India, Lockheed Martin, and canal-top solar power plants

Apparently the state of Gujarat (India) has inspired at least one other state, Punjab, to build (they hope) a network of photovoltaic (solar energy) plants over top of their canal system (from a Nov. 16, 2014 article by Mridul Chadha for cleantechnica.com),

India’s northern state of Punjab plans to set up 1,000 MW of solar PV projects to cover several kilometres of canals over the next three years. The state government has announced a target to cover 5,000 km of canals across the state. Through this program, the government hopes to generate 15% of the state’s total electricity demand.

Understandably, the construction of canal-top power plants is technically and structurally very different from rooftop or ground-based solar PV projects. The mounting structures for the solar PV modules cannot be heavy, as it could adversely impact the structural integrity of the canal itself. The structures should be easy to work with, as they are to be set up over a slope.

This is where the Punjab government has asked Lockheed Martin for help. The US-based company has entered into an agreement with the Punjab government to develop lightweight mounting structures for solar panels using nanotechnology.

Canal and rooftop solar power projects are the only viable options for Punjab as it is an agricultural state and land availability for large-scale ground-mounted projects remains an issue. As a result, the state government has a relatively lower (compared to other states) capacity addition target of 2 GW.

There’s more about the Punjab and current plans to increase its investment in solar photovoltaics in the article.

Here’s an image of a canal-top solar plant near Kadi (Gujarat),

Canal_Top_Solar_Power_PlantImage Credit: Hitesh vip | CC BY-SA 3.0

A Nov. 15, 2014 news item by Kamya Kandhar for efytimes.com provides a few more details about this Memorandum of Understanding (MOU),

Punjab government had announced its tie up with U.S. aerospace giant Lockheed Martin to expand the solar power generation and overcome power problems in the State. As per the agreement, the state will put in 1,000 MW solar power within the next three years. Lockheed Martin has agreed to provide plastic structures for solar panels on canals by using nano technology.

While commenting upon the agreement, a spokesperson said, “The company would also provide state-of-the-art technology to convert paddy straw into energy, solving the lingering problem of paddy straw burning in the state. The Punjab government and Lockheed Martin would ink a MoU in this regard [on Friday, Nov. 14, 2014].”

The decision was taken during a meeting between three-member team from Lockheed Martin, involving the CEO Phil Shaw, Chief Innovation Officer Tushar Shah and Regional Director Jagmohan Singh along with Punjab Non-Conventional Energy Minister Bikram Singh Majithia and other senior Punjab officials.

As for paddy straw and its conversion into energy, there’s this from a Nov. 14, 2014 news item on India West.com,

Shaw [CEO Phil Shaw] said Lockheed has come out with waste-to-energy conversion solutions with successful conversion of waste products to electricity, heat and fuel by using gasification processes. He said it was an environmentally friendly green recycling technology, which requires little space and the plants are fully automated.

Getting back to the nanotechnology, I was not able to track down any information about nanotechnology-enabled plastics and Lockheed Martin. But, there is a Dec. 11, 2013 interview with Travis Earles, Lockheed Martin Advanced materials and nanotechnology innovation executive and policy leader, written up by Kris Walker for Azonano. Note: this is a general interview and focuses largely on applications for carbon nanotubes and graphene.

Nano and stem cell differentiation at Rutgers University (US)

A Nov. 14, 2014 news item on Azonano features a nanoparticle-based platform for differentiating stem cells,

Rutgers University Chemistry Associate Professor Ki-Bum Lee has developed patent-pending technology that may overcome one of the critical barriers to harnessing the full therapeutic potential of stem cells.

A Nov. 1, 2104 Rutgers University news release, which originated the news item, describes the challenge in more detail,

One of the major challenges facing researchers interested in regenerating cells and growing new tissue to treat debilitating injuries and diseases such as Parkinson’s disease, heart disease, and spinal cord trauma, is creating an easy, effective, and non-toxic methodology to control differentiation into specific cell lineages. Lee and colleagues at Rutgers and Kyoto University in Japan have invented a platform they call NanoScript, an important breakthrough for researchers in the area of gene expression. Gene expression is the way information encoded in a gene is used to direct the assembly of a protein molecule, which is integral to the process of tissue development through stem cell therapeutics.

Stem cells hold great promise for a wide range of medical therapeutics as they have the ability to grow tissue throughout the body. In many tissues, stem cells have an almost limitless ability to divide and replenish other cells, serving as an internal repair system.

