Tag Archives: Alberta

What is happening with Alberta’s (Canada) Ingenuity Lab?

Alberta’s Ingenuity Lab (first mentioned here in a November 19, 2013 posting) seems to have been launched sometime in 2012 (or maybe 2013). It;s a province of Alberta initiative and at the time of I first heard of it I questioned the necessity for another nanotechnology institution in Alberta (or anywhere else in Canada for that matter).

Amuse bouche: a roundup of the Canadian nanotechnology scene

Since 2012/3 a great many things have changed. The National Institute of Nanotechnology (NINT) seems to have become almost completely dormant; the same can be said for Canada’s NanoPortal and nanoAlberta.

Adding to this brief roundup of the nanotechnology scene in Canada, the province of Alberta lists their various facilities on their Nanotechnology and microsystems webpage. As that page was last updated on 2012 you may find the information no longer viable.

A quick search for NanoQuébec yielded Prima Québec; Pôle recherche innovation matériaux avancés (that’s research for innovation and advanced materials; I think). Finally, there is still a Nano Ontario.

Should anyone know of a Canadian ‘nano’ institution that should be included, please do let me know in the ‘comments’.

Ingenuity Lab: Basics

The University of Alberta’s Faculty of Engineering’s Engineering Research webpage (copyright 2002-2018) describes the Ingenuity Lab this way,

ingenuity Lab (the Nanotechnology Accelerator) is a large scale ($100M), 10-year, multidisciplinary research and development initiative co-located at the Faculty of Engineering,  the University of Alberta and the National Institute for Nanotechnology. Led by chemical engineering professor and Canada Research Chair holder Carlo Montemagno, iNgenuity is focused on groundbreaking bionanotechnology advances and innovative business practices that will enable Alberta to become a world-leading centre for nanotechnology innovation. (www.ingenuitylab.ca)

That’s a very large enterprise by Canadian standards.

After a great deal of initial promotion for both the lab and its director, Dr. Carlo Montemagno, the lab settled into a pattern of making bold announcements, many of which I covered here,

The blog search engine here privileges titles containing the search term (in this case, Ingenuity Lab) first and then restarts, in date order, all of the other ‘nontitle’ mentions. (I stopped with the titles.)

Last year (2017), there was a major change at the Ingenuity Lab, the director, Dr. Carlo Montemagno, moved to Illinois to become the Chancellor for Southern Illinois University (SIU). Unfortunately, I did not receive any response from Dr. Montemagno to the interview questions I sent him, twice, via email. I also emailed, once, SIU’s chief marketing and communications, Rae Goldsmith. For the curious, here are the questions,

(1) What differences did you experience as a researcher between the Canadian approach to nanotechnology (the National Institute of Nanotechnology is one of the Canada National Research Council’s institute’s) and the US approach (National Nanotechnology Initiative, a central funding hub and research focus for the US government)?

(2) Will your experience in Canada affect how you approach your work at SIU? Assuming, there is some influence, how will that experience affect your work at SIU?

(3) What are you most proud of achieving while leading Alberta’s Ingenuity Lab?

(4) Could you reflect on the trends you see with regard to nanotechnology not just in Canada and/or the US but internationally too?

(5) Is there anything else you’d like to add?

My questions were pretty much puffballs. In the meantime, it seems Dr. Montemagno attracted some serious journalistic interest, from a February 21, 2018 article by Dawn Rhodes for the Chicago Tribune,

When Chancellor Carlo Montemagno took the helm at Southern Illinois University Carbondale in July [2017], he set to work on a plan to dismantle and rebuild academics at the struggling campus, which has hemorrhaged enrollment over the past several years. His idea was a bold one, rarely if ever attempted at a large public university: eliminate academic departments.

The plan drew ire as well as praise, opening some bitter fissures among faculty, students and staff. That discord seems to have grown in recent weeks, particularly as the chancellor has become embroiled in controversies that have intensified scrutiny of his leadership.

In January [2018], SIU student paper The Daily Egyptian revealed the university hired Montemagno’s daughter and son-in-law shortly after he assumed the chancellor post. The investigation showed that the couple’s work history traces the same path as Montemagno’s, with the pair having held jobs at the same institutions he worked at for the past decade.

There have also been complaints that Montemagno is too directly influencing other hiring at the university — which he denies.

Both issues are the subjects of separate ethics investigations, SIU system President Randy Dunn said.

Then on Thursday [February 15, 2018?], the chancellor said he used part of his relocation allotment from the university to help cover the costs of moving his daughter’s family to southern Illinois, as well, adding up to $16,076.45. Montemagno said “there was a misunderstanding about what could be covered in the move” so he picked up the tab for part of the added costs and reimbursed SIU for the remaining expense of moving his daughter’s household.

The revelation that the new chancellor’s family members received jobs at Southern Illinois, which cut dozens of positions just weeks before his arrival and in the midst of the two-year state budget impasse, irked many at the university. It also drew sharp retorts from a member of the Illinois Board of Higher Education.

In an interview Monday [February 19, 2018?], Montemagno said he recognized the optics of using part of his moving allowance for his daughter’s benefit and decided to pay back the university. But he said he never hid the fact that his family members were hired by SIU and he shrugged off criticism he has received in recent weeks. Although it caught some by surprise, SIU leaders had, in fact, approved the family hires as part of the chancellor’s hiring negotiations.

Rhodes’ article provides fascinating insight into the political struggles currently taking place at SIU. I encourage you to read the piece in its entirety if you have the time.

Ingenuity Lab: We are family

The appearance of Melissa Germain (Montemagno’s daughter) and her husband, Jeffrey Germain (Montemagno’s son-in-law), in the article was a bit of a surprise. Both were involved with the Ingenuity Lab. (I contacted Melissa Germain years ago to get on the lab’s media list to receive all their news releases. She agreed to put me on the list but I never received anything from them. Whether that was by accident or by design, I’ll never know. Jeff Germain was, for a time, the Ingenuity Lab’s interim director.)

