Tag Archives: AFRL

Nano-Bio Manufacturing Consortium’s request for proposals (RFPs) on human performance monitoring platforms

The requested human performance monitor platform RFPs are for a US Air Force Research Laboratory (AFRL) project being managed by the Nano-Bio Manufacturing Consortium (NBMC), according to a July 17, 2013 news item on Nanowerk,

The Nano-Bio Manufacturing Consortium (NBMC) has released its first Request for Proposals (RFP) focused on developing a technology platform for Human Performance Monitors for military and civilian personnel in high stress situations such as pilots, special operations personnel, firefighters, and trauma care providers. Organized by FlexTech Alliance under a grant from the U.S. Air Force Research Laboratory (AFRL) the RFP comes only 3 month since the group officially formed its technical and leadership teams. The consortium members, working with AFRL, issued this RFP to focus on component development and integration for a lightweight, low-cost, conformal and wearable patch.

The July 17, 2013 NBMC news release, which originated the news item, offers more about this patch/monitor,

The heart of this new patch will be a biosensor device to measure chemicals, called biomarkers, in human sweat.  These biomarkers can provide early warnings of performance issues such as stress, fatigue, vigilance or organ damage.  The platform will contain the sensor, a microfluidic system that delivers sweat to the sensor, printed and hybrid control electronics, interconnects, a power supply, wireless communication, and software – all on a flexible substrate that is comfortable to wear.

“An aircraft has numerous sensors which take over 1500 measurements per second to monitor its condition in flight, whereas the most critical part – the pilot – has no monitors,” Malcolm Thompson, chief executive officer of NBMC stated.  “We are working quickly and efficiently to coordinate the expertise being generated at an array of companies, government labs and academic centers.  NBMC’s goal is to establish this technology chain to more rapidly develop products and manufacturing approaches for the Air Force and commercial markets.”

I gather the reasoning is that we should be able to monitor human beings just as we do equipment and machines.

The news release also offers information about the consortium partners,

Initial consortium membership includes a wide range of organizations.  Fortune 500 technology leaders include General Electric, Lockheed Martin, and DuPont Teijin Films.  More entrepreneurial organizations include PARC (a Xerox Company), MC 10, Soligie, American Semiconductor, Brewer Science and UES.  They are joined by the Air Force Research Laboratory and university leaders such as Cornell University, University of Massachusetts Amherst Center for Hierarchical Manufacturing, University of Arizona Center for Integrative Medicine, UC San Diego, University of Cincinnati, Binghamton University, Johns Hopkins University, Northeastern University NSF Nanoscale Science and Engineering Center for High-rate Nano-manufacturing, and Arizona State University.

The NBMC solicitation was posted July 10, 2013 on this page,

2013 SOLICITATION ON HUMAN PERFORMANCE MONITORING & BIOMARKER DETECTION

Request for Proposals Issued: July 10th, 2013

Proposals Due Date: August 9th, 2013 – 5:00 PM PDT

You can find the 9pp RFP here.

I’ve decided to include this description of the thinking that underlies the consortium, from the NBMC Nano-Bio Manufacturing webpage,

The field of nano-biotechnology is advancing rapidly, with many important discoveries and potential applications being identified.  Much of this work is taking place in academia and advanced research labs around the globe.  Once an application is identified, however, the road is still long to making it available to the markets in need.  One of the final steps on that road is understanding how to manufacture in high volume and the lowest cost.  Often this is the defining decision on whether the product even gets to that market.

With new nano-bio technology solutions, the challenges to produce in volume at low-cost are entirely new to many in the field.  New materials, new substrates, new equipment, and unknown properties are just a few of the hurdles that no one organization has been able to overcome.

To address these challenges, FlexTech Alliance, in collaboration with a nationwide group of partners, has formed a Nano-Bio Manufacturing Consortium (NBMC) for the U.S. Air Force Research Laboratory (AFRL). The mission of this partnership is to bring together leading scientists, engineers, and business development professionals from industry and universities in order to work collaboratively in a consortium, and to mature an integrated suite of nano-bio manufacturing technologies to transition to industrial manufacturing.

Initial activities focus on AFRL/ DoD priorities, e.g., physiological readiness and human performance monitoring. Specifically, NBMC matures nano-bio manufacturing technologies to create an integrated suite of reconfigurable and digitized fabrication methods that are compatible with biological and nanoparticle materials and to transition thin film, mechanically compliant device concepts through a foundry-like manufacturing flow.

The long-term vision is that NBMC operates at the confluence of four core emerging disciplines: nanotechnology, biotechnology, advanced (additive) manufacturing, and flexible electronics. The convergence of these disparate fields enables advanced sensor architectures for real-time, remote physiological and health/medical monitoring.

