Tag Archives: 3D

Too much intelligence in your clothing? (wearable tech: 3 of 3)

While having intelligent clothing is not an immediate prospect, it is definitely on the horizon according to Massachusetts Institute of Technology researcher Marcelo Coelho. Speaking at an EmTech Conference Brazil (a series of conferences held by MIT Technical Review in various parts of the world). A Nov. 19, 2015 article by Sebastian Smith  published on phys.org discusses intelligent clothing,

One of the most promising areas is clothing that integrates computers and can practically think for itself.

“You can program your shirt for it to change color, or move to a different pattern,” he said. “Maybe you’re at work today and want your shirt one way, but you’ll be at a party tonight and want it different.”

Another creation is a dress with a hemline that rises and falls—or another dress, decorated with gently opening and closing flowers.

“Transforming dresses” is an idea that was profiled in an Oct. 20, 2006 article by Rachel Ross for MIT Technical review (Note: A link has been removed),

Turkish fashion designer Hussein Chalayan is known for his innovative ideas. Earlier this month [October 2006], he wowed the audience at his Paris runway show with five dresses that automatically transformed in shape and style. Zippers closed, cloth gathered, and hemlines rose–all without human assistance. Beneath each model’s skirt was a computer system designed by the London-based engineering and concept-creation firm 2D3D. Rob Edkins, director of 2D3D, talked to Technology Review about how the computers controlled the clothing with motors and wires.

Technology Review: What was your vision for the clothes in the latest Chalayan show?

Rob Edkins: He gave us a series of drawings: five dresses which morphed through three decades. Together with him we developed a means by which we could move the dresses into the various shapes of those three decades. It took a lot of R&D before we arrived at a solution.

With the first dress, the girl walked on in a 1906 costume, and it morphed from 1906 to 1916 and then to 1926. So she ended up having a beaded flapper dress of the twenties. The next dress was from 1926, and it evolved from 1936 to 1946, and so on. The final dress was 1986, 1996, and then 2007. So there were five dresses, and each dress [morphed through] three decades.

A lot of [the transformation] was unbelievably subtle. While you were watching something happen down around her waist, something else was happening on her shoulder. A little fabric might roll up and become a sort of half sleeve.

Another scientist (pulling the discussion in a somewhat different direction) was profiled in Smith’s article,

…  [In answer to the question, where is this all going?] another MIT scientist, Skylar Tibbits, [says the answer] is self-assembly.

No, not self-assembly as in struggling with instructions and wrenches over a bed you just bought in a box. Tibbits means self-assembly as in the thing—the bed, or whatever it may be—assembling itself.

This is the idea of 4D printing, Tibbits’ specialty.

If 3D printers can produce three-dimensional objects at the touch of a button, 4D means they then go on to transform or organize themselves in useful ways.

Unlike robots these materials are not computerized and do not need power like electricity. They react to ordinary forces like pressure or heat or water and change, but are engineered by the scientists so that they change shape in a pre-determined way.

Neither scientist was presenting new ideas for anyone who’s been following recent developments in emerging technologies but for an audience of people who haven’t this is likely exciting and, perhaps, a bit disturbing. (Well, that was my response when first encountering these developments.) As for clothing that’s more intelligent than its wearer (or out of control), it doesn’t seem to have been mentioned in the presentations but perhaps the possibilities should be considered.

Nanoparticles in 3D courtesy of x-rays

A Feb. 4, 2015 Deutsches Elektronen-Synchrotron (DESY) press release (also on EurekAlert) announces a 3D first,

For the first time, a German-American research team has determined the three-dimensional shape of free-flying silver nanoparticles, using DESY’s X-ray laser FLASH. The tiny particles, hundreds of times smaller than the width of a human hair, were found to exhibit an unexpected variety of shapes, as the physicists from the Technical University (TU) Berlin, the University of Rostock, the SLAC National Accelerator Laboratory in the United States and from DESY report in the scientific journal Nature Communications. Besides this surprise, the results open up new scientific routes, such as direct observation of rapid changes in nanoparticles.

