US Navy invests in graphene

More usually, I feature research from DARPA (Defense Advanced Research Progects Agency) which I think belongs to the US Army and the US Air Force Research Office. The US Navy has featured here only once before (a Nov. 1, 2011 posting) and even then it was tangentially. I think it’s long past time that the US Navy gets some attention.

A July 22, 2015 news item on Nanowerk explains the Navy’s interest in electricity and graphene,

The U.S. Navy distributes electricity aboard most of its ships like a power company. It relies on conductors, transformers and other bulky infrastructure.

The setup works, but with powerful next generation weapons on the horizon and the omnipresent goal of energy efficiency, the Navy is seeking alternatives to conventional power control systems.

One option involves using graphene, which, since its discovery in 2004, has become the material of choice for researchers working to improve everything from solar cells to smartphone batteries.

Accordingly, the Office of Naval Research has awarded University at Buffalo engineers an $800,000 grant to develop narrow strips of graphene called nanoribbons that may someday revolutionize how power is controlled in ships, smartphones and other electronic devices.

A July 20, 2015 University of Buffalo news release by Cory Nealon, which originated the news item, expands on the theme,

“We need to develop new nanomaterials capable of handling greater amounts of energy densities in much smaller devices. Graphene nanoribbons show remarkable promise in this endeavor,” says Cemal Basaran, PhD, a professor in UB’s Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, and the grant’s principal investigator.

Graphene is a single layer of carbon atoms packed together like a honeycomb. It is extremely thin, light and strong. It’s also the best known conductor of heat and electricity.

“The beauty of graphene is that it can be grown like biological organisms as opposed to manufacturing materials with traditional techniques,” says Basaran, director of UB’s Electronic Packaging Laboratory and a researcher in UB’s New York State Center of Excellence in Materials Informatics. “These bio-inspired materials allow us to control their atomic organizations like controlling genetic DNA makeup of a lab-grown cell.”

While promising, researchers are just beginning to understand graphene and its potential uses. One area of interest is power control systems.

Like overhead power lines, most ships rely on copper or other metals to move electricity. Unfortunately, this process is relatively inefficient; electrons bash into each other and create heat in a process called Joule heating.

“You lose a great deal of energy that way,” Basaran says. “With graphene, you avoid those collisions because it conducts electricity in a different process, known as semi-ballistic conduction. It’s like a high-speed bullet train versus bumper cars.”

Another limitation of metal-based power distribution is the bulky infrastructure – transistors, copper wires, transformers, etc. – needed to move electricity. Whether in a ship or tablet computer, the components take up space and add weight.

Graphene nanoribbons offer a potential solution because they can act as both a conductor (instead of copper) and semiconductor (instead of silicon). Moreover, their ability to withstand failure under extreme energy loads is roughly 1,000 times greater than copper.

That bodes well for the Navy, which, like segments of the automotive industry, is pivoting toward electric vehicles.

It recently launched an all-electric destroyer; the ship’s propellers and drive shafts are turned by electric motors, as opposed to being connected to combustion engines. The integrated power-generation and distribution system may also be used to fire next generation weapons, such as railguns and powerful lasers. And the automation has allowed the Navy to reduce the ship’s crew, which places fewer sailors in potentially dangerous situations.

Graphene nanoribbons could improve these systems by making them more robust and energy-efficient, Basaran said. He and a team of researchers will:

·         Design complex simulations that examine how graphene nanoribbons can be used as a power switch.

·         Explore how adding hydrogen and other elements, a process known as “doping,” to graphene nanoribbons could improve their performance.

·         Investigate graphene nanoribbons’ failure limit under high power loads and try to find ways to improve it.

The research will be performed over the next four years.

I was particularly intrigued by the caption for this image included with the news release,

The technology may lead to more powerful weapons, energy savings and reduced crew numbers [Downloaded from http://www.buffalo.edu/news/releases/2015/07/021.html]

The technology may lead to more powerful weapons, energy savings and reduced crew numbers [Downloaded from http://www.buffalo.edu/news/releases/2015/07/021.html]

Presumably “reduced crew numbers’ means fewer jobs. I wonder if they’ll figure out that people without jobs are without money to pay taxes to fund these projects.

Science and music festivals such as Latitude 2015 and some Guerilla Science

Science has been gaining prominence at music festivals in Britain if nowhere else. I wrote about the Glastonbury Festival’s foray into science in a July 12, 2011 posting which featured the Guerilla Science group tent and mentioned other of the festival’s science and technology efforts over the years. More recently, I noticed that Stephen Hawking was scheduled for the 2015 Glastonbury Festival (he had to cancel due to personal reasons).

The 2015 Latitude Festival seems to have more luck with its science-themed events. according to a July 22, 2015 posting by Suzi Gage for the Guardian’s science blogs,

Why do people go to music festivals? When I was 18 years old and heading to Reading festival the answer was very much ‘to listen to Pulp and Beck in a field while drinking overpriced beer and definitely not trying to sneak a hip flask on to the site’. But I’ve grown up since then, and so, it seems, have festivals.