Transcription factor (TF) proteins are master regulators of gene expression. TF proteins play a pivotal role in regulating stem cell differentiation. Although some have tried to make synthetic molecules that perform the functions of natural transcription factors, NanoScript is the first nanomaterial TF protein that can interact with endogenous DNA. …

“Our motivation was to develop a highly robust, efficient nanoparticle-based platform that can regulate gene expression and eventually stem cell differentiation,” said Lee, who leads a Rutgers research group primarily focused on developing and integrating nanotechnology with chemical biology to modulate signaling pathways in cancer and stem cells. “Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential to do exactly that. The field of stem cell biology now has another platform to regulate differentiation while the field of nanotechnology has demonstrated for the first time that we can regulate gene expression at the transcriptional level.”

Here’s an image illustrating NanoScript and gold nanoparticles,

Courtesy Rutgers University

Courtesy Rutgers University

The news release goes on to describe the platform’s use of gold nanoparticles,

NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles.

“NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by up to 30-fold,” said Sahishnu Patel, Rutgers Chemistry graduate student and co-author of the ACS Nano publication. “NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner.”

Lee said the next step for his research is to study what happens to the gold nanoparticles after NanoScript is utilized, to ensure no toxic effects arise, and to ensure the effectiveness of NanoScript over long periods of time.

“Due to the unique tunable properties of NanoScript, we are highly confident this platform not only will serve as a desirable alternative to conventional gene-regulating methods,” Lee said, “but also has direct employment for applications involving gene manipulation such as stem cell differentiation, cancer therapy, and cellular reprogramming. Our research will continue to evaluate the long-term implications for the technology.”

Lee, originally from South Korea, joined the Rutgers faculty in 2008 and has earned many honors including the NIH Director’s New Innovator Award. Lee received his Ph.D. in Chemistry from Northwestern University where he studied with Professor Chad. A. Mirkin, a pioneer in the coupling of nanotechnology and biomolecules. Lee completed his postdoctoral training at The Scripps Research Institute with Professor Peter G. Schultz. Lee has served as a Visiting Scholar at both Princeton University and UCLA Medical School.

The primary interest of Lee’s group is to develop and integrate nanotechnologies and chemical functional genomics to modulate signaling pathways in mammalian cells towards specific cell lineages or behaviors. He has published more than 50 articles and filed for 17 corresponding patents.

Here’s a link to and a citation for the paper,

NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation by Sahishnu Patel, Dongju Jung, Perry T. Yin, Peter Carlton, Makoto Yamamoto, Toshikazu Bando, Hiroshi Sugiyama, and Ki-Bum Lee. ACS Nano, 2014, 8 (9), pp 8959–8967 DOI: 10.1021/nn501589f Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

2014 Maddox Prize winners and more ( a letter writing compaign)* from Sense about Science*

The UK’s ‘Sense about Science’ organization announced the two winners of its 2014 John Maddox (aka, the ‘standing up for science’) Prize in late October 2014 (from the Oct. 28, 2014 announcement),

I am delighted to share that last night [Oct. 27, 2014] Dr Emily Willingham and Dr David Robert Grimes were announced as the winners of the 2014 John Maddox Prize, at our annual reception held with the Royal Pharmaceutical Society.

After lengthy deliberation, this year’s judges (Tracey Brown, Philip Campbell, Colin Blakemore and Martin Rees) awarded the prize to these two people who embody the spirit of the prize, showing courage in promoting science and evidence on a matter of public interest, despite facing difficulty and hostility in doing so.

The call for 2014 nominations was mentioned in an Aug. 18, 2014 post. Here’s more about each of the winners (from the 2014 John Maddox Prize webpage on the Sense about Science website),

The judges awarded the prize to freelance journalist Dr Emily Willingham and early career scientist Dr David Robert Grimes for courage in promoting science and evidence on a matter of public interest, despite facing difficulty and hostility in doing so. …

David Grimes writes bravely on challenging and controversial issues, including nuclear power and climate change. He has persevered despite hostility and threats, such as on his writing about the evidence in the debate on abortion in Ireland. He does so while sustaining his career as a scientist at the University of Oxford.

Emily Willingham, a US writer, has brought discussion about evidence, from school shootings to home birth, to large audiences through her writing. She has continued to reach across conflict and disputes about evidence to the people trying to make sense of them. She is facing a lawsuit for an article about the purported link between vaccines and autism.

A Nov. 1, 2014 post by Nick Cohen for the Guardian newspaper discusses one of the 2014 winners in the context of a post about standing up to science ignorance and Ebola in the US, scroll down abut 15% of the way),

The joint winners confronted beliefs that are as prevalent in Britain as America: that vaccination causes autism, that homeopathic medicines work, that manmade climate change does not exist and that adding fluoride to the water supply is a threat to health. (I didn’t know it until the prize jury told me but Sinn Féin is leading a vigorous anti-fluoride campaign in Dublin – well, I suppose it’s progress for the IRA to go from blowing off peoples’ heads to merely rotting their teeth.)