Logically, this means that the University of Alberta hired not only Dr. Montemagno but also his daughter and son-in-law. As Rhodes’ article notes, it’s not unusual for faculty members to insist their spouses also be given jobs. The surprise here is that Montemagno’s daughter and her spouse were part of the deal, informal (SIU?) or otherwise (Alberta?).

In trying to find more information about the Ingenuity Lab’s budgets and financials (unsuccessful), I stumbled across the glassdoor.ca site (accessed March 5, 2018), which features some comments about the working environment at Alberta’s Ingenuity lab,

11 Jul, 2017

Helpful (1)

“Family Run Lab with Public Funding at the University of Alberta”
Current Employee – Anonymous Employee in Edmonton, AB
Doesn’t Recommend
Negative Outlook

I have been working at Ingenuity Lab full-time (More than a year)


-You will learn how to handle uncomfortable environment very well.
-There are some good researchers and staffs in the group.


– It is a public funded lab that controls by family members. This is not the issue for a private company, but it makes it really unacceptable for a public funded research group.
– The family members without required credentials can override any decision easily.
– The management team (the family members) spend lots of public funding for publicity
-Some of the group members bend easily with wind to stay … Show More

Advice to Management

-Presenting FALSE FACTS has expiry date! It is important to leave good name behind.
-Bringing family members without any credentials on board is not being wise.
– Just investing on gaining publicity is not enough. Nowadays, having output has the final say.

Share on Facebook
Share on Twitter
Share via Email
Copy Link

Other Employee Reviews for Ingenuity Lab

21 Mar, 2017

Helpful (3)
Ingenuity Lab Logo
“A family run business”

Former Employee – Anonymous in Edmonton, AB
Doesn’t Recommend
Negative Outlook

I worked at Ingenuity Lab full-time (More than a year)


Well funded lab with all the facilities located in the National Institute of Nanotechnology. The labs are at a great location and easy access to Tim Hortons.


All the administrative posts are filled with family members. No good communication between researchers and the director is surrounded by his trust worthy group of highly qualified politicians. The projects are all hypothetical and there is a lack of passion for hardcore fundamental research. They run as in commercial companies and does not belong in the NINT. They should relocate in the industrial areas of South Edmonton.

Advice to Management

Start publishing papers in peer reviewed journals rather than cheap publicity in local and national newspapers.

Share on Facebook
Share on Twitter
Share via Email
Copy Link

8 Feb, 2016

Helpful (2)
Ingenuity Lab Logo
“Clouded vision of ingenuity”
Former Employee – Anonymous Employee

I worked at Ingenuity Lab full-time (Less than a year)


Plenty of funding, this place will be in business for at least the next three years. Most of the people are a pleasure to be around.


There is noticeable friction between different team leads. Lack of information between groups has led to a few costly mistakes. It is run much more like a company than research group, results that can make money or be patent-able are the only goals.

Advice to Management

Ditch the yes-men family members that you have installed, and hire industrial trained scientists if you want the results you are looking for.

It’s hard to know if there is one disgruntled person waging a campaign or if there are three very unhappy people from a lab team of about 100 scientists. But the complaints are made several months apart, which suggests three people and generally where there’s one complain there are more, unvoiced complaints. Interestingly, all three complaints focus on the Ingenuity Lab as a ‘family-run’ enterprise. It seems that Montemagno, like a certain US president, prefers to work with his family.

According to this article in The New Economy, Montemagno came to Alberta because it offered an opportunity to conduct research in a progressive fashion,,

In 2012, Dr Montemagno was lured back to the world of research when the opportunity to lead a large-scale nanotechnology accelerator initiative in Alberta materialised. His background traversing agricultural and bioengineering, petroleum engineering, and nanotechnology made him an ideal choice to lead the exciting new programme. The opportunity was significant and he viewed Alberta as a land of opportunity with an entrepreneurial spirit; he decided to make the move to Canada. The vision of advancing technologies to solve grand challenges recaptured his imagination. The initiative is now branded as Ingenuity Lab. [emphases mine]

Located within the University of Alberta, Canada, Ingenuity Lab is an assembly of multi-disciplinary experts who work closely to develop technological advancements in ways that are not otherwise possible. Not only is Ingenuity Lab different to other initiatives in the way it operates its goal-orientated and holistic approach, but also in the progressive way it conducts research. In this model, limitations on creativity that surround the traditional university faculty model (which rewards individual success and internal competition) are overcome.[emphases mine]

Three (at least) employees seem to suggest otherwise. Still, there are situations where trusted colleagues, familial or not, migrate together from one employer to another. For example, Nigel Lockyer was the Director for TRIUMF (Canada’s particle accelerator centre; formerly, Canada’s National Laboratory for Particle and Nuclear Physics). He brought on board with him, Timothy Meyer someone with whom (I believe) he had a previous working/professional relationship. Lockyer is now the Director of the Fermilab (University of Chicago, Illinois, US) and guess who also works at the Fermilab? Lockyer and Meyer were quite successful at TRIUMF and they appear to be revitalizing the Fermi Lab, which until their tenure seemed moribund. (See: University of Chicago Sept. 27, 2017 news release: Nigel Lockyer appointed to second term as director of Fermilab; and Timothy Meyer’s profile page on the Fermilab website to confirm the biographical details for yourself.)

These days, the Ingenuity Lab (accessed March 5, 2017) lists Murray Gray, PhD, as their interim director. He is a professor emeritus from the University of Alberta. There is still an Ingenuity Lab website, Facebook account, and Twitter account. The Twitter account has been inactive since August 2017, their website is curiously empty, while the Facebook account boasts a relatively recent posting of a research paper.

Final thoughts

With all the money for science funding flying around, it seems like it might be time to start assessing the ROI (return on investment) for these projects and, perhaps, giving a closer eye to how it’s spent (oversight) in the first place. In Canada.