At Latitude this weekend, I probably only watched a handful of bands. Not to say that the musical lineup wasn’t great, but there was so much more on offer that caught my attention. The Wellcome Trust funded a large number of talks, interactive sessions and demos that appeared both in their ‘hub’, a tiny tent on the outskirts of the festival, but also in the Literary Tent at the heart of the festival and at other locations across the site.

The programming of the science content was imaginative, often pairing a scientist with an author who had written on a similar topic. This was effective in that it allowed a discussion, but kept it from becoming too technical or full of jargon.

Dr Robin Carhart-Harris, an expert in psychedelics, was paired with Zoe Cormier, author of ‘Sex Drugs and Rock and Roll’ in the Literary Tent, to discuss the use of psychedelics as ‘medicine for the soul’. [emphasis mine] Robin was very measured in his description of the trials he has been involved with at Imperial College London, being clear that while preliminary findings about psilocybin in treatment-resistant depression might be exciting, there’s a long way to go in such research. Talking about drugs at a festival is always going to be a crowd pleaser, but both Robin and Zoe never sensationalized.

A highlight for me was a session organised by The Psychologist magazine, featuring Professor Sarah-Jayne Blakemore and Fiona Neil, author of The Good Girl. Entitled ‘Being Young Never Gets Old’, it claimed to ‘debunk’ teenagers. …

Gage’s piece is a good read and I find it interesting she makes no comment about a literary tent at a music festival. I don’t know of a music festival in Canada that would feature literature or literature and science together.

Guerilla Science

I highlighted Zoe Cormier’s name as a participant (born in Canada and living in London, England) as she is a founder of Guerilla Science, the group I mentioned earlier with regard to the Glastonbury Festival. A science communicator with some fairly outrageous events under her belt, her and her co-founder’s ‘guerilla’ approach to science is exciting. I mentioned their annual Secret Garden event in a Aug. 1, 2012 posting where they sang and danced the Higgs Boson and otherwise celebrated elementary particles. The 2015 Secret Garden Party featured rest, noise, and neuroscience. (Perhaps it’s not too early to plan attendance at the 2016 Secret Garden Party?) Here’s an excerpt from this year’s lineup found in Louis’ July 15, 2015 posting on the Guerilla Science website,

Friday [July 24, 2015]

….

12:00 – Rest & Noise Shorts

Crash, bang, shush, zzz… four short talks about rest and noise from artist Zach Walker, psychologist Will Lawn and neuroscientists Ed Bracey and Melissa Ellamil.

13.00 Speed, Synapse… Go!

Two teams go head-to-head in a competition to see whose neurotransmitters can move the fastest. What happens when cocaine, marijuana and ketamine are introduced? Join us for some fast and furious neuroscientific gameplay.

15.00 Craft a Connectome

Help us transform the Guerilla Science tent into a giant model brain with a tangle of woolen connections. Neuroscientists Julia Huntenburg and Melissa Ellamil will be on hand to conduct our connectome and coax it into a resting state.

16.00 Sound, Fire and Water

We test out our new toy: a fire organ that visualises sound in flames! Join engineers from Buro Happold and artist Zach Walker as we make fire, water and cornstarch dance and jump to the beat.

Saturday [July 25, 2015]

11.00 Hearing the Voice

Philosopher Sam Wilkinson explores the idea of the brain as a hypothesis testing machine. He asks whether thinking about the mind in this way can help explain mental illness, hallucinations and the voices in our heads.

15.00 – The Unquiet Mind

Hallucinations are our contact with the unreal but are also a window into human nature. Neuroscientist and clinical psychologist Vaughan Bell reveals what they tell us about brain function and the limits of human experience.

Sunday [July 26, 2015]

12.00 Phantom Terrains

Frank Swain and Daniel Jones present their project to listen in to wireless networks. By streaming wi-fi signals to a pair of hearing aids, Frank can hear the changing landscapes of data that silently surround us.

13.00 Rest and Nose

Join chemists Rose Gray and Alex Bour and neuroscientist Ed Bracey to explore the links between relaxation, rest and sense of smell. Create a perfume to lull yourself to sleep, help you unwind and evoke a peaceful place or time.

..

For anyone interested in Guerilla Science, this is their website. They do organize events year round.

Michelangelo, clinical anatomy, mathematics, the Golden Ratio, and a myth

I would have thought an article about Michelangelo, mathematics, and the Golden Ratio would be in a journal dedicated to the arts or mathematics or possibly both. Not even my tenth guess would  have been Clinical Anatomy. As for the myth, not everyone subscribes to the Golden Ratio theory of beauty.

A July 20, 2015 Wiley Periodicals press release (also on EurekAlert) announces the publication of the research,

New research provides mathematical evidence that Michelangelo used the Golden Ratio of 1.6 when painting The Creation of Adam on the ceiling of the Sistine Chapel. The Golden Ratio is found when you divide a line into two parts so that the longer part divided by the smaller part is equal to the whole length divided by the longer part.