The press release goes on to describe the work in more detail,

“The functionality of nanoparticles is linked to their geometric form, which is often very difficult to determine experimentally,” explains Dr. Ingo Barke from the University of Rostock. “This is particularly challenging when they are present as free particles, that is, in the absence of contact with a surface or a liquid.”

The nanoparticle shape can be revealed from the characteristic way how it scatters X-ray light. Therefore, X-ray sources like DESY’s FLASH enable a sort of super microscope into the nano-world. So far, the spatial structure of nanoparticles has been reconstructed from multiple two-dimensional images, which were taken from different angles. This procedure is uncritical for particles on solid substrates, as the images can be taken from many different angles to uniquely reconstruct their three-dimensional shape.

“Bringing nanoparticles into contact with a surface or a liquid can significantly alter the particles, such that you can no longer see their actual form,” says Dr. Daniela Rupp from the TU Berlin. A free particle, however, can only be measured one time in flight before it either escapes or is destroyed by the intense X-ray light. Therefore, the scientists looked for a way to record the entire structural information of a nanoparticle with a single X-ray laser pulse.

To achieve this goal, the scientists led by Prof. Thomas Möller from the TU Berlin and Prof. Karl-Heinz Meiwes-Broer and Prof. Thomas Fennel from the University of Rostock employed a trick. Instead of taking usual small-angle scattering images, the physicists recorded the scattered X-rays in a wide angular range. “This approach virtually captures the structure from many different angles simultaneously from a single laser shot,” explains Fennel.

The researchers tested this method on free silver nanoparticles with diameters of 50 to 250 nanometres (0.00005 to 0.00025 millimetres). The experiment did not only verify the feasibility of the tricky method, but also uncovered the surprising result that large nanoparticles exhibit a much greater variety of shapes than expected.

The shape of free nanoparticles is a result of different physical principles, particularly the particles’ effort to minimize their energy. Consequently, large particles composed of thousands or millions of atoms often yield predictable shapes, because the atoms can only be arranged in a particular way to obtain an energetically favourable state.

In their experiment, however, the researchers observed numerous highly symmetrical three-dimensional shapes, including several types known as Platonic and Archimedean bodies. Examples include the truncated octahedron (a body consisting of eight regular hexagons and six squares) and the icosahedron (a body made up of twenty equilateral triangles). The latter is actually only favourable for extremely small particles consisting of few atoms, and its occurrence with free particles of this size was previously unknown. “The results show that metallic nanoparticles retain a type of memory of their structure, from the early stages of growth to a yet unexplored size range,” emphasizes Barke.

Due to the large variety of shapes, it was especially important to use a fast computational method so that the researchers were capable of mapping the shape of each individual particle. The scientists used a two-step process: the rough shape was determined first and then refined using more complex simulations on a super computer. This approach turned out to be so efficient that it could not only determine various shapes reliably, but could also differentiate between varying orientations of the same shape.

This new method for determining the three-dimensional shape and orientation of nanoparticles with a single X-ray laser shot opens up a wide spectrum of new research directions. In future projects, particles could be directly “filmed” in three dimensions during growth or during phase changes. “The ability to directly film the reaction of a nanoparticle to an intense flash of X-ray light has been a dream for many physicists – this dream could now come true, even in 3D!,” emphasises Rupp.

The researchers have provided an image showing their work,

Caption: This is a wide-angle X-ray diffraction image of a truncated twinned tetrahedra nanoparticle. Credit: Hannes Hartmann/University of Rostock

Caption: This is a wide-angle X-ray diffraction image of a truncated twinned tetrahedra nanoparticle.
Credit: Hannes Hartmann/University of Rostock

Here’s a link to and a citation for the paper,

The 3D-architecture of individual free ​silver nanoparticles captured by X-ray scattering by Ingo Barke, Hannes Hartmann, Daniela Rupp, Leonie Flückiger, Mario Sauppe, Marcus Adolph, Sebastian Schorb, Christoph Bostedt, Rolf Treusch, Christian Peltz, Stephan Bartling, Thomas Fennel, Karl-Heinz Meiwes-Broer, & Thomas Möller. Nature Communications 6, Article number: 6187 doi:10.1038/ncomms7187 Published 04 February 2015

This article is open access.