoshioka, Edwige Gros, Xian-Shu Cui, & Steven F Dowdy. Nature Biotechnology (2014) doi:10.1038/nbt.3078 Published online 17 November 2014

This paper is behind a paywall.

I have not been able to locate a website for Solstice Biologics but did find a rather curious item about Dr. Dowdy and a shooting incident last year. From a Sept. 18, 2013 news article by Kat Robinson for thewire.sheknows.com,

A wealthy San Diego community is shaken after a man opens fire on his former neighborhood early Wednesday morning. Police say Hans Petersen, a 48-year-old man, is the prime suspect in the shooting of Steven Dowdy and Michael Fletcher.

There’s also a Nov. 8, 2013 article about the incident by Lucas Laursen for Nature magazine,

On September 18 [2013], former Traversa Therapeutics CEO Hans Petersen went on a shooting spree. One of two people wounded was molecular biologist Steven Dowdy, a professor at University of California San Diego (UCSD) School of Medicine, in La Jolla, and cofounder of Traversa, according to a San Diego police report.…

The rest of the article is behind a paywall.

OCSiAL (carbon nanotubes) makes moves: a production plant, maybe, in Israel and an international network

OCSiAl, the world’s largest nanotechnology business or developer of the revolutionary material TUBALL depending on the way the wind is blowing, has indicated interest in building a carbon nanotube production facility in Israel according to a Nov. 11, 2014 news item on the Economic Times (of India) website,

Nanotechnology company OCSiAl said on Tuesday [Nov. 11, 2014] it was in advanced talks to establish a production facility in southern Israel at an investment of $30 million.

OCSiAl said it intends to employ around 30 workers in Israel, mainly chemical engineers, industrial engineers, process engineers and automatic machine operators. It has started examining possible sites for the plant.

A Nov. 11, 2014 Time of Israel news article by David Shamah has more details,

The world’s biggest nanotechnology production company, OCSiAl, is shopping around in southern Israel for a site to build what could be the world’s largest nanotube production facility. It will produce as much as 50 tons of Single Wall Carbon Nanotubes (SWCNTs) a year – making it “possibly the largest producer of such nanotubes in the world,” the company announced Tuesday [Nov. 11, 2014].

….

… OCSiAl, … is the world’s biggest maker of the tiny SWCNTs. OCSiAl is an international nanotechnology company with operations in the US, UK, Germany, South Korea and Russia, headquartered in Luxembourg. The company employs 160 workers and is expected to hire 30 people for its Negev plant.

“Israel is one of the world’s leading knowledge and innovation centers in nanotechnology, and this is why we are interested in setting up a plant here,” said Konstantin Notman, vice president of OCSiAl. “We intend to deepen the contact with the Israeli market in all aspects – setting up our largest production facility here, enlarging our customer base, establishing contacts with Israeli dealers, and conducting cooperation with industrial companies and academic bodies.”

OCSiAL has a Nov. 13, 2014 news release, which despite the date seems to have inspired this news item about a SWCNT production plant in Israel.

There is this video produced by OCSiAL showing off some of its current production facilities,

On other fronts, OCSiAL has announced a worldwide partnership network program in a Nov. 12, 2014 news item on Azonano,

OCSiAl, developer of the revolutionary material TUBALL, is now focused on creating a worldwide partnership network. Facing a growing worldwide demand for new materials and solutions on one side, and a great interest of industrial manufacturers in providing these solutions without major changes in their business models and production processes on the other, OCSiAl presented TUBALL as an answer to these demands six months ago and now launches a partnership program.

An OCSiAL Nov. 14, 2014 news release, which despite the date seems to have originated the news item, provides more details,

TUBALL, first introduced in London this past spring, has gained attention of major brands in several industries since then. Not only due to its high “as produced” purity (75%+ of SWCNTs), but also because of its market price, which is 50 times lower than of other products with similar properties. That has been achieved by OCSiAl’s technology, which allows cost-efficient SWСNT synthesis in sufficient volumes and doesn’t require any further enrichment procedures.