The Golden Ratio has been linked with greater structural efficiency and has puzzled scientists for centuries due to its frequent occurrence in nature–for example in snail shells and flower petals. The Golden Ratio can also be found in a variety of works by architects and designers, in famous musical compositions, and in the creations of many artists.

The findings suggest that the beauty and harmony found in the works of Michelangelo may not be based solely on his anatomical knowledge. He likely knew that anatomical structures incorporating the Golden Ratio offer greater structural efficiency and, therefore, he used it to enhance the aesthetic quality of his works.

“We believe that this discovery will bring a new dimension to the great work of Michelangelo,” said Dr. Deivis de Campos, author of the Clinical Anatomy study.

Here’s a link to and a citation for the paper,

More than a neuroanatomical representation in The Creation of Adam by Michelangelo Buonarroti, a representation of the Golden Ratio by Deivis De Campos, Tais Malysz,  João Antonio Bonatto-Costa, Geraldo Pereira Jotz, Lino Pinto De Oliveira Junior, and Andrea Oxley da Rocha. Clinical Anatomy DOI: 10.1002/ca.22580 Article first published online: 17 JUL 2015

© 2015 Wiley Periodicals, Inc.

This paper is open access.

Golden Ratio myth

One final comment, it seems not everyone is convinced that the Golden Ratio plays an important role in design, art, and architecture according to an April 13, 2015 article by John Brownlee for Fast Company titled: The Golden Ratio: Design’s Biggest Myth,

In the world of art, architecture, and design, the golden ratio has earned a tremendous reputation. Greats like Le Corbusier and Salvador Dalí have used the number in their work. The Parthenon, the Pyramids at Giza, the paintings of Michelangelo, the Mona Lisa, even the Apple logo are all said to incorporate it.

It’s bullshit. The golden ratio’s aesthetic bona fides are an urban legend, a myth, a design unicorn. Many designers don’t use it, and if they do, they vastly discount its importance. There’s also no science to really back it up. Those who believe the golden ratio is the hidden math behind beauty are falling for a 150-year-old scam.

Fascinating, non?

Putting the speed on spin, spintronics that is

This is for physics fans, if you plan on looking at the published paper. Otherwise, the July 20, 2015 news item on ScienceDaily is more accessible to the rest of us,

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought.

Electrons spin around atoms, but also spin around themselves, and can cross over from one spin state to another. A property which can be exploited for next-generation hard drives. However, “spin cross-over” has been considered too slow to be efficient. Using ultrafast measurements, EPFL scientists have now shown for the first time that electrons can cross spins at least 100,000 times faster than previously thought. Aside for its enormous implications for fundamental physics, the finding can also propel the field of spintronics forward. …

A July 20, 2015 EPFL press release on EurekAlert, which originated the news item, provides context for the research,

The rules of spin

Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis. Electrons can spin in different manners referred to as “spin states” and designated by the numbers 0, 1/2, 1, 3/2, 2 etc. During chemical reactions, electrons can cross from one spin state to another, e.g. from 0 to 1 or 1/2 to 3/2.

Spin cross-over is already used in many technologies, e.g. optical light-emitting devices (OLED), energy conversion systems, and cancer phototherapy. Most prominently, spin cross-over is the basis of the fledgling field of spintronics. The problem is that spin cross-over has been thought to be too slow to be efficient enough in circuits.

Spin cross-over is extremely fast

The lab of Majed Chergui at EPFL has now demonstrated that spin cross-over is considerably faster than previously thought. Using the highest time-resolution technology in the world, the lab was able to “see” electrons crossing through four spin states within 50 quadrillionths of a second — or 50 femtoseconds.

“Time resolution has always been a limitation,” says Chergui. “Over the years, labs have used techniques that could only measure spin changes to a billionth to a millionth of a second. So they thought that spin cross-over happened in this timeframe.”

Chergui’s lab focused on materials that show much promise in spintronics applications. In these materials, electrons jump through four spin-states: from 0 to 1 to 2. In 2009, Chergui’s lab pushed the boundaries of time resolution to show that this 0-2 “jump” can happen within 150 femtoseconds — suggesting that it was a direct event. Despite this, the community still maintained that such spin cross-overs go through intermediate steps.

But Chergui had his doubts. Working with his postdoc Gerald Auböck, they used the lab’s world-recognized expertise in ultrafast spectroscopy to “crank up” the time resolution. Briefly, a laser shines on the material sample under investigation, causing its electrons to move. Another laser measures their spin changes over time in the ultraviolet light range.

The finding essentially demolishes the notion of intermediate steps between spin jumps, as it does not allow enough time for them: only 50 quadrillionths of a second to go from the “0” to the “2” spin state. This is the first study to ever push time resolution to this limit in the ultraviolet domain. “This probably means that it’s even faster,” says Chergui. “But, more importantly, that it is a direct process.”

From observation to explanation

With profound implications for both technology and fundamental physics and chemistry, the study is an observation without an explanation. Chergui believes that the key is electrons shuttling back-and-forth between the iron atom at the center of the material’s molecules and its surrounding elements. “When the laser light shines on the atom, it changes the electron’s spin angle, affecting the entire spin dynamics in the molecule.”

