Tag Archives: air

Nanoplastics in the air we breathe

Most of the research I’ve seen about polluting nanoplastics it concerns the ocean; this time it concerns the air. This research dates from November 2021 but I didn’t stumble across it until this February 2, 2022 article by Talib Visram for Fast Company (Note: Links have been removed),

By some estimates, people have discarded 4,900 million tonnes of plastic have into the environment. Once in nature, that plastic starts to degrade, fragmenting into microplastics about the size of a sesame seed, which are inadvertently ingested by humans and animals through eating them in seafood and drinking them in water. Some reports suggest that we all consume five grams a week–about the weight of a bottle cap.

But, we may be taking more plastics into our systems through our respiratory systems. There’s been less investigation of nanoplastics: particles smaller than microplastics, so small that they can move huge distances in the air and be more easily inhaled into the bloodstream. A new study looks at the travel of those lighter particles, finding them abundant in the atmosphere, and carried, via aerosol transmission, even to remote areas. As far as the scientists know, it’s “the most accurate record of air pollution by nanoplastics ever made.”

A February 1, 2022 news item on SciTechDaily.com highlights some of the concerns raised by the research,

In a new study, Empa [Swiss Federal Laboratories for Materials Science and Technology] researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere.

According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers.

….

A January 25, 2022 EMPA [Swiss Federal Laboratories for Materials Science and Technology] press release by Noé Waldmann, which originated the news item, provides some technical details,

In a large-scale fundraising campaign, popular YouTubers like Mister Beast and Mark Rober are currently trying to rid the oceans of almost 14,000 tonnes of plastic waste. That’s about 0.15 per cent of the amount that ends up in the oceans every year. But it’s not just our waters that are full of plastic. A new study shows that the spread of nanoplastic through the air is a more widespread problem than previously thought.

….

Extreme conditions

The scientists studied a small area at an altitude of 3106 meters at the top of the mountain “Hoher Sonnenblick” in the “Hohe Tauern” National Park in Austria. An observatory of the Central Institute for Meteorology and Geodynamics has been located here since 1886. The observatory is run by meteorologist and Arctic researcher Elke Ludewig. Since research began here in the late 19th century, the observatory has only been non-operational on four days. The research station also served as a base for the study on the spread of nanoplastics in remote areas.

Every day, and in all weather conditions, scientists removed a part of the top layer of snow around a marker at 8 AM and carefully stored it. Contamination of the samples by nanoplastics in the air or on the scientists’ clothes was a particular challenge. In the laboratory, the researchers sometimes had to remain motionless when a colleague handled an open sample.

The origin of the tiny particles was traced with the help of European wind and weather data. The researchers could show that the greatest emission of nanoplastics into the atmosphere occurs in densely populated, urban areas. About 30% of the nanoplastic particles measured on the mountain top originate from a radius of 200 kilometers, mainly from cities. However, plastics from the world’s oceans apparently also get into the air via the spray of the waves. Around 10% of the particles measured in the study were blown onto the mountain by wind and weather over 2000 kilometers – some of them from the Atlantic.

Nanoparticles in the bloodstream

It is estimated that more than 8300 million tonnes of plastic have been produced worldwide to date, about 60% of which is now waste. This waste erodes through weathering effects and mechanical abrasion from macro- to micro- and nanoparticles. But discarded plastic is far from the only source. Everyday use of plastic products such as packaging and clothing releases nanoplastics. Particles in this size range are so light that their movement in the air can best be compared to gases.

Besides plastics, there are all kinds of other tiny particles. From Sahara sand to brake pads, the world is buzzing through the air as abrasion. It is as yet unclear whether this kind of air pollution poses a potential health threat to humans. Nanoparticles, unlike microparticles, do not just end up in the stomach. They are sucked deep into the lungs through respiration, where their size may allow them to cross the cell-blood barrier and enter the human bloodstream. Whether this is harmful or even dangerous, however, remains to be researched.

Included here because of its compelling story is Utrecht University’s November 1, 2021 press release conveying the researchers’ excitement, (Note: Links have been removed)

Nanoplastics found in the Alps, transported by air from Frankfurt, Paris and London

A team of researchers have found nanoplastics at the pristine high-altitude Sonnblick Observatory in the Alps. This is the first time that nanoplastics were found in this area. The researchers were originally looking for certain organic particles, but found nanoplastics by chance, discovering a new analysis method for detecting nanoplastics in the process. …

The researchers were looking for organic particles by taking samples of snow or ice, evaporating them, and then burning the residue to detect and analyse the vapours. “Our detection method is a bit like a mechanical nose. And unexpectedly, it smelled burning plastics in our snow samples,” lead researcher Dušan Materić explains. The detector found the smell of several types of plastic, mostly polypropylene (PP) and polyethylene terephthalate (PET).