[downloaded from http://www.nbmc.org/nanobiomanufacturing/nbm_intro/]

[downloaded from http://www.nbmc.org/nanobiomanufacturing/nbm_intro/]

It seems to me that human beings are increasingly being viewed as just another piece of equipment.

Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel)

The big news is that a multinational team has managed to spin carbon nanotubes (after 10 years of work) into threads that look like black cotton and display both the properties of metal wires and of carbon fibers. Here’s more from the Jan. 10, 2013 news item on ScienceDaily,

“We finally have a nanotube fiber with properties that don’t exist in any other material,” said lead researcher Matteo Pasquali, professor of chemical and biomolecular engineering and chemistry at Rice. “It looks like black cotton thread but behaves like both metal wires and strong carbon fibers.”

The research team includes academic, government and industrial scientists from Rice; Teijin Aramid’s headquarters in Arnhem, the Netherlands; the Technion-Israel Institute of Technology in Haifa, Israel; and the Air Force Research Laboratory (AFRL) in Dayton, Ohio.

The Jan. 10, 2013 Rice University news release on EurekAlert, which originated the news item, describes some of the problems presented when trying to produce carbon nanotube fiber at an industrial scale,

The phenomenal properties of carbon nanotubes have enthralled scientists from the moment of their discovery in 1991. The hollow tubes of pure carbon, which are nearly as wide as a strand of DNA, are about 100 times stronger than steel at one-sixth the weight. Nanotubes’ conductive properties — for both electricity and heat — rival the best metal conductors. They also can serve as light-activated semiconductors, drug-delivery devices and even sponges to soak up oil.

Unfortunately, carbon nanotubes are also the prima donna of nanomaterials [emphasis mine]; they are difficult to work with, despite their exquisite potential. For starters, finding the means to produce bulk quantities of nanotubes took almost a decade. Scientists also learned early on that there were several dozen types of nanotubes — each with unique material and electrical properties; and engineers have yet to find a way to produce just one type. Instead, all production methods yield a hodgepodge of types, often in hairball-like clumps.

Creating large-scale objects from these clumps of nanotubes has been a challenge. A threadlike fiber that is less than one-quarter the thickness of a human hair will contain tens of millions of nanotubes packed side by side. Ideally, these nanotubes will be perfectly aligned — like pencils in a box — and tightly packed. Some labs have explored means of growing such fibers whole, but the production rates for these “solid-state” fibers have proven quite slow compared with fiber-production methods that rely on a chemical process called “wet spinning.” In this process, clumps of raw nanotubes are dissolved in a liquid and squirted through tiny holes to form long strands.

Thank you to the writer of the Rice University news release for giving me the phrase “prima donna of nanomaterials.”

The news release goes on to describe the years of work and collaboration needed to arrive at this point,

Shortly after arriving at Rice in 2000, Pasquali began studying CNT wet-spinning methods with the late Richard Smalley, a nanotechnology pioneer and the namesake of Rice’s Smalley Institute for Nanoscale Science and Technology. In 2003, two years before his untimely death, Smalley worked with Pasquali and colleagues to create the first pure nanotube fibers. The work established an industrially relevant wet-spinning process for nanotubes that was analogous to the methods used to create high-performance aramid fibers — like Teijin’s Twaron — which are used in bulletproof vests and other products. But the process needed to be refined. The fibers weren’t very strong or conductive, due partly to gaps and misalignment of the millions of nanotubes inside them.

“Achieving very high packing and alignment of the carbon nanotubes in the fibers is critical,” said study co-author Yeshayahu Talmon, director of Technion’s Russell Berrie Nanotechnology Institute, who began collaborating with Pasquali about five years ago.

The next big breakthrough came in 2009, when Talmon, Pasquali and colleagues discovered the first true solvent for nanotubes — chlorosulfonic acid. For the first time, scientists had a way to create highly concentrated solutions of nanotubes, a development that led to improved alignment and packing.

“Until that time, no one thought that spinning out of chlorosulfonic acid was possible because it reacts with water,” Pasquali said. “A graduate student in my lab, Natnael Bahabtu, found simple ways to show that CNT fibers could be spun from chlorosulfonic acid solutions. That was critical for this new process.”

Pasquali said other labs had found that the strength and conductivity of spun fibers could also be improved if the starting material — the clumps of raw nanotubes — contained long nanotubes with few atomic defects. In 2010, Pasquali and Talmon began experimenting with nanotubes from different suppliers and working with AFRL scientists to measure the precise electrical and thermal properties of the improved fibers.