It is now up to theoreticians to develop a new model for ultrafast spin changes. On the experimental side of things, Chergui’s lab is now focusing on actually observing electrons shuttling inside the molecules. This will require even more sophisticated approaches, such as core-level spectroscopy. Nonetheless, the study challenges ideas about spin cross-over, and might offer long-awaited solutions to the limitations of spintronics.

Here’s a link to and citation for the paper,

Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+ by Gerald Auböck & Majed Chergui. Nature Chemistry (2015) doi:10.1038/nchem.2305 Published online 20 July 2015

This paper is behind a paywall.

Sticky-flares nanotechnology to track and observe RNA (ribonucleic acid) regulation

I like the name ‘sticky-flares’ and had hoped there was an amusing story about its origins. Ah well, perhaps I’ll have better luck next time.

This work comes out of Chad Mirkin’s lab at Northwestern University (Chicago, US) according to a July 21, 2015 news item on Azonano,

RNA [ribonucleic acid] is a fundamental ingredient in all known forms of life — so when RNA goes awry, a lot can go wrong. RNA misregulation plays a critical role in the development of many disorders, such as mental disability, autism and cancer.

A new technology — called “Sticky-flares” — developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.

A July 20, 2015 Northwestern University news release by Erin Spain, which originated the news item, describes the research in a little more detail also including information about predecessor technology,

Sticky-flares have the potential to help scientists understand the complexities of RNA better than any analytical technique to date and observe and study the biological and medical significance of RNA misregulation.

Previous technologies made it possible to attain static snapshots of RNA location, but that isn’t enough to understand the complexities of RNA transport and localization within a cell. Instead of analyzing snapshots of RNA to try to understand functioning, Sticky-flares help create an experience that is more like watching live-streaming video.

“This is very exciting because much of the RNA in cells has very specific quantities and localization, and both are critical to the cell’s function, but until this development it has been very difficult, and often impossible, to probe both attributes of RNA in a live cell,” said Chad A. Mirkin, a nanomedicine expert and corresponding author of the study. “We hope that many more researchers will be able to use this platform to increase our understanding of RNA function inside cells.”

Sticky-flares are tiny spherical nucleic acid gold nanoparticle conjugates that can enter living cells and target and transfer a fluorescent reporter or “tracking device” to RNA transcripts. This fluorescent labeling can be tracked via fluorescence microscopy as it is transported throughout the cell, including the nucleus.

In the … paper, the scientists explain how they used Sticky-flares to quantify β–actin mRNA in HeLa cells (the oldest and most commonly used human cell line) as well as to follow the real-time transport of β–actin mRNA in mouse embryonic fibroblasts.

Sticky-flares are built upon another technology from Mirkin’s group called NanoFlares, which was the first genetic-based approach that is able to detect live circulating tumor cells out of the complex matrix that is human blood.

NanoFlares have been very useful for researchers that operate in the arena of quantifying gene expression. AuraSense, Inc., a biotechnology company that licensed the NanoFlare technology from Northwestern University, and EMD-Millipore, another biotech company, have commercialized NanoFlares. There are now more than 1,700 commercial forms of NanoFlares sold under the SmartFlareä name in more than 230 countries.

The Sticky-flare is designed to address limitations of SmartFlares, most notably their inability to track RNA location and enter the nucleus. The Northwestern team believes Sticky-flares are poised to become a valuable tool for researchers who desire to understand the function of RNA in live cells.

Based on the paragraph about the precursor technology’s commercial success , I gather they are excited about similar possibilities for sticky-flares.

Here’s a link to and a citation for the paper,

Quantification and real-time tracking of RNA in live cells using Sticky-flares by William E. Briley, Madison H. Bondy, Pratik S. Randeria, Torin J. Dupper, and Chad A. Mirkin. Published online before print July 20, 2015, doi: 10.1073/pnas.1510581112 PNAS July 20, 2015

This paper is behind a paywall.

X-raying fungus on paper to conserve memory

Civilization is based on memory. Our libraries and archives serve as memories of how things are made, why we use certain materials rather than others, how the human body is put together, what the weather patterns have been, etc. For centuries we have preserved our memories on paper. While this has many advantages, there are some drawbacks including fungus infestations.

A July 21, 2015 news item on ScienceDaily describes how a technique used to x-ray rocks has provided insights into paper and its fungal infestations,

Believe it or not: X-ray works a lot better on rocks than on paper. This has been a problem for conservators trying to save historical books and letters from the ravages of time and fungi. They frankly did not know what they were up against once the telltale signs of vandals such as Dothidales or Pleosporales started to spot the surface of their priceless documents

Now Diwaker Jha, an imaging specialist from Department of Chemistry, University of Copenhagen, has managed to adapt methods developed to investigate interiors of rocks to work on paper too, thus getting a first look at how fungus goes about infesting paper. …

A July 21, 2015 University of Copenhagen press release (also on EurekAlert), which originated the news item, expands on the theme,

This is good news for paper conservators and others who wish to study soft materials with X-ray tomography. “Rocks are easy because they are hard. The X-ray images show a very good contrast between the solid and the pores or channels, which are filled with low density materials such as air or fluids. In this case, however, paper and fungi, both are soft and carbon based, which makes them difficult to distinguish,” says Diwaker.