The detected plastic particles turned out to be less than 200 nm in size, about one hundredth the width of a human hair. That is significantly smaller than plastic particles detected in previous studies. “With this detection method, we are the first group to quantify nanoplastics in the environment,” says Materić. “Since the high Alps are a very remote and pristine area, we were quite shocked and surprised to find such a high concentration of nanoplastics there.” The results suggest that in addition to microplastics, there might be as much nanoplastics present in these remote places.

Transported by air

“We were quite gripped by these findings,” Materić continues. “It’s highly unlikely that these nanoplastics originated from local pristine Alpine areas. So where did they come from? We completely turned around our research project to study this further.”

The researchers found a striking correlation between high concentrations of nanoplastics and winds coming from the direction of major European cities, most notably Frankfurt and the industrial Ruhr area (Germany), but also the Netherlands, Paris, and even London.

“Advanced modelling supported the idea that nanoplastics are indeed transported by air from these urban places,” says Materić. “That’s potentially alarming, because that could mean that there are hotspots of nanoplastics in our cities, and indeed in the very air we’re breathing. We are currently studying this in more detail.” Since working on the current publication, Materić has already received an additional NWO [Dutch Research Council] grant of 50,000 Euros to study the size distribution of nanoplastics in indoor, urban and rural air.

Here’s a link to and a citation for the paper,

Nanoplastics transport to the remote, high-altitude Alps by Dušan Materić,
Elke Ludewig, Dominik Brunner, Thomas Röckmann, Rupert Holzinger. Environmental Pollution Volume 288, 1 November 2021, 117697 DOI: https://doi.org/10.1016/j.envpol.2021.117697

This paper is open access.

Chinese scientists strike gold in plant tissues

I have heard of phytomining in soil remediation efforts (reclaiming nanoscale metals in plants near mining operations; you can find a more detailed definition here at Wiktionary) but, in this case, scientists have discovered plant tissues with nanoscale gold in an area which has no known deposits of gold. From a June 14, 2018 news item on Nanowwerk (Note: A link has been removed),

Plants containing the element gold are already widely known. The flowering perennial plant alfafa, for example, has been cultivated by scientists to contain pure gold in its plant tissue. Now researchers from the Sun Yat-sen University in China have identified and investigated the characteristics of gold nanoparticles in two plant species growing in their natural environments.

The study, led by Xiaoen Luo, is published in Environmental Chemistry Letters (“Discovery of nano-sized gold particles in natural plant tissues”) and has implications for the way gold nanoparticles are produced and absorbed from the environment.

A June 14, 2018 Springer Publications press release, which originated the news item, delves further and proposes a solution to the mystery,

Xiaoen Luo and her colleagues investigated the perennial shrub B. nivea and the annual or biennial weed Erigeron Canadensis. The researchers collected and prepared samples of both plants so that they could be examined using the specialist analytical tool called field-emission transmission electron microscope (TEM).

Gold-bearing nanoparticles – tiny gold particles fused with another element such as oxygen or copper – were found in both types of plant. In E. Canadensis these particles were around 20-50 nm in diameter and had an irregular form. The gold-bearing particles in B. nivea were circular, elliptical or bone-rod shaped with smooth edges and were 5-15 nm.

“The abundance of gold in the crust is very low and there was no metal deposit in the sampling area so we speculate that the source of these gold nanoparticles is a nearby electroplating plant that uses gold in its operations, “ explains Jianjin Cao who is a co-author of the study.

Most of the characteristics of the nanoparticles matched those of artificial particles rather than naturally occurring nanoparticles, which would support this theory. The researchers believe that the gold-bearing particles were absorbed through the pores of the plants directly, indicating that gold could be accumulated from the soil, water or air.

“Discovering gold-bearing nanoparticles in natural plant tissues is of great significance and allows new possibilities to clean up areas contaminated with nanoparticles, and also to enrich gold nanoparticles using plants,” says Xiaoen Luo.

The researchers plan to further study the migration mechanism, storage locations and growth patterns of gold nanoparticles in plants and also verify the absorbing capacity of different plants for gold nanoparticles in polluted areas.