Other than an occasional provincial or federal audit that might or might not occur, is anyone providing consistent oversight for these multimillion dollar science investments? For example, the Canadian federal government recently announced $950M investment in five superclusters (see Feb. 15, 2018 Innovation, Science and Economic Development Canada news release). One of the superclusters has to do with supply chains and AI (artificial intelligence. Here’s what Paul Wells in a Feb. 15, 2018 article for Maclean’s observed,

The AI supply-chain group from, essentially, Montreal (wait! I guess I’m just guessing about that) is comically gnomic. I could find no name of any actual person or company anywhere on the website. Only a series of Zen riddles. “Over 120 industrial and enabling institutions, from very large firms to start-ups, have joined forces in this journey,” the website says helpfully, “and we have strong momentum.”

You can see it for yourself here. Who will be providing oversight? At what intervals? And, how?

In searching for further information about funding and budgets, I found this (in addition to the feedback from disgruntled Ingenuity Lab employees), Dr. Carlo Montemagno received $556,295.06 in compensation and $40,215.81 for ‘other’ in 2016 and $538,345.35 in compensation and $37,815.98 for ‘other’ in 2015 (accessed March 5, 2018).

The information about Dr. Montemagno’s salary and benefits can be found on the University of Alberta’s Human Resource Services public Sector Compensation Disclosure page. Presumably, the 2017 figures have not yet been released, as well, Montegmagno’s 2017 salary .may not be disclosed for the same reason neither Melissa Germain’s nor Jeffrey Germain’s salaries are disclosed,

The Alberta government’s Public Sector Compensation Transparency Act (2015) requires that the University of Alberta disclose the name, position, compensation, non-monetary benefits and severance for all employees whose total compensation plus severance exceeds an annual threshold [emphasis mine]. Remuneration paid to members of the Board of Governors will also be disclosed. Disclosure must be published annually on or before June 30th for compensation paid in the previous calendar year. Employees who terminated between January 1 and June 30 that received pay in lieu of notice, pay during a period of notice and/or severance pay and the total of those amounts exceeds the threshold will be included on the disclosure list each December. The disclosure list will identify the name and the amount of severance. Any other compensation will be reported on the next June’s disclosure.

The Public Sector Compensation Transparency Act applies to more than 150 agencies, boards, and commissions, to independent offices of the Alberta Legislature, and to employees of Convenant Health.

For questions or concerns, please contact Wayne Patterson, Executive Director, Human Resource Services.

There may have been a good reason for Montemagno’s compensation of over 1/2 million dollars per year, for 2015 and 2016 at least. Researchers are expected to bring in money through research grants. I found one funding announcement for $1.7M from Natural Resource Canada on the Ingenuity Lab’s news release page (accessed March 5, 2018).

Oddly, Dr. Montemagno was appointed chancellor at SIU on July 13, 2017 and his start date was August 15, 2017 (July 13, 2017 SIU news release). That’s unusually fast for an academic institution for a position at that level. Not to mention Montemagno’s position in Alberta.

SIU is not the only place to inspire Montemagno to dream (eliminate academic departments from their university as per Rhodes’ article). He dreamt big for Alberta too. From an Oct. 30,2015 article by Gary Lamphier for the Edmonton Journal,

Faced with so many serious challenges, it’s no surprise Alberta’s oilpatch and its once-envied economy are sputtering, prompting gleeful outbreaks of schadenfreude from Vancouver to Toronto.

But what if Alberta could upend the basic economic paradigm [emphasis mine] in which it operates? Suppose Alberta could curb its carbon emissions, thus shedding its nasty environmental reputation and giving it the social licence needed to build new oil pipelines, while diversifying the economy at the same time?

Sound impossible? Don’t be so sure. That’s Carlo Montemagno’s dream, and the world-renowned director of Alberta’s Ingenuity Lab, who heads a team of about 100 scientists, has a bold plan to do it. It’s called the carbon transformation project, and he hopes to pull it off by the end of this decade. [emphases mine]

If it works, the scheme would capture the carbon dioxide (CO2) emitted at any one of dozens of Alberta industrial sites, from power plants to petrochemical facilities, without requiring any massive retrofits or the kind of multibillion-dollar investments associated with carbon sequestration.

Through a process employing artificial light, water and electricity, it would harness industrial CO2 emissions to create more than 70 commercially valuable carbon-containing chemicals, Montemagno says. Such chemicals could form the essential building blocks for dozens of consumer and industrial products, ranging from auto antifreeze and polyester fibres to food additives.

The plan is brilliant in its simplicity. Montemagno’s team aims to turn a bad thing — CO2 — into a good thing, one that creates value, wealth, and new jobs. And he hopes to do it without trashing Alberta’s existing oil-fired economy.

Instead, his concept involves simply tacking one more process onto the province’s industrial sites, thus creating valuable new feedstock for existing or new industries.

“If it all works, it means you can produce products you need to satisfy local economic needs, create more value from emissions, generate more revenue and more products,” says Montemagno, who has science degrees from Cornell University, Penn State, and a PhD in civil engineering and geological sciences from University of Notre Dame.

“The big argument today is, you burn fossil fuels and release CO2 into the atmosphere, and end up causing global warming,” he says.

“But the problem isn’t that you’re burning fossil fuels. The problem is you’re releasing CO2 into the atmosphere. So is there an opportunity to not release CO2 and instead capture and use it in other products? It’s really about stating the problem in the appropriate language.”

With funding from Alberta’s Climate Change and Emissions Management Corp., Ingenuity Lab is hard at work developing a $1.3-million demonstration project to prove the concept. Montemagno hopes to have an industrial-scale pilot project running in three to four years. [emphasis mine]

Montemagno certainly had an exciting plan. And, 2018 would be around the time someone might expect to see the “industrial-scale pilot project for carbon transformation” mentioned (2015 + three to four years) in Lamphier’s article. Where is it? When is it starting?

And now, Montemagno has some exciting plans for SIU?


With regard to hiring family members, the Chicago Sun-Time Editorial Board (Feb. 5, 2018 editorial) does not approve,

Here’s a pro tip for you chancellors at hard-up public universities who are thinking about hiring your own daughters:

Don’t do it.

