Know any Canadian scientists (Tier 2 Canada Research Chairs) who’d like to meet with Members of Parliament and Senators?

The folks at the Canadian Science Policy Centre (CSPC) have just announced a pilot project heavily influenced by a successful Australian initiative matching scientists and lawmakers for a day. This is going to cost the participant money and the application deadline is August 31, 2018.

If you’re still interested, from a July 10, 2018 CSPC announcement (received via email),

The Canadian Science Policy Centre (CSPC), in partnership with the Chief Science Advisor of Canada [Mona Nember], is launching a new and exciting pilot program: Science Meets Parliament. This is a unique opportunity that invites scientists and engineers of various disciplines to spend one day on the Hill, shadow an MP or senator, explore their role in modern political decision making, and develop an understanding of the parliamentary process.

For more information about the program, eligibility and the application process, please visit the page on the CSPC website.

CSPC is looking for sponsors for this unique and exciting program. We invite all academic institutions to partner with CSPC to support this program. Please check out the sponsorship page.

I found this on the CSPC’s Science Meets Parliament webpage,

Background

This program is modeled on the acclaimed program run by Science and Technology Australia, now in its 19th year. You can find more information about the Science and Technology Australia’s Science Meets Parliament event by clicking here. We are grateful to our Australian colleagues for allowing us to adopt the name and model.

Objectives

Scientists and politicians desire a mechanism to build close and resilient connections. Strengthening evidence-informed decision-making requires systematic connectivity between the scientific and legislative communities. This program will help to create an open and ongoing channel between the two communities.

This program aims to facilitate a crucial dialogue between scientists and political leaders. Selected scientists from across the country will have the rare opportunity to spend a full day on Parliament Hill shadowing an MP or Senator, attending House committee meetings and Question Period, and sharing your passion for science with Parliamentarians.

The program includes exercises and teleconference workshops leading up to the event as well as an orientation and training session on the day before, hosted by the Institute on Governance in Ottawa’s Byward Market.

Benefits

For Parliamentarians and Senators:

  • Interact with researchers driving science and innovation in Canada
  • Build lasting connections with scientists from diverse regions and specialties
  • Discuss the intersection of science and decision-making on the Hill

For Scientists:

  • Meet with MPs, Senators, their staff, and the Federal political community.
  • Showcase their research and discuss the impact of research outcomes for Canadians
  • Learn about the organization, rationale, and motivations of decision-making in Parliamentary procedures.

Eligibility

For this pilot year, the program is open to researchers who currently hold a Tier II Canada Research Chair and are affiliated with a Canadian post-secondary institution. [emphases mine]

The researchers should come from diverse range of science and engineering disciplines  including all social, medical, and natural Sciences.We expect that 15-20 candidates will be selected. We hope to open the application process to researchers from all career stages in future years.

CSPC will oversee the application process and will base final selection of the Delegates on applicant diversity in terms of geography, language, gender, discipline, and visible minority.

Program

The one day event will include:

  • An informative orientation session that includes information about the business of Parliament and exercises that prepare Delegates to speak with politicians
  • Meetings with Members of Parliament and Senators, the Chief Science Advisor of Canada, and possibly the Minister of Science (subject to her availability)
  • Shadowing a Member of Parliament or Senator during the day
  • Networking reception with MPs, Senators, and staff that will include a closing speech by a guest of honour.

The program will be held on the hill on November 6th [2018]. [emphasis mine] The mandatory orientation session will be in the late afternoon of Monday Nov. 5th. Delegates are highly encouraged to stay in Ottawa for the 10th Canadian Science Policy Conference, CSPC 2018, held from Nov. 7-9. In this unique forum, delegates will have the opportunity to discuss the most pressing issues of science and innovation policy in Canada. For more information about the CSPC 2018, please visit the website: www.cspc2018.ca

The detailed event agenda will be made available in the upcoming weeks.

Mandatory requirements

  1. Registration fee: Accepted delegates will be required to pay $250.00 , which will include breakfast, lunch, the evening networking reception, and admission to the program. All delegates will be responsible for their own travel and accommodation costs. [emphases mine]
  2. Scientists who attend this session are required to either present a lecture at their host institution, and/or write an editorial for the CSPC’s editorial page about their experience, interactions with Parliamentarians, and insights they gained during this experience.

For more information on any of the above please contact info@sciencepolicy.ca

If you are a current Tier 2 Canada Research Chair affiliated with a Canadian institution and would like to apply for this program please click here.

Deadline to apply: Friday, August 31, 2018 at 11:59 PM (PST).

For the curious, here’s a definition of a Tier 2 Canada Research Chair (from the Canada Research Chair Wikipedia entry),

  • Tier 2 Chairs – tenable for five years and renewable once, are for exceptional emerging researchers, acknowledged by their peers as having the potential to lead in their field. Nominees for Tier 2 positions are assistant or associate professors (or they possess the necessary qualifications to be appointed at these levels by the nominating university). For each Tier 2 Chair, the university receives $100,000 annually for five years.

Good luck! And, CSPC folks, thank you for giving those of us on the West Coast a midnight deadline!

Symbiosis (science education initiative) in British Columbia (Canada)

Is it STEM (science, technology, engineering, and mathematics) or is it STEAM (science, technology, engineering, arts, and mathematics)?

It’s STEAM as least as far as Dr. Scott Sampson is concerned. In his July 6, 2018 Creative Mornings Vancouver talk in Vancouver (British Columbia, Canada) he mentioned a major science education/outreach initiative taking place in the province of British Columbia (BC) but intended for all of Canada, Symbiosis There was some momentary confusion as Sampson’s slide deck identified it as a STEM initiative. Sampson verbally added the ‘A’ for arts and henceforth described it as a STEAM initiative. (Part of the difficulty is that many institutions have used the term STEM and only recently come to the realization they might want to add ‘art’ leading to confusion in Canada and the US, if nowhere else, as old materials require updating. Actually, I vote for adding the humanities too so that we can have SHTEAM.)

You’ll notice, should you visit the Symbiosis website, that the STEM/STEAM confusion extends further than Sampson’s slide deck.

Sampson,  “a dinosaur paleontologist, science communicator, and passionate advocate for reimagining cities as places where people and nature thrive, serves (since 2016) as president and CEO of Science World British Columbia” or as they’re known on their website:  Science World at TELUS World of Science. Unwieldy, eh?

The STEM/STEAM announcement

None of us in the Creative Mornings crowd had heard of Symbiosis or Scott Sampson for that matter (apparently, he’s a huge star among the preschool set due to his work on the PBS [US Public Broadcasting Service] children’s show ‘Dinosaur Train’). Regardless, it was good to hear  of this effort although my efforts to learn more about it have been a bit frustrated.

First, here’s what I found: a May 25, 2017 Science World media release (PDF) about Symbiosis,

Science World Introduces Symbiosis
A First-of Its-Kind [sic] Learning Ecosystem forCanada

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM. The idea behind Symbiosis is to make STEAM learning accessible across Canada.