For anyone who’d like to find out more about electroplating, there’s this January 25, 2018 article by Anne Marie Helmenstine for ThoughtCo.

Here’s a link to and a citation for the paper,

Discovery of nano-sized gold particles in natural plant tissues by Xiaoen Luo (Luo, X.) and Jianjin Cao (Cao, J.). Environ Chem Lett (2018) pp 1–8 https://doi.org/10.1007/s10311-018-0749-0 First published online 14 June 2018

This paper appears to be open access.

Getting a more complete picture of aerosol particles at the nanoscale

What is in the air we breathe? In addition to the gases we learned about in school there are particles, not just the dust particles you can see, but micro- and nanoparticles too and scientists would like to know more about them.

An August 23, 2017 news item on Nanowerk features work which may help scientists in their quest,

They may be tiny and invisible, says Xiaoji Xu, but the aerosol particles suspended in gases play a role in cloud formation and environmental pollution and can be detrimental to human health.

Aerosol particles, which are found in haze, dust and vehicle exhaust, measure in the microns. One micron is one-millionth of a meter; a thin human hair is about 30 microns thick.

The particles, says Xu, are among the many materials whose chemical and mechanical properties cannot be fully measured until scientists develop a better method of studying materials at the microscale as well as the much smaller nanoscale (1 nm is one-billionth of a meter).

Xu, an assistant professor of chemistry, has developed such a method and utilized it to perform noninvasive chemical imaging of a variety of materials, as well as mechanical mapping with a spatial resolution of 10 nanometers.

The technique, called peak force infrared (PFIR) microscopy, combines spectroscopy and scanning probe microscopy. In addition to shedding light on aerosol particles, Xu says, PFIR will help scientists study micro- and nanoscale phenomena in a variety of inhomogeneous materials.

The lower portion of this image by Xiaoji Xu’s group shows the operational scheme of peak force infrared (PFIR) microscopy. The upper portion shows the topography of nanoscale PS-b-PMMA polymer islands on a gold substrate. (Image courtesy of Xiaoji Xu)

An August 22, 2017 Lehih University news release by Kurt Pfitzer (also on EurekAlert), which originated the news item, explains the research in more detail (Note: A link has been removed),

“Materials in nature are rarely homogeneous,” says Xu. “Functional polymer materials often consist of nanoscale domains that have specific tasks. Cellular membranes are embedded with proteins that are nanometers in size. Nanoscale defects of materials exist that affect their mechanical and chemical properties.

“PFIR microscopy represents a fundamental breakthrough that will enable multiple innovations in areas ranging from the study of aerosol particles to the investigation of heterogeneous and biological materials,” says Xu.

Xu and his group recently reported their results in an article titled “Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy.” The article was published in Science Advances, a journal of the American Association for the Advancement of Science, which also publishes Science magazine.

The article’s lead author is Le Wang, a Ph.D. student at Lehigh. Coauthors include Xu and Lehigh Ph.D. students Haomin Wang and Devon S. Jakob, as well as Martin Wagner of Bruker Nano in Santa Barbara, Calif., and Yong Yan of the New Jersey Institute of Technology.

“PFIR microscopy enables reliable chemical imaging, the collection of broadband spectra, and simultaneous mechanical mapping in one simple setup with a spatial resolution of ~10 nm,” the group wrote.

“We have investigated three types of representative materials, namely, soft polymers, perovskite crystals and boron nitride nanotubes, all of which provide a strong PFIR resonance for unambiguous nanochemical identification. Many other materials should be suited as well for the multimodal characterization that PFIR microscopy has to offer.

“In summary, PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines.”

Xu and Le Wang also published a recent article about the use of PFIR to study aerosols. Titled “Nanoscale spectroscopic and mechanical characterization of individual aerosol particles using peak force infrared microscopy,” the article appeared in an “Emerging Investigators” issue of Chemical Communications, a journal of the Royal Society of Chemistry. Xu was featured as one of the emerging investigators in the issue. The article was coauthored with researchers from the University of Macau and the City University of Hong Kong, both in China.

PFIR simultaneously obtains chemical and mechanical information, says Xu. It enables researchers to analyze a material at various places, and to determine its chemical compositions and mechanical properties at each of these places, at the nanoscale.