Don’t hire your sons-in-law, either.


It looks bad, and nobody afterward will feel quite so confident that you are serious about getting your university’s finances in order and protecting important academic programs.

They might look at you, fairly or not, like you’re an old-time Chicago ward boss.

Carlo Montemagno was hired last year as chancellor at Southern Illinois University Carbondale. He makes $340,000 a year.

That’s a lot of money, but top university talent doesn’t come cheap, not even at a state university that has been forced to cut millions of dollars from its budget in recent years and has considered cutting seven degree programs.

Then, on Sept. 1, 2017, three months after Montemagno came on board, his daughter, Melissa Germain, was hired as assistant director of university communications, with an annual salary of $52,000. One month later, his son-in-law, Jeffrey Germain, was hired as “extra help” in the office of the vice chancellor for research, at $45 an hour.

Allow us to pause here to wonder why Montemagno, no stranger to the back-biting culture of university campuses, failed to foresee that this would become a minor flap. …

It didn’t seem to occur to the members of the Editorial Board that Montemagno had successfully pulled off this feat in Alberta before arriving at SIU. Also, they seem unaware he took a pay cut of over $100,000 ($340,000 USD = $437,996.28 CAD as of March 2, 2018). That’s an awfully big pay cut even if it is in Canadian dollars.

In any event, I wish the folks at SIU all the best and I hope Dr. Montemagno proves to be a successful and effective chancellor. (It doesn’t look good when you hire your family but it doesn’t necessarily mean it’s wrong and, as for output from the Ingenuity Lab, everyone has a least one mistake and one failure in their working careers. For good measure, sometimes something that looks like a failure turns out to be a success. However, I think some questions need to be asked.

I offer my thanks to the student reporters at SIU’s The Daily Egyptian , Dawn Rhodes, and the Chicago-Tribune Editorial Board whose investigative reporting and commentary supplied me with enough information to go back and reappraise what I ‘knew’ about the Ingenuity Lab.

As for the Ingenuity Lab, perhaps we’ll hear more about their Carbon transformation programme later this year (2018). Unfortunately, the current webpage does not have substantive updates. There are some videos but they seem more like wistful thinking than real life projects.

To answer my own question, What is happening with Alberta’s (Canada) Ingenuity Lab? The answer would seem to be, not much.

If they are cleaning up a mess and this looks like it might be the case, I hope they’re successful and can move forward with their projects. I would like to hear more about the Ingenuity Lab in the future.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Ora Sound, a Montréal-based startup, and its ‘graphene’ headphones

For all the excitement about graphene there aren’t that many products as Glenn Zorpette notes in a June 20, 2017 posting about Ora Sound and its headphones on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

Graphene has long been touted as a miracle material that would deliver everything from tiny, ultralow-power transistors to the vastly long and ultrastrong cable [PDF] needed for a space elevator. And yet, 13 years of graphene development, and R&D expenditures well in the tens of billions of dollars have so far yielded just a handful of niche products. The most notable by far is a line of tennis racquets in which relatively small amounts of graphene are used to stiffen parts of the frame.

Ora Sound, a Montreal-based [Québec, Canada] startup, hopes to change all that. On 20 June [2017], it unveiled a Kickstarter campaign for a new audiophile-grade headphone that uses cones, also known as membranes, made of a form of graphene. “To the best of our knowledge, we are the first company to find a significant, commercially viable application for graphene,” says Ora cofounder Ari Pinkas, noting that the cones in the headphones are 95 percent graphene.


It should be noted that participating in a Kickstarter campaign is an investment/gamble. I am not endorsing Ora Sound or its products. That said, this does look interesting (from the ORA: The World’s First Graphene Headphones Kickstarter campaign webpage),

ORA GQ Headphones uses nanotechnology to deliver the most groundbreaking audio listening experience. Scientists have long promised that one day Graphene will find its way into many facets of our lives including displays, electronic circuits and sensors. ORA’s Graphene technology makes it one of the first companies to have created a commercially viable application for this Nobel-prize winning material, a major scientific achievement.

The GQ Headphones come equipped with ORA’s patented GrapheneQ™ membranes, providing unparalleled fidelity. The headphones also offer all the features you would expect from a high-end audio product: wired/wireless operation, a gesture control track-pad, a digital MEMS microphone, breathable lambskin leather and an ear-shaped design optimized for sound quality and isolated comfort.

They have produced a slick video to promote their campaign,

At the time of publishing this post, the campaign will run for another eight days and has raised $650,949 CAD. This is more than $500,000 dollars over the company’s original goal of $135,000. I’m sure they’re ecstatic but this success can be a mixed blessing. They have many more people expecting a set of headphones than they anticipated and that can mean production issues.

Further, there appears to be only one member of the team with business experience and his (Ari Pinkas) experience includes marketing strategy for a few years and then founding an online marketplace for teachers. I would imagine Pinkas will be experiencing a very steep learning curve. Hopefully, Helge Seetzen, a member of the company’s advisory board will be able to offer assistance. According to Seetzen’s Wikipedia entry, he is a “… German technologist and businessman known for imaging & multimedia research and commercialization,” as well as, having a Canadian educational background and business experience. The rest of the team and advisory board appear to be academics.

The technology

A March 14, 2017 article by Andy Riga for the Montréal Gazette gives a general description of the technology,

A Montreal startup is counting on technology sparked by a casual conversation between two brothers pursuing PhDs at McGill University.

They were chatting about their disparate research areas — one, in engineering, was working on using graphene, a form of carbon, in batteries; the other, in music, was looking at the impact of electronics on the perception of audio quality.

At first glance, the invention that ensued sounds humdrum.

It’s a replacement for an item you use every day. It’s paper thin, you probably don’t realize it’s there and its design has not changed much in more than a century. Called a membrane or diaphragm, it’s the part of a loudspeaker that vibrates to create the sound from the headphones over your ears, the wireless speaker on your desk, the cellphone in your hand.