David Robert Grimes, one of the winners, said that, contrary to the myth of the scientific bully, most of his colleagues wanted to keep out of public debate, presumably because they did not wish to receive the threats of violence fanatics and quacks have directed at him. If we are to improve public policy in areas as diverse as the fight against Ebola to the treatment of drug addicts, they need to be a braver, and more willing to tell the public, which so often funds their research, what they have learned.

Grimes makes a useful distinction. Most people just want more information and scientists should be prepared to make their case clearly and concisely. Then there are the rest – Ukip, the Tea Party, governors of Maine, Sinn Féin, David Cameron, climate change deniers – who will block out any evidence that contradicts their beliefs. They confirm the truth of Paul Simon’s line: “All lies and jest, still the man hears what he wants to hear and disregards the rest.”

Lydia Lepage (a post-doctoral researcher at the University of Edinburgh and a member of the Voice of Young Science, which is run by Sense About Science) over on the Conversation writes about both winners in an Oct. 28, 2014 post (Note: Links have been removed),

Willingham is a freelance science journalist whose evidence-based article: “Blame Wakefield for missed autism-gut connection” drew intense criticism and a lawsuit from Andrew Wakefield, the discredited scientist known for his now-retracted 1998 Lancet paper on the alleged link between vaccines and autism. She criticised the “red herring and the subsequent noxious cloud that his fraud left over any research examining autism and the gut”.

Willingham’s self-declared passion is “presenting accurate, evidence-based information”. She says:

Standing up for science and public health in the face of not only unyielding but also sometimes threatening opposition can be tiring and demoralising.

Grimes is a post-doctoral researcher at the University of Oxford in the UK, working on modelling oxygen distribution in tumours. He has been awarded the Maddox Prize for reaching out to the public through his writing on a range of challenging and controversial issues, including nuclear power and climate change.

Grimes continues to present the evidence, despite receiving threats, particularly surrounding discussion on abortion in Ireland. Following his article on six myths about cancer, in which he addressed the “dubious and outlandish” information that can be found on the internet, he received physical and digital hate-mail.

Sense about Science next announced an ‘Ask for Evidence’ website, from a Nov. 2, 2014 announcement,

We are excited to announce that Ask for Evidence online is now live! And people are already using it to ask for the evidence behind claims they’ve come across. Check out www.askforevidence.org

It’s our new interactive website that makes asking for evidence and getting help understanding that evidence as easy as possible. You can use it to ask politicians, companies, NGOs and anyone else for evidence behind their claims, while you’re on the train, walking down the street or sitting in front of the TV. And if you need help understanding the evidence you’ve been sent, that’s there too. With the help of partners and friends we’ve built a help centre that has captured what we’ve learnt over the past 12 years answering thousands of requests for help in understanding evidence.

Finally,. there’s the latest announcement about an effort to influence the World Health Organization’s (WHO) new policy on reporting the results of clinical trials, from the Nov. 11, 2014 announcement,

Following our pressure, the World Health Organization is drafting a policy on reporting the results of clinical trials.

We have to grab this fantastic opportunity with both hands and make sure that the most influential health body in the world comes out with a statement that strongly supports clinical trials transparency.

But you only have until Saturday 15th November 2014 to add your voice.

The draft WHO policy does not call for the disclosure of the results of past trials, only future ones. The vast majority of medicines we use every day were approved by regulators a decade or more ago and so were tested in clinical trials over the past decades.

So email the WHO to tell them their policy should:

  1. Call for the results of all past clinical trials to be reported, as well as all future clinical trials.
  2. Require results to be reported within 12 months, rather than permitting delays of 18-30 months. The USA’s FDA Amendment Act, the newly adopted EU Clinical Trials Regulation and pharmaceutical companies including GSK and LEO Pharma all agree that 12 months is enough time to report results.
  3. Encourage researchers to put results on publicly accessible registers, in useful, standardised formats.

Email [email protected] today.

Be sure to include your name and contact details as the WHO will not consider anonymous comments.

You can also use the full AllTrials response to write your email if you wish.

Read the full AllTrials response.

I am encouraged to see a move towards more transparency in reporting the results of clinical trials whether or not this bid to include past clinical trials is successful, although that would certainly be excellent news.

* (a letter writing campaign) was added to the head and ‘sense about science’ was changed to ‘Sense about Science’ on Nov. 14, 2014 1015 hundred hours PDT.