Diwaker Jha is a PhD student in the NanoGeoScience group, which is a part of the Nano-Science Center at Department of Chemistry. He investigates methods to improve imaging techniques used by chemists and physicists to investigate how fluids move in natural porous materials. At a recent conference, he was presenting an analysis method he developed for X-ray tomography data, for which he was awarded the Presidential Scholar Award by the Microscopy Society of America. And this sparked interest with a conservator in the audience.

Hanna Szczepanowska works as a research conservator with the Smithsonian Institution in the USA. She had been wondering how fungi interact with the paper. Does it sit on the surface, or does it burrow deeper? If they are surface dwellers, it should be easy to just brush them off, but no such luck, says Jha.

“As it turns out, microscopic fungi that infest paper grow very much the same way as mushrooms on a forest floor. However, unlike mushrooms, where the fruiting body emerges out of the soil to the surface, here the fruiting bodies can be embedded within the paper fibres, making it difficult to isolate them. This is not great news for conservators because the prevalent surface cleaning approaches are not adequate,” explains Diwaker Jha.

In working out a way to see into the paper, Jha investigated a 17th century letter on a handmade sheet and a 1920 engraving on machine-made paper. Compared with mushrooms, these fungi are thousands of times smaller, which required an advanced X-ray imaging technique available at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The technique is very similar to medical tomography (CT scanning) done at hospitals but in Grenoble the X-ray is produced by electrons accelerated to about the speed of light in an 844 meter long circular tube. A handy comparison: “If I were to use medical X-ray tomography to look at an Olympic village, I would be able to make out only the stadium. With the synchrotron based X-ray tomography, I would be able to distinguish individual blades of grass on the field..”

Diwaker hopes that conservators will be able to use the new insight to develop conservation strategies not just for paper artefacts but for combating biodegradation on a host of other types of cultural heritage materials. And that the developed methods can be extended to other studies related to soft matter.

Here’s a citation and a link for the paper,

Morphology and characterization of Dematiaceous fungi on a cellulose paper substrate using synchrotron X-ray microtomography, scanning electron microscopy and confocal laser scanning microscopy in the context of cultural heritage by H. M. Szczepanowska, D. Jha, and Th. G. Mathia. Anal. At. Spectrom. (Journal of Analystical Atomic Spetrometry), 2015,30, 651-657 DOI: 10.1039/C4JA00337C First published online 27 Nov 2014

This paper is behind a paywall. By the way, it is part of something the journal calls a themed collection:  Synchrotron radiation and neutrons in art and archaeology. Clicking on the ‘themed collection’ link will give you a view of the collection, i.e., titles, authors and brief abstracts.

On the verge of controlling neurons by wireless?

Scientists have controlled a mouse’s neurons with a wireless device (and unleashed some paranoid fantasies? well, mine if no one else’s) according to a July 16, 2015 news item on Nanowerk (Note: A link has been removed),

A study showed that scientists can wirelessly determine the path a mouse walks with a press of a button. Researchers at the Washington University School of Medicine, St. Louis, and University of Illinois, Urbana-Champaign, created a remote controlled, next-generation tissue implant that allows neuroscientists to inject drugs and shine lights on neurons deep inside the brains of mice. The revolutionary device is described online in the journal Cell (“Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics”). Its development was partially funded by the [US] National Institutes of Health [NIH].

The researchers have made an image/illustration of the probe available,

Mind Bending Probe Scientists used soft materials to create a brain implant a tenth the width of a human hair that can wirelessly control neurons with lights and drugs. Courtesy of Jeong lab, University of Colorado Boulder.

A July 16, 2015 US NIH National Institute of Neurological Disorders and Stroke news release, which originated the news item, describes the study and notes that instructions for building the implant are included in the published study,

“It unplugs a world of possibilities for scientists to learn how brain circuits work in a more natural setting.” said Michael R. Bruchas, Ph.D., associate professor of anesthesiology and neurobiology at Washington University School of Medicine and a senior author of the study.

The Bruchas lab studies circuits that control a variety of disorders including stress, depression, addiction, and pain. Typically, scientists who study these circuits have to choose between injecting drugs through bulky metal tubes and delivering lights through fiber optic cables. Both options require surgery that can damage parts of the brain and introduce experimental conditions that hinder animals’ natural movements.

To address these issues, Jae-Woong Jeong, Ph.D., a bioengineer formerly at the University of Illinois at Urbana-Champaign, worked with Jordan G. McCall, Ph.D., a graduate student in the Bruchas lab, to construct a remote controlled, optofluidic implant. The device is made out of soft materials that are a tenth the diameter of a human hair and can simultaneously deliver drugs and lights.