Every major Canadian city hosts dozens to hundreds of organizations that engage children and youth in STEAM learning. Yet, for the most part, these organizations operate in isolation. The result is that a huge proportion of Canadian youth, particularly in First Nations and other underserved communities, are not receiving quality STEAM learning opportunities.

In order to address this pressing need, Science World British Columbia (scienceworld.ca) is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Today [May 25, 2017], Science World is proud to announce that Symbiosis has been selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. In just two years, the STEM Learning Ecosystems  initiative has become a thriving network of hundreds of organizations and thousands of individuals, joined in regional partnerships with the objective of collaborating in new and creative ways to increase equity, quality, and STEM learning outcomes for all youth. Symbiosis will be the first member of this initiative outside the United States.

Symbiosis was selected to become part of the STEM Learning Ecosystem initiative because of a demonstrated [emphasis mine] commitment to cross-sector collaborations in schools and beyond the classroom. As STEM Ecosystems evolve, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

I wonder how Symbiosis demonstrated their commitment. Their website doesn’t seem to have existed prior to 2018 and there’s no information there about any prior activities.

A very Canadian sigh

I checked the STEM Learning Ecosystems website for its Press Room and found a couple of illuminating press releases. Here’s how the addition of Symbiosis was described in the May 25, 2017 press release,

The 17 incoming ecosystem communities were selected because they demonstrate a commitment to cross-sector collaborations in schools and beyond the classroom—in afterschool and summer programs, at home, with local business and industry partners, and in science centers, libraries and other places both virtual and physical. As STEM Ecosystems evolve, students will be able to connect what is learned in and out of school with real-world opportunities.

“It makes complete sense to collaborate with like-minded regions and organizations,” said Matthew Felan of the Great Lakes Bay Regional Alliance STEM Initiative, one of the founding Ecosystems. “STEM Ecosystems provides technical assistance and infrastructure support so that we are able to tailor quality STEM learning opportunities to the specific needs of our region in Michigan while leveraging the experience of similar alliances across the nation.”

The following ecosystem communities were selected to become part of this [US} national STEM Learning Ecosystem:

  • Arizona: Flagstaff STEM Learning Ecosystem
  • California: Region 5 STEAM in Expanded Learning Ecosystem (San Benito, Santa Clara, Santa Cruz, Monterey Counties)
  • Louisiana: Baton Rouge STEM Learning Network
  • Massachusetts: Cape Cod Regional STEM Network
  • Michigan: Michigan STEM Partnership / Southeast Michigan STEM Alliance
  • Missouri: Louis Regional STEM Learning Ecosystem
  • New Jersey: Delran STEM Ecosystem Alliance (Burlington County)
  • New Jersey: Newark STEAM Coalition
  • New York: WNY STEM (Western New York State)
  • New York: North Country STEM Network (seven counties of Northern New York State)
  • Ohio: Upper Ohio Valley STEM Cooperative
  • Ohio: STEM Works East Central Ohio
  • Oklahoma: Mayes County STEM Alliance
  • Pennsylvania: Bucks, Chester, Delaware, Montgomery STEM Learning Ecosystem
  • Washington: The Washington STEM Network
  • Wisconsin: Greater Green Bay STEM Network
  • Canada: Symbiosis, British Columbia, Canada

Yes, somehow a Canadian initiative becomes another US regional community in their national ecosystem.

Then, they made everything better a year later in a May 29, 2018 press release,

New STEM Learning Ecosystems in the United States are:

  • California: East Bay STEM Network
  • Georgia: Atlanta STEAM Learning Ecosystem
  • Hawaii: Hawai’iloa ecosySTEM Cabinet
  • Illinois: South Suburban STEAM Network
  • Kentucky: Southeastern Kentucky STEM Ecosystem
  • Massachusetts: MetroWest STEM Education Network
  • New York: Greater Southern Tier STEM Learning Network
  • North Carolina: STEM SENC (Southeastern North Carolina)
  • North Dakota: North Dakota STEM Ecosystem
  • Texas: SA/Bexar STEM/STEAM Ecosystem

The growing global Community of Practice has added: [emphasis mine]

  • Kenya: Kenya National STEM Learning Ecosystem
  • México: Alianza Para Promover la Educación en STEM (APP STEM)

Are Americans still having fantasies about ‘manifest destiny’? For those unfamiliar with the ‘doctrine’,

In the 19th century, manifest destiny was a widely held belief in the United States that its settlers were destined to expand across North America.  …

They seem to have given up on Mexico but the dream of acquiring Canadian territory rears its head from time to time. Specifically, it happens when Quebec holds a referendum (the last one was in 1995) on whether or not it wishes to remain part of the Canadian confederation. After the last referendum, I’d hoped that was the end of ‘manifest destiny’ but it seems these 21st Century-oriented STEM Learning Ecosystems people have yet to give up a 19th century fantasy. (sigh)

What is Symbiosis?

For anyone interested in the definition of the word, from Wordnik,

symbiosis

Definitions

from The American Heritage® Dictionary of the English Language, 4th Edition

  • n. Biology A close, prolonged association between two or more different organisms of different species that may, but does not necessarily, benefit each member.
  • n. A relationship of mutual benefit or dependence.

from Wiktionary, Creative Commons Attribution/Share-Alike License

  • n. A relationship of mutual benefit.
  • n. A close, prolonged association between two or more organisms of different species, regardless of benefit to the members.
  • n. The state of people living together in community.

As for this BC-based organization, Symbiosis, which they hope will influence Canadian STEAM efforts and learning as a whole, I don’t have much. From the Symbiosis About Us webpage,

A learning ecosystem is an interconnected web of learning opportunities that encompasses formal education to community settings such as out-of-school care, summer programs, science centres and museums, and experiences at home.

​In May 2017, Symbiosis was selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. As the first member of this initiative outside the United States, Symbiosis has demonstrated a commitment to cross-sector collaborations in schools and beyond the classroom. As Symbiosis evolves, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy, and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM.

In order to address this pressing need, Science World British Columbia is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Symbiosis:

  • Acknowledges the holistic connections among arts, science and nature
  • ​Is inclusive and equitable
  • Is learner-centered​
  • Fosters curiosity and life-long learning ​​
  • Is relevant—should reflect the community
  • Honours diverse perspectives, including Indigenous worldviews
  • Is partnerships, collaboration, and mentorship
  • ​Is a sustainable, thriving community, with resilience and flexibility
  • Is research-based, data-driven
  • Shares stories of success—stories of people/role models using STEAM and critical thinking to make a difference
  • Provides a  variety of access points that are available to all learners

I was looking for more concrete information such as:

  • what is your budget?
  • which organizations are partners?
  • where do you get your funding?
  • what have you done so far?