To demonstrate TUBALL’s capabilities and to increase the number of its applications, OCSiAl has developed and licensed production technology for several TUBALL-based industrial modifiers: for cathodes of Li-ion batteries (TUBALL BATT), rubbers and tires (TUBALL RUBBER), thermoplastics (TUBALL PLAST), thermoset composites (TUBALL COMP) and for transparent conductive films (TUBALL INK). Modifiers for aluminium, concrete, paints and some other materials are under development.

The partnership program is compatible with various business models and works perfectly for different types of companies, including:

  • product manufacturers, who can produce TUBALL-enhanced versions of their current products;
  • solution providers, who can start their own production of TUBALL-based industrial modifiers (masterbatches and suspensions) using OCSiAl’s licensed technology for their own business, or to satisfy the demands of their clients;
  • large-scale distributors, who can introduce TUBALL and TUBALL-based modifiers to their local markets.

“We have great expectations for further prosperity of our business in cooperation with OCSiAl”, – says Managing Director of Evermore company Wu Lu-Hao. “We hope not only to attract new clients via highly sought TUBALL product, but to advance existing partnerships through offering new opportunities for development of our client’s products”

TUBALL’s introduction to the nanomaterials market served as a pivot point for many industries, which previously experienced difficulties with the industrial usage of nanomodifiers, due to their high cost and absence of an efficient synthesis technology, and the lack of any alternative solutions.

Now further development of a worldwide partnership network will remove the last geographical, technological and economical borders, empowering new wave of revolution in materials manufacture.

“Analytical studies suggest that the nanomaterials market will experience rapid growth in the next five to ten years, — says Yuri Koropachinskiy, OCSiAl’s President and co-founder — If you want to be there in 2025 — now is the time to start.”

You can find out more OCSiAl on its website; I last wrote about the company in a Sept. 11, 2014 posting.

High-order Brownian motion observed

A Nov. 17, 2014 news item on ScienceDaily highlights a new technique for observing Brownian motion,

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions–in this case, the collective macroscopic movement of molecules in microdisk resonators–researchers at Case Western Reserve University report.

To do this, they used a record-setting scanning optical interferometry technique, described in a study published today in the journal Nature Communications.

The new technology holds promise for multimodal sensing and signal processing, and to develop optical coding for computing and other information-processing functions by exploiting the spatially resolved multimode Brownian resonances and their splitting pairs of modes.

A Nov. 17, 2014 Case Western Reserve University news release on EurekAlert, which originated the news item, provides more information about the technique and the research,

Interferometry uses the interference of light waves reflected off a surface to measure distances, a technique invented by Case School of Applied Science physicist Albert A. Michelson (who won the Nobel prize in science in 1907). Michelson and Western Reserve University chemist Edward Morley used the instrument to famously disprove that light traveled through “luminous ether” in 1887, setting the groundwork for Albert Einstein’s theory of relativity.

The technology has evolved since then. The keys to Feng’s new interferometry technique are focusing a tighter-than-standard laser spot on the surface of novel silicon carbide microdisks.

The microdisks, which sit atop pedestals of silicon oxide like cymbals on stands, are extremely sensitive to the smallest fluctuations arising from Brownian motions, even at thermodynamic equilibrium. Hence, they exhibit very small oscillations without external driving forces. These oscillations include fundamental and higher modes, called thermomechanical resonances.

Some of the light from the laser reflects back to a sensor after striking the top surface of the silicon dioxide film. And some of the light is refracted through the film and reflected back on a different path, causing interference in the light waves.

The narrow laser spot scans the disk surface and measures movement, or displacement, of the disk with a sensitivity of about 7 femtometers per square-root of a hertz at room temperature, which researchers believe is a record for interferometric systems. To put that in perspective, the width of a hair is about 40 microns, and a femtometer is 100 million times smaller than a micron.

Although higher frequency modes have small motion amplitudes, the technology enabled the group to spatially map and clearly visualize the first through ninth Brownian modes in the high frequency band, ranging from 5.78 to 26.41 megahertz.