“A material is not often homogeneous,” says Xu. “Its mechanical properties can vary from one region to another. Biological systems such as cell walls are inhomogeneous, and so are materials with defects. The features of a cell wall measure about 100 nanometers in size, placing them well within range of PFIR and its capabilities.”

PFIR has several advantages over scanning near-field optical microscopy (SNOM), the current method of measuring material properties, says Xu. First, PFIR obtains a fuller infrared spectrum and a sharper image—6-nm spatial resolution—of a wider variety of materials than does SNOM. SNOM works well with inorganic materials, but does not obtain as strong an infrared signal as the Lehigh technique does from softer materials such as polymers or biological materials.

“Our technique is more robust,” says Xu. “It works better with soft materials, chemical as well as biological.”

The second advantage of PFIR is that it can perform what Xu calls point spectroscopy.

“If there is something of interest chemically on a surface,” Xu says, “I put an AFM [atomic force microscopy] probe to that location to measure the peak-force infrared response.

“It is very difficult to obtain these spectra with current scattering-type scanning near-field optical microscopy. It can be done, but it requires very expensive light sources. Our method uses a narrow-band infrared laser and costs about $100,000. The existing method uses a broadband light source and costs about $300,000.”

A third advantage, says Xu, is that PFIR obtains a mechanical as well as a chemical response from a material.

“No other spectroscopy method can do this,” says Xu. “Is a material rigid or soft? Is it inhomogeneous—is it soft in one area and rigid in another? How does the composition vary from the soft to the rigid areas? A material can be relatively rigid and have one type of chemical composition in one area, and be relatively soft with another type of composition in another area.

“Our method simultaneously obtains chemical and mechanical information. It will be useful for analyzing a material at various places and determining its compositions and mechanical properties at each of these places, at the nanoscale.”

A fourth advantage of PFIR is its size, says Xu.

“We use a table-top laser to get infrared spectra. Ours is a very compact light source, as opposed to the much larger sizes of competing light sources. Our laser is responsible for gathering information concerning chemical composition. We get mechanical information from the AFM [atomic force microscope]. We integrate the two types of measurements into one device to simultaneously obtain two channels of information.”

Although PFIR does not work with liquid samples, says Xu, it can measure the properties of dried biological samples, including cell walls and protein aggregates, achieving a 10-nm spatial resolution without staining or genetic modification.

This looks like very exciting work.

Here are links and citations for both studies mentioned in the news release (the most recently published being cited first),

Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy by Le Wang, Haomin Wang, Martin Wagner, Yong Yan, Devon S. Jakob, and Xiaoji G. Xu. Science Advances 23 Jun 2017: Vol. 3, no. 6, e1700255 DOI: 10.1126/sciadv.1700255

Nanoscale spectroscopic and mechanical characterization of individual aerosol particles using peak force infrared microscopy by Le Wang, Dandan Huang, Chak K. Chan, Yong Jie Li, and Xiaoji G. Xu. Chem. Commun., 2017,53, 7397-7400 DOI: 10.1039/C7CC02301D First published on 16 Jun 2017

The June 23, 2017 paper is open access while the June 16, 2017 paper is behind a paywall.

Removing poison from cigarette smoke

Here’s what the air/smoke cleaner looks like,

Caption: This is a picture of a prototype of the air cleaning equipment for cigarette smoke installed in an actual smoking room. Credit: ©KIST

Caption: This is a picture of a prototype of the air cleaning equipment for cigarette smoke installed in an actual smoking room.
Credit: ©KIST

A July 8, 3025 ScienceDaily news item provides more details about the air cleaner,

The research team led by Dr. Jongsoo Jurng and Dr. Gwi-Nam at KIST stated that, “In cooperation with KT&G [Korea Tobacco & Ginseng Corporation], KIST [Korea Insitute of Science and Technology) has developed a nano-catalyst filter coated with a manganese oxide-based nano-catalyst, which can be used in a smoking room to reduce and purify major harmful substances of cigarette smoke. the KIST-developed catalyst removes 100% of the particle substances of cigarette smoke, such as nicotine and tar, converting those into water vapor and carbon dioxide. According to the research team, the air cleaning equipment based on the newly-developed catalyst can purify over 80% of the cigarette smoke within 30 minutes and 100% of it within 1 hour in a 30 square meter smoking room, where 10 people are simultaneously smoking

A July 8, 2015 KIST press release (also on EurekAlert), which originated the news item, describes how most air cleaners work to remove smoke and how this new technology differs,

Activated charcoal-based filters have been mostly used in a smoking room to remove gaseous materials in cigarette smoke. However, those filters are not effective in removing gaseous materials such as acetaldehyde, their absorbtion performance decreases fast in a closed facility such as a smoking room, and they need to be replaced at least every other week, which is rather inconvenient.