I did get an answer to my last question by going to the Symbiosis news webpage where I found these,

We’re hiring!

 7/3/2018 [Their deadline is July 13, 2018]

STAN conference

3/20/2018

Symbiosis on CKPG

3/12/2018

Design Studio #2 in March

2/15/2018

BC Science Outreach Workshop

2/7/2018

Make of that what you will. Also, there is a 2018 copyright notice (at the bottom of the webpages) but no copyright owner is listed.

There is some Symbiosis information

A magazine known as BC Business (!) offers some details in a May 11, 2018 opinion piece, Note: Links have been removed,

… Increasingly, the Canadian marketplace is dominated by novel, knowledge-based jobs requiring high levels of literacy in STEM (science, technology, engineering and math). Here in B.C., the tech sector now employs over 100,000 people, about 5 percent of the province’s total workforce. As the knowledge economy grows, these numbers will rise dramatically.

Yet technology-driven businesses are already struggling to fill many roles that require literacy in STEM. …

Today, STEM education in North America and elsewhere is struggling. One study found that 60 percent of students who enter high school interested in STEM fields change their minds by graduation. Lacking mentoring, students, especially girls, tend to lose interest in STEM. [emphasis mine]Today, only 22 percent of Canadian STEM jobs are held by women. Failing to prepare the next generation to be STEM-literate threatens the prospects of our youth, our economy and the places we live.

More and more, education is no longer confined to classrooms. … To kickstart this future, a “STEM learning ecosystem” movement has emerged in the United States, grounded in deeply collaborative, cross-sector networks of learning opportunities.

Symbiosis will concentrate on a trio of impacts:

1) Dramatically increasing the number of qualified STEM mentors in B.C.—from teachers and scientists to technologists and entrepreneurs;

2) Connecting this diversity of mentors with children and youth through networked opportunities, from classroom visits and on-site shadowing to volunteering and internships; and

3) Creating a digital hub that interweaves communities, hosts a library of resources and extends learning through virtual offerings. [emphases mine]

Science World British Columbia is spearheading Symbiosis, and organizations from many sectors have expressed strong interest in collaborating—among them K-12 education, higher education, industry, government and non-profits. Several of these organizations are founding members of the BC Science Charter, which formed in 2013.

Symbiosis will launch in fall of 2018 with two pilot communities: East Vancouver and Prince George. …

As for why students tend to lose interest in STEM, there’s a rather interesting longitudinal study taking place in the UK which attempts to answer at least some of that question. I first wrote about the ASPIRES study in a January 31, 2012 posting: Science attitude kicks in by 10 years old. This was based on preliminary data and it seemed to be confirmed by an unrelated US study of high school students also mentioned in that posting (scroll down about 40% of the way).

In short, both studies suggested that children are quite to open to science but when it comes time to think about careers, they tend to ‘aspire’ to what they see amongst family and friends. I don’t see that kind of thinking reflected in any of the information I’ve been able to find about Symbiosis and it was not present in Sampson’s, Creative Mornings talk.

However, I noted during Sampson’s talk that he mentioned his father, a professor of psychology at the University of British Columbia and how he had based his career expectations on his father’s career. (Sampson is from Vancouver originally.) Sampson, like his father, was at one point a professor of ‘science’ at a university.

Perhaps one day someone from Symbiosis will look into the ASPIRE studies or even read my blog 🙂

You can find the latest about what is now called the ASPIRES 2 study here. (I will try to post my own update to the ASPIRES projects in the near future).

Best hopes

I am happy to see Symbiosis arrive on the scene and I wish all the best for the initiative. I am less concerned than the BC Business folks about supplying employers with the kind of employees they want to hire and hopeful that Symbiosis will attract not just the students, educators, mentors, and scientists to whom they are appealing but will cast a wider net to include philosophers, car mechanics, hairdressers, poets, visual artists, farmers, chefs, and others in a ‘pursuit of wonder’.

Aside: I was introduced to the phrase ‘pursuit of wonder’ by a friend who sent me a link to José Teodoro’s May 29, 2018 interview with Canadian filmmaker, Peter Mettler for the Brick. Mettler discusses his film about the Northern Lights and the technical challenges he met along the way.

Nanoscale measurements for osteoarthritis biomarker

There’s a new technique for measuring hyaluronic acid (HA), which appears to be associated with osteoarthritis. A March 12, 2018 news item on ScienceDaily makes the announcement,

For the first time, scientists at Wake Forest Baptist Medical Center have been able to measure a specific molecule indicative of osteoarthritis and a number of other inflammatory diseases using a newly developed technology.

This preclinical [emphasis mine] study used a solid-state nanopore sensor as a tool for the analysis of hyaluronic acid (HA).

I looked at the abstract for the paper (citation and link follow at end of this post) and found that it has been tested on ‘equine models’. Presumably they mean horses or, more accurately, members of the horse family. The next step is likely to be testing on humans, i.e., clinical trials.

A March 12, 2018 Wake Forest Baptist Medical Center news release (also on EurekAlert), which originated the news item, provides more details,

HA is a naturally occurring molecule that is involved in tissue hydration, inflammation and joint lubrication in the body. The abundance and size distribution of HA in biological fluids is recognized as an indicator of inflammation, leading to osteoarthritis and other chronic inflammatory diseases. It can also serve as an indicator of how far the disease has progressed.

“Our results established a new, quantitative method for the assessment of a significant molecular biomarker that bridges a gap in the conventional technology,” said lead author Adam R. Hall, Ph.D., assistant professor of biomedical engineering at Wake Forest School of Medicine, part of Wake Forest Baptist.

“The sensitivity, speed and small sample requirements of this approach make it attractive as the basis for a powerful analytic tool with distinct advantages over current assessment technologies.”

The most widely used method is gel electrophoresis, which is slow, messy, semi-quantitative, and requires a lot of starting material, Hall said. Other technologies include mass spectrometry and size-exclusion chromatography, which are expensive and limited in range, and multi-angle light scattering, which is non-quantitative and has limited precision.

The study, which is published in the current issue of Nature Communications, was led by Hall and Elaheh Rahbar, Ph.D., of Wake Forest Baptist, and conducted in collaboration with scientists at Cornell University and the University of Oklahoma.

In the study, Hall, Rahbar and their team first employed synthetic HA polymers to validate the measurement approach. They then used the platform to determine the size distribution of as little as 10 nanograms (one-billionth of a gram) of HA extracted from the synovial fluid of a horse model of osteoarthritis.

The measurement approach consists of a microchip with a single hole or pore in it that is a few nanometers wide – about 5,000 times smaller than a human hair. This is small enough that only individual molecules can pass through the opening, and as they do, each can be detected and analyzed. By applying the approach to HA molecules, the researchers were able to determine their size one-by-one. HA size distribution changes over time in osteoarthritis, so this technology could help better assess disease progression, Hall said.