In addition to detecting the shapes and textures of Brownian motions, multimode mapping identified subtle structural imperfections and defects, which are ubiquitous but otherwise invisible, or can’t be quantified most of the time. This capability may be useful for probing the dynamics and propagation of defects and defect arrays in nanodevices, as well as for future engineering of controllable defects to manipulate information in silicon carbide nanostructures

The high sensitivity and spatial resolution also enabled them to identify mode splitting, crossing and degeneracy, spatial asymmetry and other effects that may be used to encode information with increasing complexity. The researchers are continuing to explore the capabilities of the technology.

Here’s a link to and a citation for the paper,

Spatial mapping of multimode Brownian motions in high-frequency ​silicon carbide microdisk resonators by Zenghui Wang, Jaesung Lee & Philip X. -L. Feng. Nature Communications 5, Article number: 5158 doi:10.1038/ncomms6158 Published 17 November 2014

This paper is behind a paywall.

For those who would like a little more information about Brownian motion, there’s this from its Wikipedia entry,

Brownian motion or pedesis (from Greek: πήδησις /pɛ̌ːdɛːsis/ “leaping”) is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their collision with the quick atoms or molecules in the gas or liquid. The term “Brownian motion” can also refer to the mathematical model used to describe such random movements, which is often called a particle theory.

The Wikipedia entry also includes this gif

This is a simulation of Brownian motion of a big particle (dust particle) that collides with a large set of smaller particles (molecules of a gas) which move with different velocities in different random directions. http://weelookang.blogspot.com/2010/06/ejs-open-source-brownian-motion-gas.html Lookang Author of computer model: Francisco Esquembre, Fu-Kwun and lookang - Own work

This is a simulation of Brownian motion of a big particle (dust particle) that collides with a large set of smaller particles (molecules of a gas) which move with different velocities in different random directions. http://weelookang.blogspot.com/2010/06/ejs-open-source-brownian-motion-gas.html
Lookang Author of computer model: Francisco Esquembre, Fu-Kwun and lookang – Own work

On a tangential and amusing note, Brown University celebrating its 250th anniversary this year (2014) commissioned a Brownian Motion composition as part of its commemoration activities (from a Feb. 21, 2014 Brown University news release),

While Brown University and its neighbors celebrate the University’s first 250 years during the Opening Celebration Friday and Saturday, March 7-8, 2014, some new history will be made as well. On Friday night, the Brown University Wind Symphony will present the world premier of Brownian Motion, a piece commissioned for the semiquincentenary.

Written by the composer and saxophonist Patrick Zimmerli, the commission was funded by Edward Guiliano, a 1972 Brown graduate who was president of the Brown Band and founded the Brown Wind Ensemble during his time on College Hill.

Zimmerli admits to feeling excitement when approached with the commission. “I didn’t go to Brown but I have many connections to people who did, and I was really looking forward to the challenge of writing for an undergraduate wind ensemble, something I’d never done before.”

McGarrell [Matthew McGarrell, director of bands at Brown] and Zimmerli met last summer to talk about the commission for the first time. Aside from sending Zimmerli a few pieces to use as models, McGarrell gave the composer free reign over over everything from the feel to the length of the piece.

The resulting composition, which Zimmerli presented to McGarrell at the beginning of January, is dominated by jazz rhythms, with some nods to vernacular musics, including Caribbean and calypso, mixed in.

“The piece has several different moods but overall it is celebratory,” Zimmerli said. “After all it’s a birthday piece. It’s meant to be challenging but fun for the players.”

Listeners with a link to Brown may also find parts of the work familiar. Zimmerli subtly weaves an early melody known as “Araby’s Daughter” — Brown’s Alma Mater — throughout the piece, building on it until it’s played in its full glory by the French horns toward the end.

For inspiration, Zimmerli did extensive research on Brown’s early history and was intrigued to learn that Brown’s founding was initially opposed by a group of preachers who had a mistrust for those who had been formally educated. The result is a theme — “learning is evil,” a nod to those early roots — that winds its way throughout the song.

“Brown is an amazing example of an institution that has been able to evolve and transform itself from within, and I thought that fact should be celebrated,” said Zimmerli.

Other parts of the song inspired the Brownian Motion name.

“There’s a jagged theme toward the beginning of the piece that is a bit cheeky, even subversive. The way it moves and darts around through the instruments unexpectedly is what eventually led me to the actual title of the piece,” Zimmerli said.