Membranes are normally made of paper, Mylar or aluminum.

Ora’s innovation uses graphene, a remarkable material whose discovery garnered two scientists the 2010 Nobel Prize in physics but which has yet to fulfill its promise.

“Because it’s so stiff, our membrane gets better sound quality,” said Robert-Eric Gaskell, who obtained his PhD in sound recording in 2015. “It can produce more sound with less distortion, and the sound that you hear is more true to the original sound intended by the artist.

“And because it’s so light, we get better efficiency — the lighter it is, the less energy it takes.”

In January, the company demonstrated its membrane in headphones at the Consumer Electronics Show, a big trade convention in Las Vegas.

Six cellphone manufacturers expressed interest in Ora’s technology, some of which are now trying prototypes, said Ari Pinkas, in charge of product marketing at Ora. “We’re talking about big cellphone manufacturers — big, recognizable names,” he said.

Technology companies are intrigued by the idea of using Ora’s technology to make smaller speakers so they can squeeze other things, such as bigger batteries, into the limited space in electronic devices, Pinkas said. Others might want to use Ora’s membrane to allow their devices to play music louder, he added.

Makers of regular speakers, hearing aids and virtual-reality headsets have also expressed interest, Pinkas said.

Ora is still working on headphones.

Riga’s article offers a good overview for people who are not familiar with graphene.

Zorpette’s June 20, 2017 posting (on Nanoclast) offers a few more technical details (Note: Links have been removed),

During an interview and demonstration in the IEEE Spectrum offices, Pinkas and Robert-Eric Gaskell, another of the company’s cofounders, explained graphene’s allure to audiophiles. “Graphene has the ideal properties for a membrane,” Gaskell says. “It’s incredibly stiff, very lightweight—a rare combination—and it’s well damped,” which means it tends to quell spurious vibrations. By those metrics, graphene soundly beats all the usual choices: mylar, paper, aluminum, or even beryllium, Gaskell adds.

The problem is making it in sheets large enough to fashion into cones. So-called “pristine” graphene exists as flakes, [emphasis mine] perhaps 10 micrometers across, and a single atom thick. To make larger, strong sheets of graphene, researchers attach oxygen atoms to the flakes, and then other elements to the oxygen atoms to cross-link the flakes and hold them together strongly in what materials scientists call a laminate structure. The intellectual property behind Ora’s advance came from figuring out how to make these structures suitably thick and in the proper shape to function as speaker cones, Gaskell says. In short, he explains, the breakthrough was, “being able to manufacture” in large numbers, “and in any geometery we want.”

Much of the R&D work that led to Ora’s process was done at nearby McGill University, by professor Thomas Szkopek of the Electrical and Computer Engineering department. Szkopek worked with Peter Gaskell, Robert-Eric’s younger brother. Ora is also making use of patents that arose from work done on graphene by the Nguyen Group at Northwestern University, in Evanston, Ill.

Robert-Eric Gaskell and Pinkas arrived at Spectrum with a preproduction model of their headphones, as well as some other headphones for the sake of comparison. The Ora prototype is clearly superior to the comparison models, but that’s not much of a surprise. …

… In the 20 minutes or so I had to audition Ora’s preproduction model, I listened to an assortment of classical and jazz standards and I came away impressed. The sound is precise, with fine details sharply rendered. To my surprise, I was reminded of planar-magnetic type headphones that are now surging in popularity in the upper reaches of the audiophile headphone market. Bass is smooth and tight. Overall, the unit holds up quite well against closed-back models in the $400 to $500 range I’ve listened to from Grado, Bowers & Wilkins, and Audeze.

Ora’s Kickstarter campaign page (Graphene vs GrapheneQ subsection) offers some information about their unique graphene composite,


Graphene is a new material, first isolated only 13 years ago. Formed from a single layer of carbon atoms, Graphene is a hexagonal crystal lattice in a perfect honeycomb structure. This fundamental geometry makes Graphene ridiculously strong and lightweight. In its pure form, Graphene is a single atomic layer of carbon. It can be very expensive and difficult to produce in sizes any bigger than small flakes. These challenges have prevented pristine Graphene from being integrated into consumer technologies.


At ORA, we’ve spent the last few years creating GrapheneQ, our own, proprietary Graphene-based nanocomposite formulation. We’ve specifically designed and optimized it for use in acoustic transducers. GrapheneQ is a composite material which is over 95% Graphene by weight. It is formed by depositing flakes of Graphene into thousands of layers that are bonded together with proprietary cross-linking agents. Rather than trying to form one, continuous layer of Graphene, GrapheneQ stacks flakes of Graphene together into a laminate material that preserves the benefits of Graphene while allowing the material to be formed into loudspeaker cones.

Scanning Electron Microscope (SEM) Comparison
Scanning Electron Microscope (SEM) Comparison

If you’re interested in more technical information on sound, acoustics, soundspeakers, and Ora’s graphene-based headphones, it’s all there on Ora’s Kickstarter campaign page.

The Québec nanotechnology scene in context and graphite flakes for graphene

There are two Canadian provinces that are heavily invested in nanotechnology research and commercialization efforts. The province of Québec has poured money into their nanotechnology efforts, while the province of Alberta has also invested heavily in nanotechnology, it has also managed to snare additional federal funds to host Canada’s National Institute of Nanotechnology (NINT). (This appears to be a current NINT website or you can try this one on the National Research Council website). I’d rank Ontario as being a third centre with the other provinces being considerably less invested. As for the North, I’ve not come across any nanotechnology research from that region. Finally, as I stumble more material about nanotechnology in Québec than I do for any other province, that’s the reason I rate Québec as the most successful in its efforts.