A multiferroic material for more powerful solar cells

A Nov. 12, 2014 INRS (Institut national de la recherche scientifique; Université du Québec) news release (also on EurekAlert), describes new work on solar cells from Federico Rosei’s laboratory (Note: Links have been removed; A French language version of the news release can be found here),

Applying a thin film of metallic oxide significantly boosts the performance of solar panel cells—as recentlydemonstrated by Professor Federico Rosei and his team at the Énergie Matériaux Télécommunications Research Centre at Institut national de la recherche scientifique (INRS). The researchers have developed a new class of materials comprising elements such as bismuth, iron, chromium, and oxygen. These“multiferroic” materials absorb solar radiation and possess unique electrical and magnetic properties. This makes them highly promising for solar technology, and also potentially useful in devices like electronic sensors and flash memory drives. …

The INRS research team discovered that by changing the conditions under which a thin film of these materials is applied, the wavelengths of light that are absorbed can be controlled. A triple-layer coating of these materials—barely 200 nanometres thick—captures different wavelengths of light. This coating converts much more light into electricity than previous trials conducted with a single layer of the same material. With a conversion efficiency of 8.1% reported by [Riad] Nechache and his coauthors, this is a major breakthrough in the field.

The team currently envisions adding this coating to traditional single-crystal silicon solar cells (currently available on the market). They believe it could increase maximum solar efficiency by 18% to 24% while also boosting cell longevity. As this technology draws on a simplified structure and processes, as well as abundant and stable materials, new photovoltaic (PV) cells will be more powerful and cost less. This means that the INRS team’s breakthrough may make it possible to reposition silicon PV cells at the forefront of the highly competitive solar energy market.

Here’s a link to and a citation for the paper,

Bandgap tuning of multiferroic oxide solar cells by R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang,  J. Chakrabartty, & F. Rosei. Nature Photonics (2014) doi:10.1038/nphoton.2014.255 Published online
10 November 2014

This paper is behind a paywall although there is a free preview via ReadCube Access.

I last mentioned Federico Rose in a March 4, 2014 post about a talk (The exploration of the role of nanoscience in tomorrow’s energy solutions) he was giving in Vancouver (Canada).

Simon Fraser University – SCFC861Nanotechnology, The Next Big Idea: course Week 4

Week 4, (Nov. 13, 2014) of my course called, Nanotechnology: The Next Big Idea and which is part of Simon Fraser University’s (SFU) Continuing Studies programme proved a bit of an adventure as there were two technology breakdowns. Thankfully,, we did have about 30 uninterrupted minutes at one point. My Week Four PowerPoint slides and notes of a sort can be found in links at the end of this post.

For those who may be mildly curious, here’s a description of what was covered in the fourth week (from SFU’s course description webpage),

Week 4: Violent and Other Confrontations

Nanotechnology has provided fuel for confrontations and panics from mail bombs in Mexico to the attempted bombing of an IBM nanotech facility in Switzerland to protests that closed down public dialogue sessions in France to pre-emptive legislation by Berkeley, California’s city council.

Here’s the week 4 slide deck:

Week4_Confronations_Panics

Here are my ‘notes’ for yesterday’s class consisting largely of brief heads designed to remind me of the content to be found by clicking the link directly after the head.

Week 4_Confrontations

Happy Reading!

Authenticating ancient Mesoamerican artifacts with nanoSEM

A Nov. 12, 2014 news item on Azonano describes an upcoming Nov. 14, 2014 presentation from researchers at the Smithsonian Institute about authenticating artifacts at the 61st annual AVS symposium being held in Maryland (US) from Nov. 9 – 14 , 2014,

Geologist Timothy Rose of the Smithsonian Institution’s Analytical Laboratories is accustomed to putting his lab’s high-tech nanoscale scanning electron microscope (nanoSEM) to work evaluating the mineral composition of rocks and meteorites. Lately, though, the nanoSEM has been enlisted for a different kind of task: determining the authenticity of ancient Mesoamerican artifacts.

In ongoing studies, Rose and his colleague Jane Walsh have now analyzed hundreds of artifacts, including carved stone figurines and masks and ceramic pieces from the ancient Olmec, Maya, Teotihuacan and Mezcala civilizations dating from 1500 B.C. to A.D. 600. “With our modern imaging and analytical tools we can look at objects at very high magnification, which can reveal new details about how, and sometimes when, objects were created,” he said.

A Nov. 12, 2014 AVS news release, which originated the news item, describes the work in more detail,

The nanoSEM used by Rose and his colleagues has the ability to function over a range of pressures. “Being able to work in the low-vacuum mode allows us to put samples into the microscope au naturel without coating them with an electrically conductive material such as carbon, which would be almost impossible to remove from a specimen,” he said.