“We knew we wanted to make it special concert,” said McGarrell of the program selections. “We wanted to reach both the Brown community in history, through the alumni, through musical representation, and we wanted to reach out to the extended Brown community in Rhode Island and southeastern New England, through history and intercultural outreach.”

The Brown musicians have been hard at work since the end of January learning Brownian Motion. While technically challenging, McGarrell said the students have been appreciating the skill level required and that “morale has remained high within the group.” Zimmerli arrives on campus on Wednesday, March 5, to help put the finishing touches on the performance.

There is a youtube video (over 60 mins.) of the Brownian Motion March 2014 performance.

India, Lockheed Martin, and canal-top solar power plants

Apparently the state of Gujarat (India) has inspired at least one other state, Punjab, to build (they hope) a network of photovoltaic (solar energy) plants over top of their canal system (from a Nov. 16, 2014 article by Mridul Chadha for cleantechnica.com),

India’s northern state of Punjab plans to set up 1,000 MW of solar PV projects to cover several kilometres of canals over the next three years. The state government has announced a target to cover 5,000 km of canals across the state. Through this program, the government hopes to generate 15% of the state’s total electricity demand.

Understandably, the construction of canal-top power plants is technically and structurally very different from rooftop or ground-based solar PV projects. The mounting structures for the solar PV modules cannot be heavy, as it could adversely impact the structural integrity of the canal itself. The structures should be easy to work with, as they are to be set up over a slope.

This is where the Punjab government has asked Lockheed Martin for help. The US-based company has entered into an agreement with the Punjab government to develop lightweight mounting structures for solar panels using nanotechnology.

Canal and rooftop solar power projects are the only viable options for Punjab as it is an agricultural state and land availability for large-scale ground-mounted projects remains an issue. As a result, the state government has a relatively lower (compared to other states) capacity addition target of 2 GW.

There’s more about the Punjab and current plans to increase its investment in solar photovoltaics in the article.

Here’s an image of a canal-top solar plant near Kadi (Gujarat),

Canal_Top_Solar_Power_PlantImage Credit: Hitesh vip | CC BY-SA 3.0

A Nov. 15, 2014 news item by Kamya Kandhar for efytimes.com provides a few more details about this Memorandum of Understanding (MOU),

Punjab government had announced its tie up with U.S. aerospace giant Lockheed Martin to expand the solar power generation and overcome power problems in the State. As per the agreement, the state will put in 1,000 MW solar power within the next three years. Lockheed Martin has agreed to provide plastic structures for solar panels on canals by using nano technology.

While commenting upon the agreement, a spokesperson said, “The company would also provide state-of-the-art technology to convert paddy straw into energy, solving the lingering problem of paddy straw burning in the state. The Punjab government and Lockheed Martin would ink a MoU in this regard [on Friday, Nov. 14, 2014].”

The decision was taken during a meeting between three-member team from Lockheed Martin, involving the CEO Phil Shaw, Chief Innovation Officer Tushar Shah and Regional Director Jagmohan Singh along with Punjab Non-Conventional Energy Minister Bikram Singh Majithia and other senior Punjab officials.

As for paddy straw and its conversion into energy, there’s this from a Nov. 14, 2014 news item on India West.com,

Shaw [CEO Phil Shaw] said Lockheed has come out with waste-to-energy conversion solutions with successful conversion of waste products to electricity, heat and fuel by using gasification processes. He said it was an environmentally friendly green recycling technology, which requires little space and the plants are fully automated.

Getting back to the nanotechnology, I was not able to track down any information about nanotechnology-enabled plastics and Lockheed Martin. But, there is a Dec. 11, 2013 interview with Travis Earles, Lockheed Martin Advanced materials and nanotechnology innovation executive and policy leader, written up by Kris Walker for Azonano. Note: this is a general interview and focuses largely on applications for carbon nanotubes and graphene.

Nano and stem cell differentiation at Rutgers University (US)

A Nov. 14, 2014 news item on Azonano features a nanoparticle-based platform for differentiating stem cells,

Rutgers University Chemistry Associate Professor Ki-Bum Lee has developed patent-pending technology that may overcome one of the critical barriers to harnessing the full therapeutic potential of stem cells.