“By using a minimally invasive procedure to extract a tiny amount of fluid – in this case synovial fluid from the knee – we may be able to identify the disease or determine how far it has progressed, which is valuable information for doctors in determining appropriate treatments,” he said.

Hall, Rahbar and their team hope to conduct their next study in humans, and then extend the technology with other diseases where HA and similar molecules play a role, including traumatic injuries and cancer.

Here’s a link to and a citation for the paper,

Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor by Felipe Rivas, Osama K. Zahid, Heidi L. Reesink, Bridgette T. Peal, Alan J. Nixon, Paul L. DeAngelis, Aleksander Skardal, Elaheh Rahbar, & Adam R. Hall. Nature Communications volume 9, Article number: 1037 (2018) doi:10.1038/s41467-018-03439-x
Published online: 12 March 2018

This paper is open access.

Sunscreens: 2018 update

I don’t usually concern myself with SPF numbers on sunscreens as my primary focus has been on the inclusion of nanoscale metal particles (these are still considered safe). However, a recent conversation with a dental hygienist and coincidentally tripping across a June 19, 2018 posting on the blog shortly after the convo. has me reassessing my take on SPF numbers (Note: Links have been removed),

So, what’s the deal with SPF? A recent interview of Dr Steven Q Wang, M.D., chair of The Skin Cancer Foundation Photobiology Committee, finally will give us some clarity. Apparently, the SPF number, be it 15, 30, or 50, refers to the amount of UVB protection that that sunscreen provides. Rather than comparing the SPFs to each other, like we all do at the store, SPF is a reflection of the length of time it would take for the Sun’s UVB radiation to redden your skin (used exactly as directed), versus if you didn’t apply any sunscreen at all. In ideal situations (in lab settings), if you wore SPF 30, it would take 30 times longer for you to get a sunburn than if you didn’t wear any sunscreen.

What’s more, SPF 30 is not nearly half the strength of SPF 50. Rather, SPF 30 allows 3% of UVB rays to hit your skin, and SPF 50 allows about 2% of UVB rays to hit your skin. Now before you say that that is just one measly percent, it actually is much more. According to Dr Steven Q. Wang, SPF 30 allows around 1.5 times more UV radiation onto your skin than SPF 50. That’s an actual 150% difference [according to Wang’s article “… SPF 30 is allowing 50 percent more UV radiation onto your skin.”] in protection.

(author of the ‘eponymous’ blog) offers a good overview of the topic in a friendly, informative fashion albeit I found the ‘percentage’ to be a bit confusing. (S)he also provides a link to a previous posting about the ingredients in sunscreens (I do have one point of disagreement with regarding oxybenzone) as well as links to Dr. Steven Q. Wang’s May 24, 2018 Ask the Expert article about sunscreens and SPF numbers on skincancer.org. You can find the percentage under the ‘What Does the SPF Number Mean?’ subsection, in the second paragraph.

Ingredients: metallic nanoparticles and oxybenzone

The use of metallic nanoparticles  (usually zinc oxide and/or (titanium dioxide) in sunscreens was loathed by civil society groups, in particular Friends of the Earth (FOE) who campaigned relentlessly against their use in sunscreens. The nadir for FOE was in February 2012 when the Australian government published a survey showing that 13% of the respondents were not using any sunscreens due to their fear of nanoparticles. For those who don’t know, Australia has the highest rate of skin cancer in the world. (You can read about the debacle in my Feb. 9, 2012 posting.)

At the time, the only civil society group which supported the use of metallic nanoparticles in sunscreens was the Environmental Working Group (EWG).  After an examination of the research they, to their own surprise, came out in favour (grudgingly) of metallic nanoparticles. (The EWG were more concerned about the use of oxybenzone in sunscreens.)

Over time, the EWG’s perspective has been adopted by other groups to the point where sunscreens with metallic nanoparticles are commonplace in ‘natural’ or ‘organic’ sunscreens.

As for oxybenzones, in a May 23, 2018 posting about sunscreen ingredients notes this (Note: Links have been removed),

Oxybenzone – Chemical sunscreen, protects from UV damage. Oxybenzone belongs to the chemical family Benzophenone, which are persistent (difficult to get rid of), bioaccumulative (builds up in your body over time), and toxic, or PBT [or: Persistent, bioaccumulative and toxic substances (PBTs)]. They are a possible carcinogen (cancer-causing agent), endocrine disrupter; however, this is debatable. Also could cause developmental and reproductive toxicity, could cause organ system toxicity, as well as could cause irritation and potentially toxic to the environment.

It seems that the tide is turning against the use of oxybenzones (from a July 3, 2018 article by Adam Bluestein for Fast Company; Note: Links have been removed),

On July 3 [2018], Hawaii’s Governor, David Ig, will sign into law the first statewide ban on the sale of sunscreens containing chemicals that scientists say are damaging the Earth’s coral reefs. Passed by state legislators on May 1 [2018], the bill targets two chemicals, oxybenzone and octinoxate, which are found in thousands of sunscreens and other skincare products. Studies published over the past 10 years have found that these UV-filtering chemicals–called benzophenones–are highly toxic to juvenile corals and other marine life and contribute to the fatal bleaching of coral reefs (along with global warming and runoff pollutants from land). (A 2008 study by European researchers estimated that 4,000 to 6,000 tons of sunblock accumulates in coral reefs every year.) Also, though both substances are FDA-approved for use in sunscreens, the nonprofit Environmental Working Group notes numerous studies linking oxybenzone to hormone disruption and cell damage that may lead to skin cancer. In its 2018 annual sunscreen guide, the EWG found oxybenzone in two-thirds of the 650 products it reviewed.

The Hawaii ban won’t take effect until January 2021, but it’s already causing a wave of disruption that’s affecting sunscreen manufacturers, retailers, and the medical community.

For starters, several other municipalities have already or could soon join Hawaii’s effort. In May [2018], the Caribbean island of Bonaire announced a ban on chemicals sunscreens, and nonprofits such as the Sierra Club and Surfrider Foundation, along with dive industry and certain resort groups, are urging legislation to stop sunscreen pollution in California, Colorado, Florida, and the U.S. Virgin Islands. Marine nature reserves in Mexico already prohibit oxybenzone-containing sunscreens, and the U.S. National Park Service website for South Florida, Hawaii, U.S. Virgin Islands, and American Samoa recommends the use of “reef safe” sunscreens, which use natural mineral ingredients–zinc oxide or titanium oxide–to protect skin.

Makers of “eco,” “organic,” and “natural” sunscreens that already meet the new standards are seizing on the news from Hawaii to boost their visibility among the islands’ tourists–and to expand their footprint on the shelves of mainland retailers. This past spring, for example, Miami-based Raw Elements partnered with Hawaiian Airlines, Honolulu’s Waikiki Aquarium, the Aqua-Aston hotel group (Hawaii’s largest), and the Sheraton Maui Resort & Spa to get samples of its reef-safe zinc-oxide-based sunscreens to their guests. “These partnerships have had a tremendous impact raising awareness about this issue,” says founder and CEO Brian Guadagno, who notes that inquiries and sales have increased this year.

