Tag Archives: 25th anniversary bucky balls

Rice University’s big nano convo

Rice University’s 25th anniversary celebration of the discovery of buckminster fullerenes (noted previously in my May 13 2010 posting) is a conference while will be hosting a contingent of carbon nanotube specialists and a panel discussion featuring the team that discovered the buckminsterfullerene (buckyball). From the news item on physorg.com,

The Richard E. Smalley Institute for Nanoscale Science and Technology, the world’s first nanotechnology center when it opened in 1991, will bring top scientists to Rice for the Buckyball Discovery Conference, a three-day event that begins Oct. 11 and will take a comprehensive look at the past, present and future of nanotechnology.

An interactive discussion about the discovery of the buckyball moderated by Tom Tritton, president of the Chemical Heritage Foundation, will kick off the event. Nobel laureates Robert Curl, Rice’s University Professor Emeritus and Kenneth S. Pitzer-Schlumberger Professor Emeritus of Natural Sciences; Sir Harold Kroto, a professor at the University of Sussex at the time of the find and now at Florida State University; and former Rice graduate students James Heath and Sean O’Brien will reminisce about their groundbreaking discovery and the many years they spent defending it, what their work has meant for science and where they see nanotechnology headed. They will talk about working with their Rice colleague and fellow laureate, the late Rick Smalley, and answer audience questions.

Eight of the world’s renowned carbon nanotechnologists will discuss current research and development as well as the future of nanotechnology. They include Phaedon Avouris, Marvin Cohen, Hongjie Dai, Millie Dresselhaus, Morinobu Endo, Andre Geim, Andreas Hirsch and Donald Huffman. Breakout sessions will delve into applications of nanotechnology and the obstacles it faces in areas that include environmental health and safety, energy, health, aerospace and materials.

The conference doesn’t take place until Oct. 10-13, 2010. Registration is free (but you are responsible for your travel, accommodation, and food).

Year of Nano at Rice University

I mentioned the Year of Nano 25th anniversary celebration of the buckminsterfullerene (also known as a C60 fullerene or bucky ball) at Rice University in a Feb. 8, 2010 posting (it’s towards the bottom) and wasn’t really expecting to hear more about it until the technical symposium in October 2010. Yesterday, the folks at Rice University sent out a news release that manages to herald both the Year of Nano and the 50th anniversary of the laser. From the news release (titled, From beams to bucky balls),

Twenty-five years after the laser beam came to be, a historic meeting took place at Rice University that led to the discovery of the buckminsterfullerene, the carbon 60 molecule for which two Rice scientists won the Nobel Prize.

Now that the buckyball is celebrating its own 25th anniversary, it’s worth noting that one wouldn’t have happened without the other.

During the Year of Nano, Rice will honor Nobel laureates Robert Curl and the late Richard Smalley, their research colleague and co-laureate, Sir Harold Kroto, then of the University of Sussex, and former graduate students James Heath and Sean O’Brien with a series of events culminating in an Oct. 11-13 symposium at Rice on nanotechnology’s past, present and future.

But Curl happily throws a share of the credit to another Rice professor, Frank Tittel, a laser pioneer whose work continues to break new ground in chemical sensing.

Fifty years ago this Sunday, on May 16, 1960, Hughes Research scientist Theodore Maiman fired off the first laser beam from a small ruby rod, a camera flashlamp and a power supply.

Not long after the news was reported in the New York Times, Tittel, now Rice’s J.S. Abercrombie Professor in Electrical and Computer Engineering, was asked by his new bosses at General Electric to recreate Maiman’s device. “That used brute force,” Tittel said of his first laser, later donated to the Franklin Institute Science Museum in Philadelphia. “Now we’re more sophisticated.”

Tittel joined Rice in 1967 and quickly built the first tunable laser in Texas, used in spectroscopy and sensing devices. He also formed collaborations with other professors, including Curl, who is now Rice’s University Professor Emeritus and Kenneth S. Pitzer-Schlumberger Professor Emeritus of Natural Sciences.

The laser attracted a lot of interest and was used to investigate a number of phenomena including Kroto’s chief interest in 1985, the “abundance of carbon molecules in interstellar clouds,”

…  The experiments in late 1985 showed an abundance of carbon 60, which set the scientists racing to figure out what such a molecule would look like. “We had this problem that this (carbon cluster) was a little strong, and it looked like there was something there,” Curl said, noting that the team pursued the interstellar question no further. “The discovery of the fullerenes drew all our attention.”

Smalley was the first to find the solution by assembling a paper model of hexagons and pentagons that turned out to be identical to a soccer ball. (In a webcast available here, Curl described how the team came up with the key to the solution over enchiladas at a Houston diner.)

The webcast with Curl is titled, How Astrophysical Interests Accidentally Led to Advances in Carbon Chemistry. I think what’s so fascinating is that Richard Smalley wasn’t that interested in Kroto’s question but it was that question that led to their great discovery. This story reminded me of a comment from Dr. J. Storrs Hall that I quoted in one of my recent posts (scroll down to find the passage), “As Dr. Hall aptly noted it’s not dispassionate calculations but ‘serendipity: the way science always works’.”