A Nov. 1, 2104 Rutgers University news release, which originated the news item, describes the challenge in more detail,

One of the major challenges facing researchers interested in regenerating cells and growing new tissue to treat debilitating injuries and diseases such as Parkinson’s disease, heart disease, and spinal cord trauma, is creating an easy, effective, and non-toxic methodology to control differentiation into specific cell lineages. Lee and colleagues at Rutgers and Kyoto University in Japan have invented a platform they call NanoScript, an important breakthrough for researchers in the area of gene expression. Gene expression is the way information encoded in a gene is used to direct the assembly of a protein molecule, which is integral to the process of tissue development through stem cell therapeutics.

Stem cells hold great promise for a wide range of medical therapeutics as they have the ability to grow tissue throughout the body. In many tissues, stem cells have an almost limitless ability to divide and replenish other cells, serving as an internal repair system.

Transcription factor (TF) proteins are master regulators of gene expression. TF proteins play a pivotal role in regulating stem cell differentiation. Although some have tried to make synthetic molecules that perform the functions of natural transcription factors, NanoScript is the first nanomaterial TF protein that can interact with endogenous DNA. …

“Our motivation was to develop a highly robust, efficient nanoparticle-based platform that can regulate gene expression and eventually stem cell differentiation,” said Lee, who leads a Rutgers research group primarily focused on developing and integrating nanotechnology with chemical biology to modulate signaling pathways in cancer and stem cells. “Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential to do exactly that. The field of stem cell biology now has another platform to regulate differentiation while the field of nanotechnology has demonstrated for the first time that we can regulate gene expression at the transcriptional level.”

Here’s an image illustrating NanoScript and gold nanoparticles,

Courtesy Rutgers University

Courtesy Rutgers University

The news release goes on to describe the platform’s use of gold nanoparticles,

NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles.

“NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by up to 30-fold,” said Sahishnu Patel, Rutgers Chemistry graduate student and co-author of the ACS Nano publication. “NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner.”

Lee said the next step for his research is to study what happens to the gold nanoparticles after NanoScript is utilized, to ensure no toxic effects arise, and to ensure the effectiveness of NanoScript over long periods of time.

“Due to the unique tunable properties of NanoScript, we are highly confident this platform not only will serve as a desirable alternative to conventional gene-regulating methods,” Lee said, “but also has direct employment for applications involving gene manipulation such as stem cell differentiation, cancer therapy, and cellular reprogramming. Our research will continue to evaluate the long-term implications for the technology.”

Lee, originally from South Korea, joined the Rutgers faculty in 2008 and has earned many honors including the NIH Director’s New Innovator Award. Lee received his Ph.D. in Chemistry from Northwestern University where he studied with Professor Chad. A. Mirkin, a pioneer in the coupling of nanotechnology and biomolecules. Lee completed his postdoctoral training at The Scripps Research Institute with Professor Peter G. Schultz. Lee has served as a Visiting Scholar at both Princeton University and UCLA Medical School.

The primary interest of Lee’s group is to develop and integrate nanotechnologies and chemical functional genomics to modulate signaling pathways in mammalian cells towards specific cell lineages or behaviors. He has published more than 50 articles and filed for 17 corresponding patents.

Here’s a link to and a citation for the paper,

NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation by Sahishnu Patel, Dongju Jung, Perry T. Yin, Peter Carlton, Makoto Yamamoto, Toshikazu Bando, Hiroshi Sugiyama, and Ki-Bum Lee. ACS Nano, 2014, 8 (9), pp 8959–8967 DOI: 10.1021/nn501589f Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

2014 Maddox Prize winners and more ( a letter writing compaign)* from Sense about Science*

The UK’s ‘Sense about Science’ organization announced the two winners of its 2014 John Maddox (aka, the ‘standing up for science’) Prize in late October 2014 (from the Oct. 28, 2014 announcement),

I am delighted to share that last night [Oct. 27, 2014] Dr Emily Willingham and Dr David Robert Grimes were announced as the winners of the 2014 John Maddox Prize, at our annual reception held with the Royal Pharmaceutical Society.

