Tag Archives: airborne nanoparticles

Nanoplastics in the air we breathe

Most of the research I’ve seen about polluting nanoplastics it concerns the ocean; this time it concerns the air. This research dates from November 2021 but I didn’t stumble across it until this February 2, 2022 article by Talib Visram for Fast Company (Note: Links have been removed),

By some estimates, people have discarded 4,900 million tonnes of plastic have into the environment. Once in nature, that plastic starts to degrade, fragmenting into microplastics about the size of a sesame seed, which are inadvertently ingested by humans and animals through eating them in seafood and drinking them in water. Some reports suggest that we all consume five grams a week–about the weight of a bottle cap.

But, we may be taking more plastics into our systems through our respiratory systems. There’s been less investigation of nanoplastics: particles smaller than microplastics, so small that they can move huge distances in the air and be more easily inhaled into the bloodstream. A new study looks at the travel of those lighter particles, finding them abundant in the atmosphere, and carried, via aerosol transmission, even to remote areas. As far as the scientists know, it’s “the most accurate record of air pollution by nanoplastics ever made.”

A February 1, 2022 news item on SciTechDaily.com highlights some of the concerns raised by the research,

In a new study, Empa [Swiss Federal Laboratories for Materials Science and Technology] researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere.

According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers.

….

A January 25, 2022 EMPA [Swiss Federal Laboratories for Materials Science and Technology] press release by Noé Waldmann, which originated the news item, provides some technical details,

In a large-scale fundraising campaign, popular YouTubers like Mister Beast and Mark Rober are currently trying to rid the oceans of almost 14,000 tonnes of plastic waste. That’s about 0.15 per cent of the amount that ends up in the oceans every year. But it’s not just our waters that are full of plastic. A new study shows that the spread of nanoplastic through the air is a more widespread problem than previously thought.

….

Extreme conditions

The scientists studied a small area at an altitude of 3106 meters at the top of the mountain “Hoher Sonnenblick” in the “Hohe Tauern” National Park in Austria. An observatory of the Central Institute for Meteorology and Geodynamics has been located here since 1886. The observatory is run by meteorologist and Arctic researcher Elke Ludewig. Since research began here in the late 19th century, the observatory has only been non-operational on four days. The research station also served as a base for the study on the spread of nanoplastics in remote areas.

Every day, and in all weather conditions, scientists removed a part of the top layer of snow around a marker at 8 AM and carefully stored it. Contamination of the samples by nanoplastics in the air or on the scientists’ clothes was a particular challenge. In the laboratory, the researchers sometimes had to remain motionless when a colleague handled an open sample.

The origin of the tiny particles was traced with the help of European wind and weather data. The researchers could show that the greatest emission of nanoplastics into the atmosphere occurs in densely populated, urban areas. About 30% of the nanoplastic particles measured on the mountain top originate from a radius of 200 kilometers, mainly from cities. However, plastics from the world’s oceans apparently also get into the air via the spray of the waves. Around 10% of the particles measured in the study were blown onto the mountain by wind and weather over 2000 kilometers – some of them from the Atlantic.

Nanoparticles in the bloodstream

It is estimated that more than 8300 million tonnes of plastic have been produced worldwide to date, about 60% of which is now waste. This waste erodes through weathering effects and mechanical abrasion from macro- to micro- and nanoparticles. But discarded plastic is far from the only source. Everyday use of plastic products such as packaging and clothing releases nanoplastics. Particles in this size range are so light that their movement in the air can best be compared to gases.

Besides plastics, there are all kinds of other tiny particles. From Sahara sand to brake pads, the world is buzzing through the air as abrasion. It is as yet unclear whether this kind of air pollution poses a potential health threat to humans. Nanoparticles, unlike microparticles, do not just end up in the stomach. They are sucked deep into the lungs through respiration, where their size may allow them to cross the cell-blood barrier and enter the human bloodstream. Whether this is harmful or even dangerous, however, remains to be researched.