In one study, Rose and colleagues used the nanoSEM to study stone masks from Teotihuacan, a pre-Columbian site located 30 miles northwest of Mexico City. The masks, about the size of a human face, were too big to be put into the device (and, more importantly, could not be removed from their respective museums or drilled or otherwise altered to obtain samples for analysis). However, silicone molds that were made of the objects to study tool marks with an optical microscope did remove tiny mineral grains from deep within cracks and drill holes. Chemical evaluation of these grains using the nanoSEM’s X-ray spectrographic analysis system showed that some were diatoms—common single-celled algae with cell walls made of silica. Diatomaceous earth is “a very fine powdery siliceous rock comprised entirely of diatoms that would make very nice polish for the stone of these specific masks,” Rose said. “We believe we found abrasive grains and polish that was used in the manufacturing process.”

In a separate study of artifacts confiscated by the federal government, the researchers found some pieces to be partially coated with a layer of what looked to be modern gypsum plaster. In other words, the pieces were fakes. However, Rose noted, a surprisingly small percentage of the objects evaluated to date have shown modern tools marks or other evidence of recent origins. One unique ceramic handled pot analyzed in detail, for example, had five chemically distinct layers that appeared to be original Olmec fresco paint—a level of craftsmanship that, he said, is unlikely to have been the work of modern artisans.

Presentation #CS-FrM3, “Faces from the Past: Microbeam Imaging and Analysis of Artifacts from Ancient Mesoamerica,” is at 9:00 a.m. Eastern Time on Friday, Nov. 14, 2014.

AVS provides a symposium introduction page explaining the purpose of these meetings,

The AVS International Symposium and Exhibition addresses cutting-edge issues associated with materials, processing, and interfaces in both the research and manufacturing communities. The weeklong Symposium fosters a multidisciplinary environment that cuts across traditional boundaries between disciplines, featuring papers from AVS technical divisions, technology groups, and focus topics on emerging technologies. The equipment exhibition is one of the largest in the world and provides an excellent opportunity to view the latest products and services offered by over 200 participating companies. More than 2,000 scientists and engineers gather from around the world to attend.

At one time, AVS stood for American Vacuum Society but over time things change and while I imagine they didn’t want to lose their branding as AVS, they also didn’t want to constrain themselves with the word ‘vacuum’, hence the change to AVS as a ‘word’ much like IBM doesn’t refer to itself by its original name, International Business Machines.

The Analysis of Beauty; an email from William Hogarth

Given that William Hogarth has been dead for 250 years (1697 – 1764), it was bit startling to receive an email from him. For the record, he was announcing a sound installation that’s part of the ‘gap in the air; a festival of sonic art’ being held in Edinburgh (Nov. 15, 2014 – Feb. 14, 2015).

Hogarth’s (or the artists’ group known as ‘Disinformation’) installation is presenting (from the Feb. 6, 2014 email announcement),

“The Analysis of Beauty” by Disinformation
 

Talbot Rice Gallery
The University of Edinburgh
Old College
South Bridge
Edinburgh EH8 9YL
[email protected]
0131 650 2210

Reception + preview 12.30 (lunch-time) 15 Nov 2014
Sound installation 15 to 29 Nov 2014

http://rorschachaudio.com/2014/11/04/talbot-rice-edinburgh-disinformation/

http://www.facebook.com/events/1548961118673406/

#theanalysisofbeauty @talbotrice75

“The eye hath this sort of enjoyment in winding walks, and serpentine rivers, and all sorts of objects, whose forms, as we shall see hereafter, are composed principally of what I call the waving and serpentine lines. Intricacy in form, therefore, I shall define to be that peculiarity in the lines, which compose it, that leads the eye a wanton kind of chace, and from the pleasure that gives the mind, intitles it to the name of beautiful…” William Hogarth “The Analysis of Beauty” 1753

In 1753 the Georgian artist William Hogarth self-published his magnum-opus, “The Analysis of Beauty” – the book in which Hogarth expounded an aesthetic system based on analysing the virtues of the Serpentine, S-shaped, waving and snake-like lines. The Serpentine Line that William Hogarth discussed is identical to what modern nomenclature refers to as the sine-wave – the mathematical function whose geometry finds physical expression in oscillatory motion of musical strings, in pure musical notes, and in many phenomena of engineering, physics and communications science, signal processing and information technology.

In context of the architect William Playfair’s design for the Georgian Gallery at Talbot Rice, sonic and visual arts project Disinformation presents a minutely-tuned assemblage of pure musical sine-waves, which extend and extrapolate the visual aesthetics of Hogarth’s analyses, manifesting throughout the Georgian Gallery as a gently-hypnotic, immersive and dream-like sound-world. The installation is created using signals from laboratory oscillators, which manifest in-situ as standing-waves (the audio equivalent of stationary pond-ripples), through which visitors move as they explore and interact with the architectural acoustics of the exhibition space.