During the same period, Otto [Marcin Otto, Business Development Manager at Teijin Aramid] was evaluating methods that different research centers had proposed for making CNT fibers. He envisaged combining Pasquali’s discoveries, Teijin Aramid’s know-how and the use of long CNTs to further the development of high performance CNT fibers. In 2010, Teijin Aramid set up and funded a project with Rice, and the company’s fiber-spinning experts have collaborated with Rice scientists throughout the project.

“The Teijin scientific and technical help led to immediate improvements in strength and conductivity,” Pasquali said.

Study co-author Junichiro Kono, a Rice professor of electrical and computer engineering, said, “The research showed that the electrical conductivity of the fibers could be tuned and optimized with techniques that were applied after initial production. This led to the highest conductivity ever reported for a macroscopic CNT fiber.”

The fibers reported in Science have about 10 times the tensile strength and electrical and thermal conductivity of the best previously reported wet-spun CNT fibers, Pasquali said. The specific electrical conductivity of the new fibers is on par with copper, gold and aluminum wires, but the new material has advantages over metal wires.

Here’s an explanatory video the researchers have provided,

A more commercial perspective is covered in the Teijin Armid Jan. 11, 2013 news release (Note: A link has been removed),

“Our carbon nanotube fibers combine high thermal and electrical conductivity, like that seen in metals, with the flexibility, robust handling and strength of textile fibers”, explained Marcin Otto, Business Development Manager at Teijin Aramid. “With that novel combination of properties it is possible to use CNT fibers in many applications in the aerospace, automotive, medical and (smart) clothing industries.”

Teijin’s cooperation and involvement was crucial to the project. Twaron technology enabled improved performance, and an industrially scalable production method. That makes it possible to find applications for CNT fibers in a range of commercial or industrial products. “This research and ongoing tests offer us a glimpse into the potential future possibilities of this new fiber. For example, we have been very excited by the interest of innovative medical doctors and scientists exploring the possibilities to use CNT fiber in surgical operations and other applications in the medical field”, says Marcin Otto. Teijin Aramid expects to replace the copper in data cables and light power cables used in the aerospace and automotive industries, to make aircraft and high end cars lighter and more robust at the same time. Other applications could include integrating light weight electronic components, such as antennas, into composites, or replacing cooling systems in electronics where the high thermal conductivity of carbon nanotube fiber can help to dissipate heat.

Teijin Aramid is currently trialing samples of CNT fiber on a small scale with the most active prospective customers. Building up a robust supply chain is high on the project team’s list of priorities. As well as their carbon fiber, aramid fiber and polyethylene tape, this new carbon nanotube fiber is expected to allow Teijin to offer customers an even broader portfolio of high performance materials.

Teijin Group (which is headquartered in Japan) has been mentioned here before notably in a July 19, 2010 posting about a textile inspired by a butterfly’s wing (Morphotex) which, sadly, is no longer being produced as noted in a more recent April 12, 2012 posting about Teijin’s then new fiber ‘Nanofront™’ for use in sports socks.

Memristor tidbit from an unexpected source

The US Air Force has funded research to enable memristors to be integrated into CMOS (complementary metal-oxide semiconductor) devices. From the news item on Nanowerk,

Dr. Wei Wang, CNSE [College of Nanoscale Science and Engineering] Assistant Professor and Senior Research Scientist of Nanoscale Engineering, and Dr. Nathaniel Cady, CNSE  Assistant Professor of Nanobioscience, received $460,000 in funding from the U.S. Air Force Research Laboratory (“AFRL”) to enable integration of CMOS devices with memristors – including the development of novel prototypes – to support a new computing paradigm. Early research shows significant promise for the development of smaller nanoelectronic computer architectures that generate new and efficient ways to perform computational tasks while consuming less power.

The work is being performed at the University of Albany where the CNSE resides. In total, they received over $2M in US federal funding for various nanotechnology research projects.

After the discussion about memristors (see below) a few months back, I’m tickled to see this development.

Articles listed with the most recent article first:

Science in the British election and CASE; memristor and artificial intelligence; The Secret in Their Eyes, an allegory for post-Junta Argentina?

Measuring professional and national scientific achievements; Canadian science policy conferences

New approaches for emerging technologies; memristor comments by Dr. Leon Chua; more about I’m a scientist

Memristors and nuances in a classification tug-of-war; NRC of Canada insights; rapping scientists

Interview about memristors with Forrest H Bennett III

The memristor rises; commercialization and academic research in the US; carbon nanotubes could be made safer than we thought

More on memristors and a little bit on food packaging and nano

Canada’s nano article numbers (part 2) plus memristor and L’Oreal updates

Memristors and green energy