As Bluestein notes there are some concerns about this and other potential bans,

“Eliminating the use of sunscreen ingredients considered to be safe and effective by the FDA with a long history of use not only restricts consumer choice, but is also at odds with skin cancer prevention efforts […],” says Bayer, owner of the Coppertone brand, in a statement to Fast Company. Bayer disputes the validity of studies used to support the ban, which were published by scientists from U.S. National Oceanic & Atmospheric Administration, the nonprofit Haereticus Environmental Laboratory, Tel Aviv University, the University of Hawaii, and elsewhere. “Oxybenzone in sunscreen has not been scientifically proven to have an effect on the environment. We take this issue seriously and, along with the industry, have supported additional research to confirm that there is no effect.”

Johnson & Johnson, which markets Neutrogena sunscreens, is taking a similar stance, worrying that “the recent efforts in Hawaii to ban sunscreens that contain oxybenzone may actually adversely affect public health,” according to a company spokesperson. “Science shows that sunscreens are a key factor in preventing skin cancer, and our scientific assessment of the lab studies done to date in Hawaii show the methods were questionable and the data insufficient to draw factual conclusions about any impact on coral reefs.”

Terrified (and rightly so) about anything scaring people away from using sunblock, The American Academy of Dermatology, also opposes Hawaii’s ban. Suzanne M. Olbricht, president of the AADA, has issued a statement that the organization “is concerned that the public’s risk of developing skin cancer could increase due to potential new restrictions in Hawaii that impact access to sunscreens with ingredients necessary for broad-spectrum protection, as well as the potential stigma around sunscreen use that could develop as a result of these restrictions.”

The fact is that there are currently a large number of widely available reef-safe products on the market that provide “full spectrum” protection up to SPF50–meaning they protect against both UVB rays that cause sunburns as well as UVA radiation, which causes deeper skin damage. SPFs higher than 50 are largely a marketing gimmick, say advocates of chemical-free products: According to the Environmental Working Group, properly applied SPF 50 sunscreen blocks 98% of UVB rays; SPF 100 blocks 99%. And a sunscreen lotion’s SPF rating has little to do with its ability to shield skin from UVA rays.

I notice neither Bayer nor Johnson & Johnson nor the American Academy of Dermatology make mention of oxybenzone’s possible role as a hormone disruptor.

Given the importance that coral reefs have to the environment we all share, I’m inclined to support the oxybenzone ban based on that alone. Of course, it’s conceivable that metallic nanoparticles may also have a deleterious effect on coral reefs as their use increases. It’s to be hoped that’s not the case but if it is, then I’ll make my decisions accordingly and hope we have a viable alternative.

As for your sunscreen questions and needs, the Environment Working Group (EWG) has extensive information including a product guide on this page (scroll down to EWG’s Sunscreen Guide) and a discussion of ‘high’ SPF numbers I found useful for my decision-making.

Lighting the way to improvements for the bond between dental implants and bone

A July 3, 2018 Canadian Light Source news release by Colleen MacPherson describes an investigation into how dental implants and bones interact with the hope of making dental implantation safer and more certain,

Research carried out recently at the Canadian Light Source (CLS) [also known as a synchrotron] in Saskatoon [Saskatchewan, Canada] has revealed promising information about how to build a better dental implant, one that integrates more readily with bone to reduce the risk of failure.

“There are millions of dental and orthopedic implants placed every year in North America and a certain number of them always fail, even in healthy people with healthy bone,” said Kathryn Grandfield, assistant professor in the Department of Materials Science and Engineering at McMaster University in Hamilton [Ontario, Canada].

A dental implant restores function after a tooth is lost or removed. It is usually a screw shaped implant that is placed in the jaw bone and acts as the tooth roots, while an artificial tooth is placed on top. The implant portion is the artificial root that holds an artificial tooth in place.

Grandfield led a study that showed altering the surface of a titanium implant improved its connection to the surrounding bone. It is a finding that may well be applicable to other kinds of metal implants, including engineered knees and hips, and even plates used to secure bone fractures.

About three million people in North America receive dental implants annually. While the failure rate is only one to two percent, “one or two percent of three million is a lot,” she said. Orthopedic implants fail up to five per cent of the time within the first 10 years; the expected life of these devices is about 20 to 25 years, she added.

“What we’re trying to discover is why they fail, and why the implants that are successful work. Our goal is to understand the bone-implant interface in order to improve the design of implants.”

Grandfield’s research team, which included post-doctoral fellow Xiaoyue Wang and McMaster colleague Adam Hitchcock from the Department of Chemistry and Chemical Biology. The team members used the soft X-ray spectromicroscopy beamline at the CLS as well as facilities at the Canadian Centre for Electron Microscopy in Hamilton to examine a failed dental implant that had to be removed, along with a small amount of surrounding bone, from a patient. Prior to implantation, a laser beam was used to alter the implant, to roughen the surface, creating what looked like “little volcanoes” on the surface. After removal from the patient, the point of connection between bone and metal was then carefully studied to understand how the implant behaved.

“What we found was that the surface modification changed the chemistry of the implant. The modification created an oxide layer, but not a bad oxide layer like rust but a better, more beneficial layer that helps integrate with bone material.”

The research results were published in Advanced Materials Interfaces in May [2018], ensuring the findings are available “to implant companies interested in using nanotechnology to change the structure of the implants they produce,” said Grandfield.

The next steps in the research will be to apply the surface modification technique to other types of implants “to be able to understand fully how they function.” Grandfield added the research done at the CLS involved healthy bone “so I’d be really interested in seeing the response when bone is a bit more compromised by age or disease, like osteoporosis. We need to find the best surface modifications … because the technology we have today to treat patients with healthier bone may not be sufficient with compromised bone.”

Here’s a link to (even though it’s in the news release text) and a citation for the paper,

Biomineralization at Titanium Revealed by Correlative 4D Tomographic and Spectroscopic Methods by Xiaoyue Wang, Brian Langelier, Furqan A. Shah, Andreas Korinek, Matthieu Bugnet, Adam P. Hitchcock, Anders Palmquist, Kathryn Grandfield. Advnaced Materials Interfaces https://doi-org.proxy.lib.sfu.ca/10.1002/admi.201800262 First published: 16 May 2018

This paper is behind a paywall.

Quantum Inkblot; An evening of physics, psychology, art and astronomy on July 12, 2018 in Vancouver (Canada)

A June 26, 2018 HR MacMillan Space Centre (HRMSC) press release, received via email, announces an upcoming art/sci event,

This July the H.R. MacMillan Space Centre and Voirelia: Dance, Psychology and Philosophy Hub will be co-hosting Quantum Inkblot, an interactive evening exploring quantum physics through the lenses of physics and psychology, art, and astronomy. The evening will incorporate talks by a physicist and a psychologist, visual artwork, and original contemporary dance performances.