Included here because of its compelling story is Utrecht University’s November 1, 2021 press release conveying the researchers’ excitement, (Note: Links have been removed)

Nanoplastics found in the Alps, transported by air from Frankfurt, Paris and London

A team of researchers have found nanoplastics at the pristine high-altitude Sonnblick Observatory in the Alps. This is the first time that nanoplastics were found in this area. The researchers were originally looking for certain organic particles, but found nanoplastics by chance, discovering a new analysis method for detecting nanoplastics in the process. …

The researchers were looking for organic particles by taking samples of snow or ice, evaporating them, and then burning the residue to detect and analyse the vapours. “Our detection method is a bit like a mechanical nose. And unexpectedly, it smelled burning plastics in our snow samples,” lead researcher Dušan Materić explains. The detector found the smell of several types of plastic, mostly polypropylene (PP) and polyethylene terephthalate (PET).

The detected plastic particles turned out to be less than 200 nm in size, about one hundredth the width of a human hair. That is significantly smaller than plastic particles detected in previous studies. “With this detection method, we are the first group to quantify nanoplastics in the environment,” says Materić. “Since the high Alps are a very remote and pristine area, we were quite shocked and surprised to find such a high concentration of nanoplastics there.” The results suggest that in addition to microplastics, there might be as much nanoplastics present in these remote places.

Transported by air

“We were quite gripped by these findings,” Materić continues. “It’s highly unlikely that these nanoplastics originated from local pristine Alpine areas. So where did they come from? We completely turned around our research project to study this further.”

The researchers found a striking correlation between high concentrations of nanoplastics and winds coming from the direction of major European cities, most notably Frankfurt and the industrial Ruhr area (Germany), but also the Netherlands, Paris, and even London.

“Advanced modelling supported the idea that nanoplastics are indeed transported by air from these urban places,” says Materić. “That’s potentially alarming, because that could mean that there are hotspots of nanoplastics in our cities, and indeed in the very air we’re breathing. We are currently studying this in more detail.” Since working on the current publication, Materić has already received an additional NWO [Dutch Research Council] grant of 50,000 Euros to study the size distribution of nanoplastics in indoor, urban and rural air.

Here’s a link to and a citation for the paper,

Nanoplastics transport to the remote, high-altitude Alps by Dušan Materić,
Elke Ludewig, Dominik Brunner, Thomas Röckmann, Rupert Holzinger. Environmental Pollution Volume 288, 1 November 2021, 117697 DOI: https://doi.org/10.1016/j.envpol.2021.117697

This paper is open access.

Of airborne nanomaterials, bacterial microbiomes, viral microbiomes, and paper sensors

There’s a Jan. 14, 2015 news item on Nanowerk from the Virginia Polytechnic Institute (Virginia Tech) which is largely a personal profile featuring some basic information (useful for those new to the topic) about airborne nanoparticles (Note: A link has been removed),

The Harvard educated undergraduate [Linsey Marr,  professor of civil and environmental engineering, Virginia Tech] who obtained her Ph.D. from University of California at Berkeley and trained as a postdoctoral researcher with a Nobel laureate of chemistry at MIT is now among a handful of researchers in the world who are addressing concerns about engineered nanomaterials in the atmosphere.

Marr is part of the National Science Foundation’s Center for the Environmental Implications of Nanotechnology and her research group has characterized airborne nanoparticles at every point of their life cycle. This cycle includes production at a commercial manufacturing facility, use by consumers in the home, and disposal via incineration.

A Jan. 14, 2015 Virginia Tech news release, which originated the news item, quotes Marr on the current thinking about airborne nanoparticles,

“Results have shown that engineered nanomaterials released into the air are often aggregated with other particulate matter, such as combustion soot or ingredients in consumer spray products, and that the size of such aggregates may range from smaller than 10 nanometers to larger than 10 microns,” Marr revealed. She was referring to studies completed by research group members Marina Quadros Vance of Florianopolis, Brazil, a research scientist with the Virginia Tech Institute of Critical Technology and Applied Science, and Eric Vejerano, of Ligao, Philippines, a post-doctoral associate in civil and environmental engineering.

Size matters if these aggregates are inhaled.

Another concern is the reaction of a nanomaterial such as a fullerene with ozone at environmentally relevant concentration levels. Marr’s graduate student, Andrea Tiwari, of Mankato, Minnesota, said the resulting changes in fullerene could lead to enhanced toxicity.

The story then segues into airborne pathogens and viruses eventually honing in on virus microbiomes and bacterial microbiomes (from the news release),

Marr is a former Ironman triathlete who obviously has strong interests in what she is breathing into her own body. So it would be natural for her to expand her study of engineered nanoparticles traveling in the atmosphere to focus on airborne pathogens.