“We used powerful nano-manufacturing strategies to fabricate an implant that lets us penetrate deep inside the brain with minimal damage,” said John A. Rogers, Ph.D., professor of materials science and engineering, University of Illinois at Urbana-Champaign and a senior author. “Ultra-miniaturized devices like this have tremendous potential for science and medicine.”

With a thickness of 80 micrometers and a width of 500 micrometers, the optofluidic implant is thinner than the metal tubes, or cannulas, scientists typically use to inject drugs. When the scientists compared the implant with a typical cannula they found that the implant damaged and displaced much less brain tissue.

The scientists tested the device’s drug delivery potential by surgically placing it into the brains of mice. In some experiments, they showed that they could precisely map circuits by using the implant to inject viruses that label cells with genetic dyes. In other experiments, they made mice walk in circles by injecting a drug that mimics morphine into the ventral tegmental area (VTA), a region that controls motivation and addiction.

The researchers also tested the device’s combined light and drug delivery potential when they made mice that have light-sensitive VTA neurons stay on one side of a cage by commanding the implant to shine laser pulses on the cells. The mice lost the preference when the scientists directed the device to simultaneously inject a drug that blocks neuronal communication. In all of the experiments, the mice were about three feet away from the command antenna.

“This is the kind of revolutionary tool development that neuroscientists need to map out brain circuit activity,” said James Gnadt, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS).  “It’s in line with the goals of the NIH’s BRAIN Initiative.”

The researchers fabricated the implant using semi-conductor computer chip manufacturing techniques. It has room for up to four drugs and has four microscale inorganic light-emitting diodes. They installed an expandable material at the bottom of the drug reservoirs to control delivery. When the temperature on an electric heater beneath the reservoir rose then the bottom rapidly expanded and pushed the drug out into the brain.

“We tried at least 30 different prototypes before one finally worked,” said Dr. McCall.

“This was truly an interdisciplinary effort,” said Dr. Jeong, who is now an assistant professor of electrical, computer, and energy engineering at University of Colorado Boulder. “We tried to engineer the implant to meet some of neurosciences greatest unmet needs.”

In the study, the scientists provide detailed instructions for manufacturing the implant.

“A tool is only good if it’s used,” said Dr. Bruchas. “We believe an open, crowdsourcing approach to neuroscience is a great way to understand normal and healthy brain circuitry.”

Here’s a link to and a citation for the paper,

Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics by Jae-Woong Jeong, Jordan G. McCall, Gunchul Shin, Yihui Zhang, Ream Al-Hasani, Minku Kim, Shuo Li, Joo Yong Sim, Kyung-In Jang, Yan Shi, Daniel Y. Hong, Yuhao Liu, Gavin P. Schmitz, Li Xia, Zhubin He, Paul Gamble, Wilson Z. Ray, Yonggang Huang, Michael R. Bruchas, and John A. Rogers.  Cell, July 16, 2015. DOI: 10.1016/j.cell.2015.06.058

This paper is behind a paywall.

I last wrote about wireless activation of neurons in a May 28, 2014 posting which featured research at the University of Massachusetts Medical School.

The Australians talk about wood and nanotechnology

It’s a bit of a mystery but somehow a wood product from Australia is nanotechnology-enabled. The company is RT Holdings (apparently no website) and the speaker, Albert Golier, is the chairman of the board for the company (since April 2015). According to the interview on the Breakfast with Stuart Stansfield programme for 891 ABC (Australian Broadcasting Corporation) Adelaide, the idea for the product was inspired by bamboo, which is woven and glued together to create flooring products. Golier whose previous experience is in the field of electronics was surprised (and somewhat horrified) to learn that only about 30% of a tree is actually used after processing, the rest being waste. The first part of the July 14, 2015 interview was posted here. The second part (July 15, 2015) is here. The third and final part (July 16, 2015) of the interview is here.

I have found some company information for RT Holdings, it was officially registered in 2014 according to allcompanydata.com. There’s also this 2014 RT Holdings slide deck on the Forest & Wood Products of Australia website.

7th (2015) Canadian Science Policy Conference line-up

The Seventh Canadian Science Policy Conference, being held in Ottawa, Ontario from Nov. 25 – 27, 2015 at the Delta Ottawa City Centre Hotel, has announced its programme and speakers in a July 16, 2015 Canadian Science Policy Centre newsletter,

Presentations

Theme 1: Transformative and Converging Technologies on
Private Sector Innovation and Productivity

New technologies, from 3D printing to quantum computing, present risks and opportunities for Canadian industries and the economy. Join CSPC 2015 in a discussion of how Canada’s mining industry and digital economy can best take advantage of these technological innovations.

Challenges Associated with Transferring New Technologies to the Mining Industry,
Centre for Excellence in Mining Innovation

Creating Digital Opportunity for Canada: challenges and emerging trends,
Munk School of Global Affairs

Disruptive Technologies,
Ryerson University

Theme 2: Big Science in Canada – Realizing the Benefits

ENCode, the LHC, the Very Large Array: Big Science is reshaping modern research and with it, Canada’s scientific landscape. Join the conversation at CSPC 2015 on how Canada navigates those vast new waters.