After lengthy deliberation, this year’s judges (Tracey Brown, Philip Campbell, Colin Blakemore and Martin Rees) awarded the prize to these two people who embody the spirit of the prize, showing courage in promoting science and evidence on a matter of public interest, despite facing difficulty and hostility in doing so.

The call for 2014 nominations was mentioned in an Aug. 18, 2014 post. Here’s more about each of the winners (from the 2014 John Maddox Prize webpage on the Sense about Science website),

The judges awarded the prize to freelance journalist Dr Emily Willingham and early career scientist Dr David Robert Grimes for courage in promoting science and evidence on a matter of public interest, despite facing difficulty and hostility in doing so. …

David Grimes writes bravely on challenging and controversial issues, including nuclear power and climate change. He has persevered despite hostility and threats, such as on his writing about the evidence in the debate on abortion in Ireland. He does so while sustaining his career as a scientist at the University of Oxford.

Emily Willingham, a US writer, has brought discussion about evidence, from school shootings to home birth, to large audiences through her writing. She has continued to reach across conflict and disputes about evidence to the people trying to make sense of them. She is facing a lawsuit for an article about the purported link between vaccines and autism.

A Nov. 1, 2014 post by Nick Cohen for the Guardian newspaper discusses one of the 2014 winners in the context of a post about standing up to science ignorance and Ebola in the US, scroll down abut 15% of the way),

The joint winners confronted beliefs that are as prevalent in Britain as America: that vaccination causes autism, that homeopathic medicines work, that manmade climate change does not exist and that adding fluoride to the water supply is a threat to health. (I didn’t know it until the prize jury told me but Sinn Féin is leading a vigorous anti-fluoride campaign in Dublin – well, I suppose it’s progress for the IRA to go from blowing off peoples’ heads to merely rotting their teeth.)

David Robert Grimes, one of the winners, said that, contrary to the myth of the scientific bully, most of his colleagues wanted to keep out of public debate, presumably because they did not wish to receive the threats of violence fanatics and quacks have directed at him. If we are to improve public policy in areas as diverse as the fight against Ebola to the treatment of drug addicts, they need to be a braver, and more willing to tell the public, which so often funds their research, what they have learned.

Grimes makes a useful distinction. Most people just want more information and scientists should be prepared to make their case clearly and concisely. Then there are the rest – Ukip, the Tea Party, governors of Maine, Sinn Féin, David Cameron, climate change deniers – who will block out any evidence that contradicts their beliefs. They confirm the truth of Paul Simon’s line: “All lies and jest, still the man hears what he wants to hear and disregards the rest.”

Lydia Lepage (a post-doctoral researcher at the University of Edinburgh and a member of the Voice of Young Science, which is run by Sense About Science) over on the Conversation writes about both winners in an Oct. 28, 2014 post (Note: Links have been removed),

Willingham is a freelance science journalist whose evidence-based article: “Blame Wakefield for missed autism-gut connection” drew intense criticism and a lawsuit from Andrew Wakefield, the discredited scientist known for his now-retracted 1998 Lancet paper on the alleged link between vaccines and autism. She criticised the “red herring and the subsequent noxious cloud that his fraud left over any research examining autism and the gut”.

Willingham’s self-declared passion is “presenting accurate, evidence-based information”. She says:

Standing up for science and public health in the face of not only unyielding but also sometimes threatening opposition can be tiring and demoralising.

Grimes is a post-doctoral researcher at the University of Oxford in the UK, working on modelling oxygen distribution in tumours. He has been awarded the Maddox Prize for reaching out to the public through his writing on a range of challenging and controversial issues, including nuclear power and climate change.

Grimes continues to present the evidence, despite receiving threats, particularly surrounding discussion on abortion in Ireland. Following his article on six myths about cancer, in which he addressed the “dubious and outlandish” information that can be found on the internet, he received physical and digital hate-mail.