Here’s a video featuring a version of Disinformation’s ‘Analysis of Beauty’,

The Nov. 6, 2014 email announcement describes some of what you may have seen (if you’ve watched the video) and gives a summarized history for this installation,

“The Analysis of Beauty” sound installation is accompanied at Talbot Rice by the video of the same name, in which musical sine-waves are fed into and displayed on the screen of a laboratory oscilloscope. These signals visually manifest as a slowly rotating rope-like pattern of phosphorescent green lines, strongly reminiscent of the geometry of DNA. This earliest version of “The Analysis of Beauty” installation was exhibited at Kettle’s Yard gallery in Cambridge, in 2000, where the Disinformation exhibit was set-up alongside works by Umberto Eco, Marc Quinn and the artist project Art & Language, and directly alongside one of Francis Crick & James Watson’s earliest working-models of DNA.

Joe Banks offers a more comprehensive history in a post titled “Disinformation and “The Analysis of Beauty” A Project History“on the slashseconds.org website,

“The Analysis of Beauty” is an optokinetic sound and light installation, created by the art project Disinformation1 , which takes its title from the book of the same name written by the painter, engraver and satyrist William Hogarth in 1753. The installation was conceived in December 1999 and first exhibited in January 2000, in the “Noise” exhibition at Kettle’s Yard gallery (curated by Adam Lowe and by the Cambridge historian of science Professor Simon Schaffer)2 . “The Analysis of Beauty” was exhibited alongside work by artists Marc Quinn and Art and Language, semiotician and author Umberto Eco, and the Elizabethan polymath (mathematician, astronomer, geographer and occultist) John Dee. On account of the (subjective, but strong) similarity between the imagery produced by this installation and DNA, this work was (recent controversies notwithstanding) exhibited at Kettle’s Yard directly opposite one of Francis Crick and James Watson’s original models of DNA.

The entry does not appear to have been updated since 2007 at the latest.

Coincidentally or not, I received a Nov. 8, 2014 email announcement about an installation in Rennes (France) by an artist who seems to be associated with the ‘Disinformation’ group,

 “Babylone Electrifiée” Joshua Bonnetta + Disinformation

Exhibition continues until 22 Nov 2014

Le Bon Accueil – Lieu d’Art Contemporain
74 Canal Saint-Martin
35700 Rennes
France

The “Babylone Electrifiée” exhibition (image below) features “The Analysis of Beauty”, “National Grid” and “Blackout” (Sound Mirrors) by Disinformation, plus “Strange Lines & Distances” by Joshua Bonnetta

Here’ s the image,

[downloaded from http://bon-accueil.org/]

[downloaded from http://bon-accueil.org/]

You can find out more about

the ‘gap in the air: a festival of sonic art’ here

University of Edinburgh’s Talbot Rice Gallery exhibitions here

Le Bon Accuei exhibitions here

Joshua Bonnetta here

Happy Listening! And, to whomever came up with the idea of emails from William Hogarth, Bravo!

Killing mosquitos and other pests with genetics-based technology

Having supplied more than one tasty meal for mosquitos (or, as some prefer, mosquitoes), I am not their friend but couldn’t help but wonder about unintended consequences (as per Max Weber) on reading about a new patent awarded to Kansas State University (from a Nov. 12, 2014 news item on Nanowerk),

Kansas State University researchers have developed a patented method of keeping mosquitoes and other insect pests at bay.

U.S. Patent 8,841,272, “Double-Stranded RNA-Based Nanoparticles for Insect Gene Silencing,” was recently awarded to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities at the university. The patent covers microscopic, genetics-based technology that can help safely kill mosquitos and other insect pests.

A Nov. 12, 2014 Kansas State University news release, which originated the news item, provides more detail about the research,

Kun Yan Zhu, professor of entomology; Xin Zhang, research associate in the Division of Biology; and Jianzhen Zhang, visiting scientist from Shanxi University in China, developed the technology: nanoparticles comprised of a nontoxic, biodegradable polymer matrix and insect derived double-stranded ribonucleic acid, or dsRNA. Double-stranded RNA is a synthesized molecule that can trigger a biological process known as RNA interference, or RNAi, to destroy the genetic code of an insect in a specific DNA sequence.

The technology is expected to have great potential for safe and effective control of insect pests, Zhu said.

“For example, we can buy cockroach bait that contains a toxic substance to kill cockroaches. However, the bait could potentially harm whatever else ingests it,” Zhu said. “If we can incorporate dsRNA specifically targeting a cockroach gene in the bait rather than a toxic substance, the bait would not harm other organisms, such as pets, because the dsRNA is designed to specifically disable the function of the cockroach gene.”

Researchers developed the technology while looking at how to disable gene functions in mosquito larvae. After testing a series of unsuccessful genetic techniques, the team turned to a nanoparticle-based approach.