The talks and artistic works will explore some of the questions about how psychology and physics can mirror, inspire, and influence one another. We will touch on topics related to relativity, uncertainty, and predictability of this world.

A dialogue-style talk will be led by physicist Dr. Jaymie Matthews and psychologist Dr. Alina Sotskova exploring the intersections of quantum physics and psychology. Dr. Matthews will be discussing the concept of wave-particle duality and the way it takes the assumption that one thing cannot be in two places at once and turns it on its head.

Dr. Sotskova will be talking about the dissonance in predicting the behaviour of groups vs. predicting the behaviour of individuals, giving pause to reflect on the existence of order at a macro level and chaos at the micro level.

The evening will also feature three original contemporary dance performances and a visual art and music presentation that were all inspired by themes in psychology and the intersection with physics.

There will be time between performances to enjoy a drink, take part in interactive art activities, watch physics demonstrations, and chat with physicists, artists, and psychologists. The evening will end with a question and answer period with all of the performers and speakers.

Here are logistics and additional details,

Quantum Inkblot will take place at the H.R. MacMillan Space Centre Thursday, July 12th.

This is a 19+ event.

6:30pm doors open, 7:00pm show starts in the Planetarium Star Theatre

$25 for tickets

Tickets available online through Eventbrite,[clicking on this link will give you a map to the location] in person, or by phone at 604.738.7827.

Find the Quantum Inkblot event on Facebook for sneak peeks at the art work being created, learn more about the process of collaboration between artists and scientists, and more!

The H.R. MacMillan Space Centre is a non-profit community resource that brings the wonders of space to Earth, while providing a personal sense of ongoing discovery. Through innovative programming, exhibits and activities, our goal is to inspire sustained interest in the fields of Earth science, space science and astronomy from a Canadian perspective.

Voirelia is a Vancouver-based Dance, Psychology, and Philosophy Hub. Its main purpose is to create original dance and art works inspired by ideas in psychology and philosophy. Voirelia also organizes talks, workshops, and events relevant to the intersection between dance, psychology, & philosophy, such as talks on philosophy of science. Our aim is “movement with meaning.”

BC Psychological Association has provided support for this event and BCPA representatives will be available to chat with the guests.

Voirelia provides a few more information and pictures on its Upcoming Projects webpage,

There will be several dance works presented during Quantum Inkblot. Here are the latest shots from one of the rehearsals, with physicists Dr. Jaymie Matthews and Dr. Ewan Hill joining us for a transdisciplinary open-rehearsal style session.

Photographs: Jason Kirkness. Dancers: Sophie Brassard, Michael Demski. Rehearsal direction/choreography: Alina Sotskova. [Not all the images have been included in this excerpt.]

 

We wanted to document our artistic and creative process as we put together this unique event. Below you will see examples of original art works and how artistic creation progresses. In the dance photographs below (by Jason Kirkness), we had a brainstorming session that included people with backgrounds in physics, psychology, dance, and theater. We spent about an hour talking about concepts from quantum physics that people often find “weird” – such as the concepts of waves, particles, wave-particle duality, and the uncertainty principle. We touched on how quantum physics influences our perception of science, the world, and ourselves. We discussed topics of identity and searching for meaning and why the quantum world is so different from what we see with our senses. Then we took our brainstorming to the dance studio. Here, using prompts suggested by physicists and her own knowledge as a psychologist and dancer, Alina Sotskova facilitated improvisational movement exploration. This yielded a great deal [sic] of ideas about parallels between physics and psychology, and we will use these ideas a spring board as we begin to develop specific dance works for the event. You can also check out short videos of the improvisational movement research session on our Facebook page, in the Videos section. [Not all the images have been included in this excerpt.]

The team who was part of the brainstorming session […] included: Andrew Elias (Graduate Student working in the field of quantum physics, UBC); Jason Kirkness (Co-lead for the Quantum Inkblot Event and; background: physics and computer science); Alina Sotskova (Co-lead for the Quantum Inkblot Event and; background: psychology and dance). Our dancers were: Angelo Moroni, Michael Demski, Carolyn Schmidt, Alejandra Miranda Caballero, Alina Sotskova.

The images below are samples of original art works by Andrew Short, one of Voirelia’s Core Consultants. Inspired by topics in quantum physics, psychology, and cosmology, Andrew is working on preparing a very special presentation especially for Quantum Inkblot. [There are more images at Voirelia.]

 

Interestingly, this does not seem to be a ‘sister’ event to Toronto’s ‘Out Of This World; Art inspired by all things astronomical’ exhibition and talks being held July 4 – 22, 2018 in honour of the Royal Astronomical Society of Canada’s (RASC) sesquicentennial (150th anniversary). There’s more about Toronto’s astronomical art/science event in my July 2, 2018 posting.

How to prevent your scanning tunneling microscope probe’s ‘tip crashes’

The microscopes used for nanoscale research were invented roughly 35 years ago and as fabulous as they’ve been, there is a problem (from a February 12, 2018 news item on Nanowerk),

A University of Texas at Dallas graduate student, his advisor and industry collaborators believe they have addressed a long-standing problem troubling scientists and engineers for more than 35 years: How to prevent the tip of a scanning tunneling microscope from crashing into the surface of a material during imaging or lithography.

The researchers have prepared this video describing their work,

For those who like text, there’s more in this February 12, 2018 University of Texas at Dallas news release,

Scanning tunneling microscopes (STMs) operate in an ultra-high vacuum, bringing a fine-tipped probe with a single atom at its apex very close to the surface of a sample. When voltage is applied to the surface, electrons can jump or tunnel across the gap between the tip and sample.

“Think of it as a needle that is very sharp, atomically sharp,” said Farid Tajaddodianfar, a mechanical engineering graduate student in the Erik Jonsson School of Engineering and Computer Science. “The microscope is like a robotic arm, able to reach atoms on the sample surface and manipulate them.”

The problem is, sometimes the tungsten tip crashes into the sample. If it physically touches the sample surface, it may inadvertently rearrange the atoms or create a “crater,” which could damage the sample. Such a “tip crash” often forces operators to replace the tip many times, forfeiting valuable time.

Dr. John Randall is an adjunct professor at UT Dallas and president of Zyvex Labs, a Richardson, Texas-based nanotechnology company specializing in developing tools and products that fabricate structures atom by atom. Zyvex reached out to Dr. Reza Moheimani, a professor of mechanical engineering, to help address STMs’ tip crash problem. Moheimani’s endowed chair was a gift from Zyvex founder James Von Ehr MS’81, who was honored as a distinguished UTD alumnus in 2004.