She did so by starting to consider the influenza virus as an airborne pollutant. She applied the same concepts and tools used for studying environmental contaminants and ambient aerosols to the examination of the virus.

She looked at viruses as “essentially self-assembled nanoparticles that are capable of self-replication.”

Her research team became the first to measure influenza virus concentrations in ambient air in a children’s day care center and on airplanes. When they conducted their studies, the Virginia Tech researchers collected samples from a waiting room of a health care center, two toddlers’ rooms and one babies’ area of a childcare center, as well as three cross-country flights between Roanoke, Virginia., and San Francisco. They collected 16 samples between Dec. 10, 2009 and Apr. 22, 2010.

“Half of the samples were confirmed to contain aerosolized influenza A viruses,” Marr said. The childcare samples were the most infected at 75 percent. Next, airplane samples reached 67 percent contamination, and health center numbers came in at 33 percent.

This study serves as a foundation for new work started about a year ago in her lab.

Marr collaborated with Aaron J. Prussin II, of Blacksburg, Virginia, and they successfully secured for him a postdoctoral fellowship from the Alfred P. Sloan Foundation to characterize the bacterial and viral microbiome — the ecological community of microorganisms — of the air in a daycare center.

They are now attempting to determine seasonal changes of both the viral microbiome and the bacterial microbiome in a daycare setting, and examine how changes in the microbiome are related to naturally occurring changes in the indoor environment.

“Little is known about the viral component of the microbiome and it is important because viruses are approximately 10 times more abundant than bacteria, and they help shape the bacterial community. Research suggests that viruses do have both beneficial and harmful interactions with bacteria,” Prussin said.

With Prussin and Marr working together they hope to verify their hypothesis that daycare centers harbor unique, dynamic microbiomes with plentiful bacteria and viruses. They are also looking at what seasonal changes might bring to a daycare setting.

They pointed to the effect of seasonal changes because in previous work, Marr, her former graduate student Wan Yang, of Shantou, China, and Elankumaran Subbiah, a virologist in the biomedical sciences and pathobiology department of the Virginia-Maryland College of Veterinary Medicine, measured the influenza A virus survival rate at various levels of humidity.

Their 2012 study presented for the first time the relationship between the influenza A virus viability in human mucus and humidity over a large range of relative humidities, from 17 percent to 100 percent. They found the viability of the virus was highest when the relative humidity was either close to 100 percent or below 50 percent. The results in human mucus may help explain influenza’s seasonality in different regions.

According to the news release Marr and her colleagues have developed a fast and cheap technology for detection of airborne pathogens (Note: A link has been removed),

With the urgent need to understand the dynamics of airborne pathogens, especially as one considers the threats of bioterrorism, pandemic influenza, and other emerging infectious diseases, Marr said “a breakthrough technology is required to enable rapid, low-cost detection of pathogens in air.”

Along with Subbiah and Peter Vikesland,  professor of civil and environmental engineering, they want to develop readily deployable, inexpensive, paper-based sensors for airborne pathogen detection.

In 2013 they received funding of almost $250,000 from Virginia Tech’s Institute for Critical Technology and Applied Science, a supporter of the clustering of research groups, to support their idea of creating paper-based sensors based on their various successes to date.

Marr explained the sensors “would use a sandwich approach. The bottom layer is paper containing specialized DNA that will immobilize the virus. The middle layer is the virus, which sticks to the specialized DNA on the bottom layer. The top layer is additional specialized DNA that sticks to the virus. This DNA is attached to gold nanoparticles that are easily detectable using a technique known as Raman microscopy.”

They key to their approach is that it combines high-tech with low-tech in the hopes of keeping the assay costs low. Their sampling method will use a bicycle pump, and low cost paper substrates. They hope that they will be able to incorporate smart-phone based signal transduction for the detection. Using this approach, they believe “even remote corners of the world” would be able to use the technique.

Vikesland previously received funding from the Gates Foundation to detect the polio virus via paper-based diagnostics. Polio is still found in countries on the continents of Asia and Africa.

I have previously mentioned Linsey Marr in an Oct. 18, 2013 post about the revival of the Nanotechnology Consumer Products Inventory (originally developed by the Project for Emerging Nanotechnologies) by academics at Virginia Tech and first mentioned CEINT in an Aug. 15, 2011 post about a special project featuring a mesocosm at Duke University (North Carolina).