Science Without Boundaries,
TRIUMF

Are we Jupiters in the celestial field of science? How ‘Big Science’ and major facilities influence Canadian Science Culture,
SNOLAB

Theme 3: Transformation of Science, Society and Research
in the Digital Age: Open science, participation, security and
confidentiality

The digital age has brought important changes to the Canadian scientific landscape. Come discuss and think about the effects of those changes on our society.

The Role of Innovation in Addressing Antimicrobial Resistance,
Industry Canada

Digital Literacy: What is going to make the real difference?,
Actua

Science Blogging: The Next Generation,
Science Borealis

Proposals for Advancing Canadian Open Science Policy,
Environment Canada

Theme 4: Science and Innovation for Development

Innovation and sciences are among the key driver of development. Come and find out how Canadian creativity creates unique opportunities.

Role of Open Science in Innovation for Development,
International Development Research Centre (IDRC)

Learning Creativity in STEM Education,
University of Calgary

Theme 5: Evidence-Based Decision Making: The challenge
of connecting science and policy making

GMOs, climate change, energy: Many of the big major issues facing Canada fall at the nexus of science and policymaking. Join CSPC 2015 in a discussion of the role of big data and evidence-based decision-making in government.

Beating Superbugs: Innovative Genomics and Policies to Tackle AMR,
Genome Canada

Addressing Concerns Over GMOs – Striking the Right Balance,
Agriculture and Agri-food Canada

Who Should be the Voice for Science Within Government?,
Evidence for Democracy

Data Driven Decisions: Putting IoT, Big Data and Analytics to Work For Better Public Policy,
Cybera

The future of university support for Canada’s Science, Technology & Innovation Strategy,
York University

Please note, there will be more panels announced soon.

Keynote Session

Science Advice to Governments
Innovation, science and technologies never had a more critical role in decision making than today. CSPC 2015 keynote session will address the importance and role of the input from the scientific world to decision making in political affairs.

Speakers:

Sir Peter Gluckman,
Chief Science Adviser to New Zealand Government

Rémi Quirion,
Chief Scientist, Quebec

Arthur Carty,
Executive Director, Inst. Nanotechnology U Waterloo, Former science adviser to PM Paul Martin [emphasis mine]

I have a few comments. First, I’m glad to see the balance between the “money, money, money” attitude and more scholarly/policy interests has been evened out somewhat as compared to last year’s conference in Halifax (Nova Scotia). Second, I see there aren’t any politicians listed as speakers in the website’s banner as is the usual case (Ted Hsu, Member of Parliament and current science critic for the Liberal Party, is on the speaker list but will not be running in the 2015 election). This makes some sense since there is a federal election coming up in October 2015 and changes are likely. Especially, since it seems to be a three-horse race at this point. (For anyone unfamiliar with the term, it means that any one of the three main political parties could win and lead should they possess a majority of the votes in the House of Commons. There are other possibilities such as a minority government led by one party (the Harper Conservatives have been in that situation). Or, should two parties, with enough combined votes to outnumber the third party, be able to agree, there could be a coalition government of some kind.) As for other politicians at the provincial and municipal levels, perhaps it’s too early to commit? Third, Arthur Carty, as he notes, was a science advisor to Prime Minister Paul Martin. Martin was the leader of the country for approximately two years from Dec. 2003 – Nov. 2005 when a motion of non confidence was passed in Parliament (more about Paul Martin and his political career in his Wikipedia entry) an election was called for January 2006 when Stephen Harper and the conservatives were voted in to form a minority government. Arthur Carty’s tenure as Canada’s first science advisor began in 2004 and ended in 2008, according to Carty’s Wikipedia entry. It seems Carty is not claiming to have been Stephen Harper’s science advisor although arguably he was the Harper government’s science advisor for the same amount of time. This excerpt from a March 6, 2008 Canada.com news item seems to shed some light on why the Harper sojourn is not mentioned in Cary’s conference biography,

The need for a national science adviser has never been greater and the government is risking damage to Canada’s international reputation as a science leader by cutting the position, according to the man who holds the job until the end of the month.

Appearing before a Commons committee on Thursday, Arthur Carty told MPs that he is “dismayed and disappointed” that the Conservative government decided last fall to discontinue the office of the national science adviser.

“There are, I think, negative consequences of eliminating the position,” said Carty. He said his international counterparts have expressed support for him and that Canada eliminating the position has the “potential to tarnish our image,” as a world leader in science and innovation.

Carty was head of the National Research Council in 2004 when former prime minister Paul Martin asked him to be his science adviser.

In October 2006, [months] after Prime Minister Stephen Harper was elected, Carty’s office was shifted to Industry Canada. After that move, he and his staff were “increasingly marginalized,” Carty told the industry, science and technology committee, and they had little input in crafting the government’s new science and technology strategy.

But Conservative members of the committee questioned whether taxpayers got their money’s worth from the national adviser and asked Carty to explain travel and meal expenses he had claimed during his time in the public service, including lunch and dinner meetings that cost around $1,000 each. Some of the figures they cited were from when Carty was head of the National Research Council.