“What they’re trying to do is help bring atomically precise manufacturing into reality,” said Randall, who co-authored the article with Tajaddodianfar, Moheimani and Zyvex Labs’ James Owen. “This is considered the future of nanotechnology, and it is extremely important work.”

Randall said such precise manufacturing will lead to a host of innovations.

“By building structures atom by atom, you’re able to create new, extraordinary materials,” said Randall, who is co-chair of the Jonsson School’s Industry Engagement Committee. “We can remove impurities and make materials stronger and more heat resistant. We can build quantum computers. It could radically lower costs and expand capabilities in medicine and other areas. For example, if we can better understand DNA at an atomic and molecular level, that will help us fine-tune and tailor health care according to patients’ needs. The possibilities are endless.”

In addition, Moheimani, a control engineer and expert in nanotechnology, said scientists are attempting to build transistors and quantum computers from a single atom using this technology.

“There’s an international race to build machines, devices and 3-D equipment from the atom up,” said Moheimani, the James Von Ehr Distinguished Chair in Science and Technology.

‘It’s a Big, Big Problem’

Randall said Zyvex Labs has spent a lot of time and money trying to understand what happens to the tips when they crash.

“It’s a big, big problem,” Randall said. “If you can’t protect the tip, you’re not going to build anything. You’re wasting your time.”

Tajaddodianfar and Moheimani said the issue is the controller.

“There’s a feedback controller in the STM that measures the current and moves the needle up and down,” Moheimani said. “You’re moving from one atom to another, across an uneven surface. It is not flat. Because of that, the distance between the sample and tip changes, as does the current between them. While the controller tries to move the tip up and down to maintain the current, it does not always respond well, nor does it regulate the tip correctly. The resulting movement of the tip is often unstable.”

It’s the feedback controller that fails to protect the tip from crashing into the surface, Tajaddodianfar said.

“When the electronic properties are variable across the sample surface, the tip is more prone to crash under conventional control systems,” he said. “It’s meant to be really, really sharp. But when the tip crashes into the sample, it breaks, curls backward and flattens.

“Once the tip crashes into the surface, forget it. Everything changes.”

The Solution

According to Randall, Tajaddodianfar took logical steps for creating the solution.

“The brilliance of Tajaddodianfar is that he looked at the problem and understood the physics of the tunneling between the tip and the surface, that there is a small electronic barrier that controls the rate of tunneling,” Randall said. “He figured out a way of measuring that local barrier height and adjusting the gain on the control system that demonstrably keeps the tip out of trouble. Without it, the tip just bumps along, crashing into the surface. Now, it adjusts to the control parameters on the fly.”

Moheimani said the group hopes to change their trajectory when it comes to building new devices.

“That’s the next thing for us. We set out to find the source of this problem, and we did that. And, we’ve come up with a solution. It’s like everything else in science: Time will tell how impactful our work will be,” Moheimani said. “But I think we have solved the big problem.”

Randall said Tajaddodianfar’s algorithm has been integrated with its system’s software but is not yet available to customers. The research was made possible by funding from the Army Research Office and the Defense Advanced Research Projects Agency.

Here’s a link to and a citation for the paper,

On the effect of local barrier height in scanning tunneling microscopy: Measurement methods and control implications by Farid Tajaddodianfar, S. O. Reza Moheimani, James Owen, and John N. Randall. Review of Scientific Instruments 89, 013701 (2018); https://doi.org/10.1063/1.5003851 Published Online: January 2018

This paper is behind a paywall.

Out Of This World; Art inspired by all things astronomical from July 4 – 22, 2018 in Toronto, Canada

From a June 29, 2018 ArtSci Salon notice (received via email),

July 4 – 22  | Out Of This World | Juried Group Exhibition

“ Space… is big. Really big. You just won’t believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.”
– DOUGLAS ADAMS: THE HITCHHIKER’S GUIDE TO THE GALAXY (1979)


July 4 – 22  | Out of this World | Juried Group Exhibition
Opening Reception: Thurs. July 5th, 7 – 10 pm. (with telescopes! weather permitting… and astronomically-themed music from the 17th and 18th centuries)

2018 marks a century-and-a-half of the Royal Astronomical Society of Canada’s (RASC) promotion of astronomy and allied sciences in Canada. From early on, the RASC has encouraged exploring the connections of astronomy with other areas of culture, an interest which continues to the present. Propeller Gallery has partnered with the RASC to present an exhibition celebrating their sesquicentennial.

Astronomy, with its highly evocative imagery, and mindboggling and mindbending ideas about our Universe, provides artists with richly visual and deeply conceptual inspiration. Out of This World features a diverse array of work inspired by the cosmos, ranging from the visualization of astronomical data to textiles, video and installation. A select number of works from the archives of the RASC are also presented.

Participating Artists: Michael Black | Linda-Marlena Bucholtz Ross | David Cumming | Chris Domanski | Trinley Dorje | Dan Falk | Maya Foltyn | Peter Friedrichsen | Susan Gaby-Trotz | Aryan Ghaemmaghami | David Griffin | Xianda Guo, Charlotte Mueller, Sinead Lynch, Ramona Fluck, Christoph Blapp & Jayanne English | Diana Hamer | Chris Harms  | Angela Julian | Adam Kolodziej  | Irena IRiKO Kolodziej | Nancy Lalicon | Michelle Letarte | Shannon Leigh  | Elizabeth Lopez | Trevor McKinven | France McNeil  | John Ming Mark | Giuseppe Morano | Sarah Moreau  | Joseph Muscat  | Pria Muzumdar  | Neeko Paluzzi | Frances Patella | Donna Wells | Donna Wise | plus archival work from the Royal Astronomical Society of Canada

Curatorial Team: Robin Kingsburgh, Tony Saad, David Griffin, Randall Rosenfeld

Panel discussion: Understanding Astronomical Images, Saturday July 14, 1:30-3pm

Artist Talks and Star Party in Lisgar Park: Saturday July 21, 7pm+ (Join us in the gallery at 7pm for informal talks by artists about their work. Follow us outside to Lisgar Park across the street when it gets dark – where members of the RASC and York University will set up telescopes.)

As for exactly where the show, panel discussions, and artist talks are taking place,

Propeller Gallery
30 Abell Street, Toronto, ON M6J 0A9
416-504-7142

www.propellerctr.com
gallery@propellerctr.com

Happy star gazing!

Smart paint that ‘talks’ to canes for better safety crossing the street

It would be nice if they had some video of people navigating with the help of this ‘smart’ paint. Perhaps one day. Meanwhile, Adele Peters in her March 7, 2018 article for Fast Company provides a vivid description of how a sight-impaired or blind person could navigate more safely and easily,

The crosswalk on a road in front of the Ohio State School for the Blind looks like one that might be found at any intersection. But the white stripes at the edges are made with “smart paint”–and if a student who is visually impaired crosses while using a cane with a new smart tip, the cane will vibrate when it touches the lines.