Once ingested, the nanoparticles act as a Trojan horse, releasing the loosely bound dsRNA into the insect gut. The dsRNA then triggers a genetic chain reaction that destroys specific messenger RNA, or mRNA, in the developing insects. Messenger RNA carries important genetic information.

In the studies on mosquito larvae, researchers designed dsRNA to target the mRNA encoding the enzymes that help mosquitoes produce chitin, the main component in the hard exoskeleton of insects, crustaceans and arachnids.

Researchers found that the developing mosquitoes produced less chitin. As a result, the mosquitoes were more prone to insecticides as they no longer had a sufficient amount of chitin for a normal functioning protective shell. If the production of chitin can be further reduced, the insects can be killed without using any toxic insecticides.

While mosquitos were the primary insect for which the nanoparticle-based method was developed, the technology can be applied to other insect pests, Zhu said.

“Our dsRNA molecules were designed based on specific gene sequences of the mosquito,” Zhu said. “You can design species-specific dsRNA for the same or different genes for other insect pests. When you make baits containing gene-specific nanoparticles, you may be able to kill the insects through the RNAi pathway. We see this having really broad applications for insect pest management.”

The patent is currently available to license through the Kansas State University Institute for Commercialization, which licenses the university’s intellectual property. The Institute for Commercialization can be contacted at 785-532-3900 and [email protected]

Eight U.S. patents have been awarded to the Kansas State University Research Foundation in 2014 for inventions by Kansas State University researchers.

Here’s an image of the ‘Trojan horse’ nanoparticles,

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

My guess is that the photographer has added some colour such as the gold and the pink to enhance the image as otherwise this would be a symphony of grey tones.

So, if this material will lead to weakened chitin such that pesticides and insecticides are more effective, does this mean that something else in the food chain will suffer because it no longer has mosquitos and other pests to munch on?

One last note, usually my ‘mosquito’ pieces concern malaria and the most recent of those was a Sept. 4, 2014 posting about a possible malaria vaccine being developed at the University of Connecticut.

A platform for nanotechnology collaboration: NanoTechValley

A Nov. 10, 2014 news item on Nanowerk features a French company, NanoThinking, and its venture into a business and research platform for collaboration (Note: A link has been removed),

Following a conception period in close connection with innovation and nanotechnology professionals, NanoThinking now offers NanoTechValley: a collaborative platform dedicated to providers and users of nanotechnology, designed for two purposes: to stimulate the emergence of R&D projects and to offer access to cutting edge equipment proposed by the community.

Here’s more from a Nov. 2014 NanoThinking presentation document about NanoTechValley,

“Currently in a phase of emergence, the field of nanotechnology is still very atomized. This reality hampers the combination of the skills, projects and activities enclosed inside laboratories and industrial firms. The idea at the origin of our project was therefore to create a web platform which features would be designed specifically to foster the emergence of collaborative projects and arrange the meeting of offers and needs” explains Thomas Dubouchet, CEO at Nanothinking.

In order to address the needs of its future users, the platform includes the following features: secure access, possibility to share documents and hold discussion with multiple users, custom privacy settings and an invitation based system which will facilitate new participations in projects proposed by the community.

You can find out more about NanoThinking here (be sure to scroll down the page) and about NanoTechValley here.

This French project reminds me,  not only of Silicon Valley, but of a couple of NanoQuébec projects mentioned in a Sept. 19, 2012 posting (NanoQuébec sets up I-Nano, their version of an industrial dating service) and a May 13, 2013 posting (NanoQuébec and iNano get to the chapel while Canada Economic Development presides). While I described the project as a ‘dating service’, it could also be described as a platform designed to encourage collaborations between business and academe.

In any event, it’s good to see projects designed to help researchers connect with each other and connect with business partners wherever they may be located.

I last wrote about NanoThinking in a Dec. 30, 2013 posting which featured the company’s Global NanoTechMap.

University of Toronto, ebola epidemic, and artificial intelligence applied to chemistry

It’s hard to tell much from the Nov. 5, 2014 University of Toronto news release by Michael Kennedy (also on EurekAlert but dated Nov. 10, 2014) about in silico drug testing focused on finding a treatment for ebola,

The University of Toronto, Chematria and IBM are combining forces in a quest to find new treatments for the Ebola virus.

Using a virtual research technology invented by Chematria, a startup housed at U of T’s Impact Centre, the team will use software that learns and thinks like a human chemist to search for new medicines. Running on Canada’s most powerful supercomputer, the effort will simulate and analyze the effectiveness of millions of hypothetical drugs in just a matter of weeks.

“What we are attempting would have been considered science fiction, until now,” says Abraham Heifets (PhD), a U of T graduate and the chief executive officer of Chematria. “We are going to explore the possible effectiveness of millions of drugs, something that used to take decades of physical research and tens of millions of dollars, in mere days with our technology.”