The suggestions that Carty took advantage of the public purse prompted Liberal MP Scott Brison to accuse the Tories of launching a “smear campaign” against Carty, whom he described as a “great public servant.”

“I have never overcharged the government for anything,” Carty said in his own defence.

The keynote has the potential for some liveliness based on Carty’s history as a science advisor but one never knows.  It would have been nice if the organizers had been able to include someone from South Korea, Japan, India, China, etc. to be a keynote speaker on the topic of science advice. After all, those countries have all invested heavily in science and made some significant social and economic progress based on those investments. If you’re going to talk about the global science enterprise perhaps you could attract a few new people (and let’s not forget Latin America, Africa, and the Middle East) to the table, so to speak.

You can find out more about the conference and register (there’s a 30% supersaver discount at the moment) here.

Seeing quantum objects with the naked eye

This research is a collaborative effort between the Polytechnique de Montréal (or École polytechnique de Montréal; Canada) and the Imperial College of London (UK) according to a July 14, 2015 news item on Nanotechnology Now,

For the first time, the wavelike behaviour of a room-temperature polariton condensate has been demonstrated in the laboratory on a macroscopic length scale. This significant development in the understanding and manipulation of quantum objects is the outcome of a collaboration between Professor Stéphane Kéna-Cohen of Polytechnique Montréal, Professor Stefan Maier and research associate Konstantinos Daskalakis of Imperial College London. …

A July 14, 2015 Polytechnique de Montréal news release supplies an explanation of this ‘sciencish’ accomplishment,

Quantum objects visible to the naked eye

Quantum mechanics tells us that objects exhibit not only particle-like behaviour, but also wavelike behaviour with a wavelength inversely proportional to the object’s velocity. Normally, this behaviour can only be observed at atomic length scales. There is one important exception, however: with bosons, particles of a particular type that can be combined in large numbers in the same quantum state, it is possible to form macroscopic-scale quantum objects, called Bose-Einstein condensates.

These are at the root of some of quantum physics’ most fascinating phenomena, such as superfluidity and superconductivity. Their scientific importance is so great that their creation, nearly 70 years after their existence was theorized, earned researchers Eric Cornell, Wolfgang Ketterle and Carl Wieman the Nobel Prize in Physics in 2001.

A trap for half-light, half-matter quasi-particles

Placing particles in the same state to obtain a condensate normally requires the temperature to be lowered to a level near absolute zero: conditions achievable only with complex laboratory techniques and expensive cryogenic equipment.

“Unlike work carried out to date, which has mainly used ultracold atomic gases, our research allows comprehensive studies of condensation to be performed in condensed matter systems under ambient conditions” explains Mr. Daskalakis. He notes that this is a key step toward carrying out physics projects that currently remain purely theoretical.

To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons – hybrid quasi-particles that are part light and part matter – to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale.

“To date, the majority of polariton experiments continue to use ultra-pure crystalline semiconductors,” says Professor Kéna-Cohen. “Our work demonstrates that it is possible to obtain comparable quantum behaviour using ‘impure’ and disordered materials such as organic molecules. This has the advantage of allowing for much simpler and lower-cost fabrication.”

The size of the condensate is a limiting factor

In addition to directly observing the organic polariton condensate’s wavelike behaviour, the experiment showed researchers that ultimately the condensate size could not exceed approximately 100 micrometres. Beyond this limit, the condensate begins to destroy itself, fragmenting and creating vortices.

Toward future polariton lasers and optical transistors

In a condensate, the polaritons all behave the same way, like photons in a laser. The study of room-temperature condensates paves the way for future technological breakthroughs such as polariton micro-lasers using low-cost organic materials, which are more efficient and require less activation power than  conventional lasers. Powerful transistors entirely powered by light are another possible application.

The research team foresees that the next major challenge in developing such applications will be to obtain a lower particle-condensation threshold so that the external laser used for pumping could be replaced by more practical electrical pumping.

Fertile ground for studying fundamental questions

According to Professor Maier, this research is also creating a platform to facilitate the study of fundamental questions in quantum mechanics. “It is linked to many modern and fascinating aspects of many-body physics, such as Bose-Einstein condensation and superfluidity, topics that also intrigue the general public,” he notes.

Professor Kéna-Cohen concludes: “One fascinating aspect, for example, is the extraordinary transition between the state of non-condensed particles and the formation of a condensate. On a small scale, the physics of this transition resemble an important step in the formation of the Universe after the Big Bang.”

Here’s a link to and a citation for the paper,

Spatial Coherence and Stability in a Disordered Organic Polariton Condensate by K. S. Daskalakis, S. A. Maier, and S. Kéna-Cohen Phys. Rev. Lett. 115 (3), 035301 DOI: 10.1103/PhysRevLett.115.035301 Published 13 July 2015

This article is behind a paywall but there is an earlier open access version  here: http://arxiv.org/pdf/1503.01373v2.