Regarding graphene, Canada seems to have an advantage. We have great graphite flakes for making graphene. With mines in at least two provinces, Ontario and Québec, we have a ready source of supply. In my first posting (July 25, 2011) about graphite mines here, I had this,

Who knew large flakes could be this exciting? From the July 25, 2011 news item on Nanowerk,

Northern Graphite Corporation has announced that graphene has been successfully made on a test basis using large flake graphite from the Company’s Bissett Creek project in Northern Ontario. Northern’s standard 95%C, large flake graphite was evaluated as a source material for making graphene by an eminent professor in the field at the Chinese Academy of Sciences who is doing research making graphene sheets larger than 30cm2 in size using the graphene oxide methodology. The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

Approximately 70% of production from the Bissett Creek property will be large flake (+80 mesh) and almost all of this will in fact be +48 mesh jumbo flake which is expected to attract premium pricing and be a better source material for the potential manufacture of graphene. The very high percentage of large flakes makes Bissett Creek unique compared to most graphite deposits worldwide which produce a blend of large, medium and small flakes, as well as a large percentage of low value -150 mesh flake and amorphous powder which are not suitable for graphene, Li ion batteries or other high end, high growth applications.

Since then I’ve stumbled across more information about Québec’s mines than Ontario’s  as can be seen:

There are some other mentions of graphite mines in other postings but they are tangential to what’s being featured:

  • (my Oct. 26, 2015 posting about St. Jean Carbon and its superconducting graphene and
  • my Feb. 20, 2015 posting about Nanoxplore and graphene production in Québec; and
  • this Feb. 23, 2015 posting about Grafoid and its sister company, Focus Graphite which gets its graphite flakes from a deposit in the northeastern part of Québec).


After reviewing these posts, I’ve begun to wonder where Ora’s graphite flakes come from? In any event, I wish the folks at Ora and their Kickstarter funders the best of luck.

Artificial intelligence (AI) company (in Montréal, Canada) attracts $135M in funding from Microsoft, Intel, Nvidia and others

It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.

In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government  budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),

One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.

The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.

It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.

It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.

In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.

They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.

The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.

The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),

The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.

What will it help the company do? Scale, its founders say.

“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.

“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”

Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.

There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),

Element AI isn’t the only organization in Canada that investors are interested in.

In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.

Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.

For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),

Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.

The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.

AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.

“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”

The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.

The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.”  Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.

Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),

It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.

Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.

…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.

Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.

The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.

“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.

The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.

Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.

The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.

But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.

Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.

“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.

Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.

Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.

Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.

nano tech 2017 being held in Tokyo from February 15-17, 2017

I found some news about the Alberta technology scene in the programme for Japan’s nano tech 2017 exhibition and conference to be held Feb. 15 – 17, 2017 in Tokyo. First, here’s more about the show in Japan from a Jan. 17, 2017 nano tech 2017 press release on Business Wire (also on Yahoo News),

The nano tech executive committee (chairman: Tomoji Kawai, Specially Appointed Professor, Osaka University) will be holding “nano tech 2017” – one of the world’s largest nanotechnology exhibitions, now in its 16th year – on February 15, 2017, at the Tokyo Big Sight convention center in Japan. 600 organizations (including over 40 first-time exhibitors) from 23 countries and regions are set to exhibit at the event in 1,000 booths, demonstrating revolutionary and cutting edge core technologies spanning such industries as automotive, aerospace, environment/energy, next-generation sensors, cutting-edge medicine, and more. Including attendees at the concurrently held exhibitions, the total number of visitors to the event is expected to exceed 50,000.

The theme of this year’s nano tech exhibition is “Open Nano Collaboration.” By bringing together organizations working in a wide variety of fields, the business matching event aims to promote joint development through cross-field collaboration.

Special Symposium: “Nanotechnology Contributing to the Super Smart Society”

Each year nano tech holds Special Symposium, in which industry specialists from top organizations from Japan and abroad speak about the issues surrounding the latest trends in nanotech. The themes of this year’s Symposium are Life Nanotechnology, Graphene, AI/IoT, Cellulose Nanofibers, and Materials Informatics.

Notable sessions include:

Life Nanotechnology
“Development of microRNA liquid biopsy for early detection of cancer”
Takahiro Ochiya, National Cancer Center Research Institute Division of Molecular and Cellular Medicine, Chief

AI / IoT
“AI Embedded in the Real World”
Hideki Asoh, AIST Deputy Director, Artificial Intelligence Research Center

Cellulose Nanofibers [emphasis mine]
“The Current Trends and Challenges for Industrialization of Nanocellulose”
Satoshi Hirata, Nanocellulose Forum Secretary-General

Materials Informatics
“Perspective of Materials Research”
Hideo Hosono, Tokyo Institute of Technology Professor

View the full list of sessions:
>> http://nanotech2017.icsbizmatch.jp/Presentation/en/Info/List#main_theater

nano tech 2017 Homepage:
>> http://nanotechexpo.jp/

nano tech 2017, the 16th International Nanotechnology Exhibition & Conference
Date: February 15-17, 2017, 10:00-17:00
Venue: Tokyo Big Sight (East Halls 4-6 & Conference Tower)
Organizer: nano tech Executive Committee, JTB Communication Design

As you may have guessed the Alberta information can be found in the .Cellulose Nanofibers session. From the conference/seminar program page; scroll down about 25% of the way to find the Alberta presentation,

Production and Applications Development of Cellulose Nanocrystals (CNC) at InnoTech Alberta

Behzad (Benji) Ahvazi
InnoTech Alberta Team Lead, Cellulose Nanocrystals (CNC)

[ Abstract ]

The production and use of cellulose nanocrystals (CNC) is an emerging technology that has gained considerable interest from a range of industries that are working towards increased use of “green” biobased materials. The construction of one-of-a-kind CNC pilot plant [emphasis mine] at InnoTech Alberta and production of CNC samples represents a critical step for introducing the cellulosic based biomaterials to industrial markets and provides a platform for the development of novel high value and high volume applications. Major key components including feedstock, acid hydrolysis formulation, purification, and drying processes were optimized significantly to reduce the operation cost. Fully characterized CNC samples were provided to a large number of academic and research laboratories including various industries domestically and internationally for applications development.