Sense about Science next announced an ‘Ask for Evidence’ website, from a Nov. 2, 2014 announcement,

We are excited to announce that Ask for Evidence online is now live! And people are already using it to ask for the evidence behind claims they’ve come across. Check out www.askforevidence.org

It’s our new interactive website that makes asking for evidence and getting help understanding that evidence as easy as possible. You can use it to ask politicians, companies, NGOs and anyone else for evidence behind their claims, while you’re on the train, walking down the street or sitting in front of the TV. And if you need help understanding the evidence you’ve been sent, that’s there too. With the help of partners and friends we’ve built a help centre that has captured what we’ve learnt over the past 12 years answering thousands of requests for help in understanding evidence.

Finally,. there’s the latest announcement about an effort to influence the World Health Organization’s (WHO) new policy on reporting the results of clinical trials, from the Nov. 11, 2014 announcement,

Following our pressure, the World Health Organization is drafting a policy on reporting the results of clinical trials.

We have to grab this fantastic opportunity with both hands and make sure that the most influential health body in the world comes out with a statement that strongly supports clinical trials transparency.

But you only have until Saturday 15th November 2014 to add your voice.

The draft WHO policy does not call for the disclosure of the results of past trials, only future ones. The vast majority of medicines we use every day were approved by regulators a decade or more ago and so were tested in clinical trials over the past decades.

So email the WHO to tell them their policy should:

  1. Call for the results of all past clinical trials to be reported, as well as all future clinical trials.
  2. Require results to be reported within 12 months, rather than permitting delays of 18-30 months. The USA’s FDA Amendment Act, the newly adopted EU Clinical Trials Regulation and pharmaceutical companies including GSK and LEO Pharma all agree that 12 months is enough time to report results.
  3. Encourage researchers to put results on publicly accessible registers, in useful, standardised formats.

Email [email protected] today.

Be sure to include your name and contact details as the WHO will not consider anonymous comments.

You can also use the full AllTrials response to write your email if you wish.

Read the full AllTrials response.

I am encouraged to see a move towards more transparency in reporting the results of clinical trials whether or not this bid to include past clinical trials is successful, although that would certainly be excellent news.

* (a letter writing campaign) was added to the head and ‘sense about science’ was changed to ‘Sense about Science’ on Nov. 14, 2014 1015 hundred hours PDT.

A multiferroic material for more powerful solar cells

A Nov. 12, 2014 INRS (Institut national de la recherche scientifique; Université du Québec) news release (also on EurekAlert), describes new work on solar cells from Federico Rosei’s laboratory (Note: Links have been removed; A French language version of the news release can be found here),

Applying a thin film of metallic oxide significantly boosts the performance of solar panel cells—as recentlydemonstrated by Professor Federico Rosei and his team at the Énergie Matériaux Télécommunications Research Centre at Institut national de la recherche scientifique (INRS). The researchers have developed a new class of materials comprising elements such as bismuth, iron, chromium, and oxygen. These“multiferroic” materials absorb solar radiation and possess unique electrical and magnetic properties. This makes them highly promising for solar technology, and also potentially useful in devices like electronic sensors and flash memory drives. …

The INRS research team discovered that by changing the conditions under which a thin film of these materials is applied, the wavelengths of light that are absorbed can be controlled. A triple-layer coating of these materials—barely 200 nanometres thick—captures different wavelengths of light. This coating converts much more light into electricity than previous trials conducted with a single layer of the same material. With a conversion efficiency of 8.1% reported by [Riad] Nechache and his coauthors, this is a major breakthrough in the field.

The team currently envisions adding this coating to traditional single-crystal silicon solar cells (currently available on the market). They believe it could increase maximum solar efficiency by 18% to 24% while also boosting cell longevity. As this technology draws on a simplified structure and processes, as well as abundant and stable materials, new photovoltaic (PV) cells will be more powerful and cost less. This means that the INRS team’s breakthrough may make it possible to reposition silicon PV cells at the forefront of the highly competitive solar energy market.

Here’s a link to and a citation for the paper,

Bandgap tuning of multiferroic oxide solar cells by R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang,  J. Chakrabartty, & F. Rosei. Nature Photonics (2014) doi:10.1038/nphoton.2014.255 Published online
10 November 2014

This paper is behind a paywall although there is a free preview via ReadCube Access.

I last mentioned Federico Rose in a March 4, 2014 post about a talk (The exploration of the role of nanoscience in tomorrow’s energy solutions) he was giving in Vancouver (Canada).