The paint uses rare-earth nanocrystals that can emit a unique light signature, which a sensor added to the tip of a cane can activate and then read. “If you pulse a laser or LED into these materials, they’ll pulse back at you at a very specific frequency,” says Josh Collins, chief technology officer at Intelligent Materials [sic], the company that manufacturers the oxides that can be added to paint.

While digging down for more information, this February 12, 2018 article by Ben Levine for Government Technology Magazine was unearthed (Note: Links have been removed),

In this installment of the Innovation of the Month series (read last month’s story here), we explore the use of smart technologies to help blind and visually impaired people better navigate the world around them. A team at Ohio State University has been working on a “smart paint” application to do just that.

MetroLab’s Executive Director Ben Levine sat down with John Lannutti, professor of materials science engineering at Ohio State University; Mary Ball-Swartwout, orientation and mobility specialist at the Ohio State School for the Blind; and Josh Collins, chief technology officer at Intelligent Material to learn more.

John Lannutti (OSU): The goal of “smart paint for networked smart cities” is to assist people who are blind and visually impaired by implementing a “smart paint” technology that provides accurate location services. You might think, “Can’t GPS do that?” But, surprisingly, current GPS-based solutions actually cannot tell whether somebody is walking on the sidewalk or down the middle of the street. Meanwhile, modern urban intersections are becoming increasingly complex. That means that finding a crosswalk, aligning to cross and maintaining a consistent crossing direction while in motion can be challenging for people who are visually impaired.

And of course, crosswalks aren’t the only challenge. For example, our current mapping technologies are unable to provide the exact location of a building’s entrance. We have a technology solution to those challenges. Smart paint is created by adding exotic light-converting oxides to standard road paints. The paint is detected using a “smart cane,” a modified white cane that detects the smart paint and enables portal-to-portal guidance. The smart cane can also be used to notify vehicles — including autonomous vehicles — of a user’s presence in a crosswalk.

As part of this project, we have a whole team of educational, city and industrial partners, including:

Educational partners: 

  • Ohio State School for the Blind — testing and implementation of smart paint technology in Columbus involving both students and adults
  • Western Michigan University — implementation of smart paint technology with travelers who are blind and visually impaired to maximize orientation and mobility
  • Mississippi State University — the impacts of smart paint technology on mobility and employment for people who are blind and visually impaired

City partners:  

  • Columbus Smart Cities Initiative — rollout of smart paint within Columbus and the paint’s interaction with the Integrated Data Exchange (IDE), a cloud-based platform that dynamically collects user data to show technological impact
  • The city of Tampa, Fla. — rollout of smart paint at the Lighthouse for the Blind
  • The Hillsborough Area Transit Regional Authority, Hillsborough County, Fla. — integration of smart paint with existing bus lines to enable precise location determination
  • The American Council of the Blind — implementation of smart paint with the annual American Council of the Blind convention
  • MetroLab Network — smart paint implementation in city-university partnerships

Industrial collaborators:  

  • Intelligent Material — manufactures and supplies the unique light-converting oxides that make the paint “smart”
  • Crown Technology — paint manufacturing, product evaluation and technical support
  • SRI International — design and manufacturing of the “smart” white cane hardware

Levine: Can you describe what this project focused on and what motivated you to address this particular challenge?

Lannutti: We have been working with Intelligent Material in integrating light-converting oxides into polymeric matrices for specific applications for several years. Intelligent Material supplies these oxides for highly specialized applications across a variety of industries, and has deep experience in filtering and processing the resulting optical outputs. They were already looking at using this technology for automotive applications when the idea to develop applications for people who are blind was introduced. We were extremely fortunate to have the Ohio State School for the Blind (OSSB) right here in Columbus and even more fortunate to have interested collaborators there who have helped us at every step of the way. They even have a room filled with previous white cane technologies; we used those to better understand what works and what doesn’t, helping refine our own product. At about this same time, the National Science Foundation released a call for Smart and Connected Communities proposals, which gave us both a goal and a “home” for this idea.

Levine: How will the tools developed in this project impact planning and the built environment?

Ball-Swartwout: One of the great things about smart paint is that it can be added to the built environment easily at little extra cost. We expect that once smart paint is widely adopted, most sighted users will not notice much difference as smart paint is not visually different from regular road paint. Some intersections might need to have more paint features that enable smart white cane-guided entry from the sidewalk into the crosswalk. Paint that tells users that they have reached their destination may become visible as horizontal stripes along modern sidewalks. These paints could be either gray or black or even invisible to sighted pedestrians, but would still be detectable by “smart” white canes to tell users that they have arrived at their destination.

Levine: Can you tell us about the new technologies that are associated with this project? Can you talk about the status quo versus your vision for the future?

Collins: Beyond converting ceramics in paint, placing a highly sensitive excitation source and detector package at the tip of a moving white cane is truly novel. Also challenging is powering this package using minimal battery weight to decrease the likelihood of wrist and upper neck fatigue.

The status quo is that the travel of citizens who are blind and visually impaired can be unpredictable. They need better technologies for routine travel and especially for travel to any new destinations. In addition, we anticipate that this technology could assist in the travel of people who have a variety of physical and cognitive impairments.

Our vision for the future of this technology is that it will be widespread and utilized constantly. Outside the U.S., Japan and Europe have integrated relatively expensive technologies into streets and sidewalks, and we see smart paint replacing that very quickly. Because the “pain” of installing smart paint is very small, we believe that grass-roots pressure will enable rapid introduction of this technology.

Levine: What was the most surprising thing you learned during this process?

Lannutti: In my mind, the most surprising thing was discovering that sound was not necessarily the best means of guiding users who are blind. This is a bias on the part of sighted individuals as we are used to beeping and buzzing noises that guide or inform us throughout our day. Pedestrians who are blind, on the other hand, need to constantly listen to aspects of their environment to successfully navigate it. For example, listening to traffic noise is extremely important to them as a means of avoiding danger. People who are blind or visually impaired cannot see but need to hear their environment. So we had to dial back our expectations regarding the utility of sound. Instead, we now focus on vibration along the white cane as a means of alerting the user.

If those interested, Levine’s article is well worth reading in its entirety.

Thankfully they’ve added some information to the website for Intelligent Material (Solutions) since I first viewed it.

There’s a bit more information on the Intelligent Material (Solutions’) YouTube video webpage,

Intelligent Material Solutions, Inc. is a privately held business headquartered in Princeton, NJ in the SRI/Sarnoff Campus, formerly RCA Labs. Our technology can be traced through scientific discoveries dating back over 50 years. We are dedicated to solving the worlds’ most challenging problems and in doing so have assembled an innovative, multi-discipliary team of leading scientists from industry and academia to ensure rapid transition from our labs to the world.

The video was published on December 6, 2017. You can find even more details at the company’s LinkedIn page.