[ Profile ]

Dr. Ahvazi completed his Bachelor of Science in Honours program at the Department of Chemistry and Biochemistry and graduated with distinction at Concordia University in Montréal, Québec. His Ph.D. program was completed in 1998 at McGill Pulp and Paper Research Centre in the area of macromolecules with solid background in Lignocellulosic, organic wood chemistry as well as pulping and paper technology. After completing his post-doctoral fellowship, he joined FPInnovations formally [formerly?] known as PAPRICAN as a research scientist (R&D) focusing on a number of confidential chemical pulping and bleaching projects. In 2006, he worked at Tembec as a senior research scientist and as a Leader in Alcohol and Lignin (R&D). In April 2009, he held a position as a Research Officer in both National Bioproducts (NBP1 & NBP2) and Industrial Biomaterials Flagship programs at National Research Council Canada (NRC). During his tenure, he had directed and performed innovative R&D activities within both programs on extraction, modification, and characterization of biomass as well as polymer synthesis and formulation for industrial applications. Currently, he is working at InnoTech Alberta as Team Lead for Biomass Conversion and Processing Technologies.

Canada scene update

InnoTech Alberta was until Nov. 1, 2016 known as Alberta Innovates – Technology Futures. Here’s more about InnoTech Alberta from the Alberta Innovates … home page,

Effective November 1, 2016, Alberta Innovates – Technology Futures is one of four corporations now consolidated into Alberta Innovates and a wholly owned subsidiary called InnoTech Alberta.

You will find all the existing programs, services and information offered by InnoTech Alberta on this website. To access the basic research funding and commercialization programs previously offered by Alberta Innovates – Technology Futures, explore here. For more information on Alberta Innovates, visit the new Alberta Innovates website.

As for InnoTech Alberta’s “one-of-a-kind CNC pilot plant,” I’d like to know more about it’s one-of-a-kind status since there are two other CNC production plants in Canada. (Is the status a consequence of regional chauvinism or a writer unfamiliar with the topic?). Getting back to the topic, the largest company (and I believe the first) with a CNC plant was CelluForce, which started as a joint venture between Domtar and FPInnovations and powered with some very heavy investment from the government of Canada. (See my July 16, 2010 posting about the construction of the plant in Quebec and my June 6, 2011 posting about the newly named CelluForce.) Interestingly, CelluForce will have a booth at nano tech 2017 (according to its Jan. 27, 2017 news release) although the company doesn’t seem to have any presentations on the schedule. The other Canadian company is Blue Goose Biorefineries in Saskatchewan. Here’s more about Blue Goose from the company website’s home page,

Blue Goose Biorefineries Inc. (Blue Goose) is pleased to introduce our R3TM process. R3TM technology incorporates green chemistry to fractionate renewable plant biomass into high value products.

Traditionally, separating lignocellulosic biomass required high temperatures, harsh chemicals, and complicated processes. R3TM breaks this costly compromise to yield high quality cellulose, lignin and hemicellulose products.

The robust and environmentally friendly R3TM technology has numerous applications. Our current product focus is cellulose nanocrystals (CNC). Cellulose nanocrystals are “Mother Nature’s Building Blocks” possessing unique properties. These unique properties encourage the design of innovative products from a safe, inherently renewable, sustainable, and carbon neutral resource.

Blue Goose assists companies and research groups in the development of applications for CNC, by offering CNC for sale without Intellectual Property restrictions. [emphasis mine]

Bravo to Blue Goose! Unfortunately, I was not able to determine if the company will be at nano tech 2017.

One final comment, there was some excitement about CNC a while back where I had more than one person contact me asking for information about how to buy CNC. I wasn’t able to be helpful because there was, apparently, an attempt by producers to control sales and limit CNC access to a select few for competitive advantage. Coincidentally or not, CelluForce developed a stockpile which has persisted for some years as I noted in my Aug. 17, 2016 posting (scroll down about 70% of the way) where the company announced amongst other events that it expected deplete its stockpile by mid-2017.

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for thestar.com,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for thestar.com,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.

Bob McDonald: How is Canada on the ‘forefront of pushing nanotechnology forward’?

Mr. Quirks & Quarks, also known as the Canadian Broadcasting Corporation’s (CBC) Bob McDonald, host of the science radio programme Quirks & Quarks, published an Oct. 9, 2016 posting on the programme’s CBC blog about the recently awarded 2016 Nobel Prize for Chemistry and Canada’s efforts in the field of nanotechnology (Links have been removed),

The Nobel Prize in Chemistry awarded this week for developments in nanotechnology heralds a new era in science, akin to the discovery of electromagnetic induction 185 years ago. And like electricity, nanotechnology could influence the world in dramatic ways, not even imaginable today.

The world’s tiniest machines

The Nobel Laureates developed molecular machines, which are incredibly tiny devices assembled one molecule at a time, including a working motor, a lifting machine, a micro-muscle, and even a four wheel drive vehicle, all of which can only be seen with the most powerful electron microscopes. While these lab experiments are novel curiosities, the implications are huge, and Canada is on the forefront of pushing this research forward. [emphasis mine]

McDonald never explains how Canadians are pushing nanotechnology research further but there is this (Note: Links have been removed),

Many universities offer degree programs on the subject while organizations such as the National Institute for Nanotechnology at the University of Alberta, and the Waterloo Institute for Nanotechnology at the University of Waterloo in Ontario, are conducting fundamental research on these new novel materials.

Somehow he never mentions any boundary-pushing research. hmmm

To be blunt, it’s very hard to establish Canada’s position in the field since ‘nanotechnolgy research’ as such doesn’t exist here in the way it does in the United States, Korea, Iran, Germany, China, the United Kingdom, Ireland, Austria, and others. It’s not a federally coordinated effort in Canada despite the fact that we have a Canada National Research Council (NRC) National Institute of Nanotechnology (NINT) in Alberta. (There’s very little information about research on the NINT website.) A Government of Canada NanoPortal is poorly maintained and includes information that is seriously out-of-date. One area where Canadians have been influential has been at the international level where we’ve collaborated on a number of OECD (Organization for Economic and Cooperative Development) projects focused on safety (occupational and environmental, in particular) issues.