The news release makes it all sound quite exciting,

Chematria’s technology is a virtual drug discovery platform based on the science of deep learning neural networks and has previously been used for research on malaria, multiple sclerosis, C. difficile, and leukemia. [emphases mine]

Much like the software used to design airplanes and computer chips in simulation, this new system can predict the possible effectiveness of new medicines, without costly and time-consuming physical synthesis and testing. [emphasis mine] The system is driven by a virtual brain that teaches itself by “studying” millions of datapoints about how drugs have worked in the past. With this vast knowledge, the software can apply the patterns it has learned to predict the effectiveness of hypothetical drugs, and suggest surprising uses for existing drugs, transforming the way medicines are discovered.

My understanding is that Chematria’s is not the only “virtual drug discovery platform based on the science of deep learning neural networks” as is acknowledged in the next paragraph. In fact, there’s widespread interest in the medical research community as evidenced by such projects as Seurat-1’s NOTOX* and others. Regarding the research on “malaria, multiple sclerosis, C. difficile, and leukemia,” more details would be welcome, e.g., what happened?

A Nov. 4, 2014 article for Mashable by Anita Li does offer a new detail about the technology,

Now, a team of Canadian researchers are hunting for new Ebola treatments, using “groundbreaking” artificial-intelligence technology that they claim can predict the effectiveness of new medicines 150 times faster than current methods.

With the quotes around the word, groundbreaking, Li suggests a little skepticism about the claim.

Here’s more from Li where she seems to have found some company literature,

Chematria describes its technology as a virtual drug-discovery platform that helps pharmaceutical companies “determine which molecules can become medicines.” Here’s how it works, according to the company:

The system is driven by a virtual brain, modeled on the human visual cortex, that teaches itself by “studying” millions of datapoints about how drugs have worked in the past. With this vast knowledge, Chematria’s brain can apply the patterns it perceives, to predict the effectiveness of hypothetical drugs, and suggest surprising uses for existing drugs, transforming the way medicines are discovered.

I was not able to find a Chematria website or anything much more than this brief description on the University of Toronto website (from the Impact Centre’s Current Companies webpage),

Chematria makes software that helps pharmaceutical companies determine which molecules can become medicines. With Chematria’s proprietary approach to molecular docking simulations, pharmaceutical researchers can confidently predict potent molecules for novel biological targets, thereby enabling faster drug development for a fraction of the price of wet-lab experiments.

Chematria’s Ebola project is focused on drugs already available but could be put to a new use (from Li’s article),

In response to the outbreak, Chematria recently launched an Ebola project, using its algorithm to evaluate molecules that have already gone through clinical trials, and have proven to be safe. “That means we can expedite the process of getting the treatment to the people who need it,” Heifets said. “In a pandemic situation, you’re under serious time pressure.”

He cited Aspirin as an example of proven medicine that has more than one purpose: People take it for headaches, but it’s also helpful for heart disease. Similarly, a drug that’s already out there may also hold the cure for Ebola.

I recommend reading Li’s article in its entirety.

The University of Toronto news release provides more detail about the partners involved in this ebola project,

… The unprecedented speed and scale of this investigation is enabled by the unique strengths of the three partners: Chematria is offering the core artificial intelligence technology that performs the drug research, U of T is contributing biological insights about Ebola that the system will use to search for new treatments and IBM is providing access to Canada’s fastest supercomputer, Blue Gene/Q.

“Our team is focusing on the mechanism Ebola uses to latch on to the cells it infects,” said Dr. Jeffrey Lee of the University of Toronto. “If we can interrupt that process with a new drug, it could prevent the virus from replicating, and potentially work against other viruses like Marburg and HIV that use the same mechanism.”

The initiative may also demonstrate an alternative approach to high-speed medical research. While giving drugs to patients will always require thorough clinical testing, zeroing in on the best drug candidates can take years using today’s most common methods. Critics say this slow and prohibitively expensive process is one of the key reasons that finding treatments for rare and emerging diseases is difficult.

“If we can find promising drug candidates for Ebola using computers alone,” said Heifets, “it will be a milestone for how we develop cures.”

I hope this effort along with all the others being made around the world prove helpful with Ebola. it’s good to see research into drugs (chemical formulations) that are familiar to the medical community and can be used for a different purpose than originally intended. Drugs that are ‘repurposed’ should be cheaper than new ones and we already have data about side effects.

As for the “milestone for how we develop cures,” this team’s work along with all the international research on this front and on how we assess toxicity should certainly make that milestone possible.

* Full disclosure: I came across Seurat-1’s NOTOX project when I attended (at Seurat-1’s expense) the 9th World Congress on Alternatives to Animal Testing held in Aug. 2014 in Prague.