The research team has developed a nano-catalyst filter by evenly coating a manganese oxide-based (Mn/TiO2)) nano-catalyst powder onto a ceramic-based filter media. The nano-catalyst filter uses a technology that decomposes elements of cigarette smoke using oxygen radical, which is generated by decomposing ozone in the air on the surface of the manganese-oxide-based nano-catalyst filter. An evaluation test with total volatile organic compounds (TVOC), such as acetaldehyde, nicotine and tar, which account for the largest volume of gaseous materials in cigarette smoke, is conducted to evaluate the performance of the newly-developed catalyst. The results show that the new catalyst decomposes over 98% of the aforementioned harmful substances (refer to Fig. 3).

For the performance evaluation test, the research team made an air cleaning equipment prototype using the nano-catalyst filter. The equipment was installed in an actual smoking room in the size of 30 square meters (with processing capacity of 4 CMM [cubic metres per minute]). About 80% of cigarette smoke elements were processed and decomposed to water vapor and carbon dioxide, within 30 minutes, and 100% of them within 1 hour. The test condition was designed based on the processing capacity which could circulate the air inside the entire 30 square meter smoking room once every 15 minutes.

The research team expected that it would take a year or so to commercialize this technology as the nano-catalyst and the filter coating technologies had been developed already.

The lead researcher Dr. Jurng mentioned that “this research holds a significance since the new air cleaning equipment based on a simple catalyst successfully processes and removes gaseous materials in cigarette smoke, which are not easily removed with the existing air cleaning technologies. If the new equipment can be simplified and is economically feasible, it will be an important tool for keeping smoking room pleasant and clean. Also, from the convergence perspective, the new nanometer catalyst filter can be integrated with other air cleaning products such as air purifiers and air conditioners.”

Research overview

Ozone (O3) decomposition method using a catalyst can be utilized as a permanent decomposition technology. When O3 interacts with a metal oxide (Mn/TiO2), O3 is decomposed by the following reactivity formula on the surface of manganese (See Figure 1), generating reactive oxygen species, i.e., oxygen radical. The right side of Figure 1 shows the oxidation process of acetaldehyde (CH3CHO), a substance that accounts for the biggest portion of gaseous materials in cigarette smoke. Acetaldehyde is oxidized and turns into innocuous CO2 and H2O by reactive oxygen species generated in the O3 decomposition process. Other VOCs go through similar oxidation reaction.

The performance of the newly developed catalyst (Mn/TiO2) was evaluated using testing devices at the research lab. The decomposition performance was 98% at maximum in the range from low concentration (10ppm) to high concentration (200ppm). Ozone, which was used for processing reaction, was not discharged or detected after the decomposition reaction as it was completely decomposed by the catalyst.

The air cleaning equipment based on the present technology can be used to clean up cigarette smoke in smoking rooms, etc., and can be utilized in various products such as air conditioners and air purifiers. Also, the technology has great potential and values as it can be converged with other technologies.

###

Glossary of terms

1. Catalytic oxidation and oxygen radical

Catalytic oxidation is known to have high efficiency to oxidize and convert organic substances into innocuous final oxides such as CO2 and H2O. Particularly, with a manganese (Mn)-based catalyst, ozone is decomposed to produce oxygen radical as a reaction intermediate. The oxygen radical is a chemically reactive molecule, which includes oxygen atoms. It has high oxidizing power with high reactivity, and is reported to be effective to process pollutants in the air. Oxygen radicals that fail to react with pollutants are joined together after reaction and are converted to innocuous oxygen (O2) before being discharged into the surrounding.

2. Oxygen radical

Oxygen radical is an oxygen atom in the atomic state prior to being combined into a molecule.

3. Total volatile organic compounds (TVOC)

Total volatile organic compounds (TVOC) is a comprehensive term referring to liquid or gas phase organic compounds that are vaporized into the air at the room temperature. TVOC is known as a carcinogen that can cause disability in the nervous system from skin contact or from inhalation through respiratory organs.

For anyone interested in the diagrams/figures mentioned in the press release, please click the link, July 8, 2015 KIST press release.

Final comment: I love the fact that some of the Korean institutions are including glossaries with their press releases. Thank you!