Canada’s Ingenuity Lab, a nanotechnology project that appeared promising, hasn’t made many research announcements and seems to be a provincial (Alberta) initiative rather than a federal one. In fact, the most activity in the field of nanotechnology research has been at the provincial level with Alberta and Québec in the lead, if financial investment is your primary measure, and Ontario following, then the other provinces trailing from behind. Unfortunately, I’ve never come across any nanotechnology research from the Yukon or other parts North.

With regard to research announcements, the situation changes and you have Québec and Ontario assuming the lead positions with Alberta following. As McDonald noted, the University of Waterloo has a major nanotechnology education programme and the University of Toronto seems to have a very active research focus in that field (Ted Sargent and solar cells and quantum dots) and the University of Guelph is known for its work in agriculture and nanotechnolgy (search this blog using any of the three universities as a search term). In Québec, they’ve made a number of announcements about cutting edge research. You can search this blog for the names Sylvain Martel, Federico Rosei, and Claude Ostiguy (who seems to work primarily in French), amongst others. CelluForce, based in Quebec, and once  a leader (not sure about the situation these days) in the production of cellulose nanocrystals (CNC). One side comment, CNC was first developed at the University of British Columbia, however, Québec showed more support (provincial funding) and interest and the bulk of that research effort moved.

There’s one more shout out and that’s for Blue Goose Biorefineries in the province of Saskatchewan, which sells CNC and offers services to help companies  research applications for the material.

One other significant area of interest comes to mind, the graphite mines in Québec and Ontario which supply graphite flakes used to produce graphene, a material that is supposed to revolutionize electronics, in particular.

There are other research efforts and laboratories in Canada but these are the institutions and researchers with which I’m most familiar after more than eight years of blogging about Canadian nanotechnology. That said, if I’ve missed any significant, please do let me know in the comments section of this blog.

Alberta’s Ingenuity Lab opens new facility in India and competes in the Carbon XPRIZE


The Ingenuity Lab in Alberta has made two recent announcements. The first one to catch my attention was a May 7, 2016 news item on Nanotechnology Now,

Ingenuity Lab is proud to announce the opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, Kerala India, to implement applied research and enable the translation of new 22nd century technologies. This new facility is the result of collaboration between the International and Inter University Centre for Nanoscience Nanotechnology (IIUCNN) and Ingenuity Lab to leverage what each participant does best.

Should the Nanotechnology Now news item not be available you can find the same information in a May 6, 2016 news item in The Canadian Business News Journal. Here’s the rest of the news item,

Ingenuity Lab, led by Dr. Carlo Montemagno, brings the best minds together to address global challenges and was in 2014 voted the Best Nanotechnology Research Organisation in 2014 by The New Economy. IIUCNN is led by Professor Sabu Thomas, whose vision it is to perform and coordinate academic and research activities in the frontier areas of Nanoscience and Nanotechnology by incorporating physical, chemical, biological and environmental aspects.

The two institutions are world-renowned for their work, and the new partnership should cover areas as diverse as catalysis, macromolecules, environmental chemistry, biological processes and health and wellness.

“The initial focus,” according to Ingenuity Lab’s Director Dr. Carlo Montemagno, “Will be on inexpensive point of care healthcare technologies and water availability for both agriculture and personal consumption.” However, in the future, he says, “We plan to expand the scope to include food safety and energy systems.”

Ingenuity Lab’s role is to focus on producing, adapting and supplying new materials to Ingenuity Lab India to focus on final device development and field-testing. The India team members know what system characteristics work best in developing economies, and will establish the figures of merit to make an appropriate solution. Alberta team members will then use this information to exercise its skills in advance materials and systems design to be crafted into its final form and field-tested.

The collaboration is somewhat unique in that it includes the bilateral exchange of students and researchers to facilitate the commercial translation of new and game changing technologies.

Dr. Babu Sebastian, Honourable Vice Chancellor of Mahatma Gandhi University, will declare the opening of the new facility in the presence of Dr. Montemagno, who will explain the vision of this research hub in association with his plenary lecture of ICM 2016.


A May 9, 2016 press release on Market Wired describes Ingenuity Lab’s latest venture into carbon ‘transformation’,

Alberta-based Ingenuity Lab has entered the Carbon XPRIZE under the name of Ingenuity Carbon Solutions. With competition registration taking place in March, Ingenuity Carbon Solutions plans to launch its latest carbon transformation technology and win the backing it so deserves on the world stage.

Ingenuity Lab is working to develop a technology that transforms CO2 emissions and changes the conversation on carbon and its consequences for the environment. By developing nano particles that have the capability to sequester CO2 from facility gas flue emissions, the technology can metabolize emissions into marketable by-products.

The Carbon XPRIZE this year seeks to inspire solutions to the issue of climate change by incentivizing the development of new and emerging CO2 conversation technologies. Described recently in a WEF [World Economic Forum] survey as the biggest potential threat to the economy in 2016, climate change has been targeted as a priority issue, and the XPRIZE has done a great deal to provide answers to the climate question.

Renowned for its role in bringing new and radical thought leaders into the public domain, the XPRIZE Board of Trustees include Elon Musk, James Cameron and Arianna Huffington and the prize never fails to attract the world’s brightest minds.

This year’s Carbon XPRIZE challenges participants including Ingenuity Lab and its Ingenuity Carbon Solutions team to reimagine the climate question by accelerating the development of technologies to convert CO2 into valuable products. Ingenuity Carbon Solutions and others will compete in a three-round competition for a total prize purse of $20m, with the winnings going towards the technology’s continued development.

I hope to hear more good news soon. Alberta could certainly do with some of that as it copes with Fort McMurray’s monstrous wildfire (more here in a NASA/ Goddard Space Flight Center May 9, 2016 news release on EurekAlert).

For anyone interesting Alberta’s ‘nano’ Ingenuity Lab, more can be found here.