Tag Archives: Alberta

New photocatalytic approach to cleaning wastewater from oil sands

With oil sands in the title, this story had to mention the Canadian province of Alberta, which has been widely castigated and applauded for its oil extraction efforts in their massive oil sands field. A Nov. 24, 2015 news item on Nanotechnology Now describes a new technology for cleaning the wastewater from oil sands extraction processes,

Researchers have developed a process to remove contaminants from oil sands wastewater using only sunlight and nanoparticles that is more effective and inexpensive than conventional treatment methods.

Frank Gu, a professor in the Faculty of Engineering at the University of Waterloo [in the province of Ontario] and Canada Research Chair in Nanotechnology Engineering, is the senior researcher on the team that was the first to find that photocatalysis — a chemical reaction that involves the absorption of light by nanoparticles — can completely eliminate naphthenic acids in oil sands wastewater, and within hours. Naphthenic acids pose a threat to ecology and human health. Water in tailing ponds left to biodegrade naturally in the environment still contains these contaminants decades later.

A Nov. 23, 2015 University of Waterloo news release, which originated the news item, expands on the theme but doesn’t provide much in the way of technical detail,

“With about a billion tonnes of water stored in ponds in Alberta, removing naphthenic acids is one of the largest environmental challenges in Canada,” said Tim Leshuk, a PhD candidate in chemical engineering at Waterloo. He is the lead author of this paper and a recipient of the prestigious Vanier Canada Graduate Scholarship. “Conventional treatments people have tried either haven’t worked, or if they have worked, they’ve been far too impractical or expensive to solve the size of the problem.  Waterloo’s technology is the first step of what looks like a very practical and green treatment method.”

Unlike treating polluted water with chlorine or membrane filtering, the Waterloo technology is energy-efficient and relatively inexpensive. Nanoparticles become extremely reactive when exposed to sunlight and break down the persistent pollutants in their individual atoms, completely removing them from the water. This treatment depends on only sunlight for energy, and the nanoparticles can be recovered and reused indefinitely.

Next steps for the Waterloo research include ensuring that the treated water meets all of the objectives Canadian environmental legislation and regulations required to ensure it can be safely discharged from sources larger than the samples, such as tailing ponds.

Here’s a link to and a citation for the paper,

Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water by Tim Leshuk, Timothy Wong, Stuart Linley, Kerry M. Peru, John V. Headley, Frank Gu. Chemosphere Volume 144, February 2016, Pages 1854–1861 doi:10.1016/j.chemosphere.2015.10.073

This paper is behind a paywall.

Ceapro (a Canadian biotech company) and its pressurized gas expanded technology with a mention of cellulose nanocrystals

At the mention of cellulose nanocrystals (CNC), my interest was piqued. From a Nov. 10, 2015 news item on Nanotechnology Now,

Ceapro Inc. (TSX VENTURE:CZO) (“Ceapro” or the “Company”), a growth-stage biotechnology company focused on the development and commercialization of active ingredients for healthcare and cosmetic industries, announced that Bernhard Seifried, Ph.D., Ceapro’s Senior Research Scientist and a co-inventor of its proprietary Pressurized Gas Expanded Technology (PGX) will present this morning [Nov. 10, 2015] at the prestigious 2015 Composites at Lake Louise engineering conference.

A Nov. 10, 2015 Ceapro press release, which originated the news item, describes the technology in a little more detail and briefly mentions cellulose nanocrystals (Note: A link has been removed),

Dr. Seifried will make a podium presentation entitled, “PGX – Technology: A versatile technology for generating advanced biopolymer materials,” which will feature the unique advantages of Ceapro’s enabling technology for processing aqueous solutions or dispersions of high molecular weight biopolymers, such as starch, polysaccharides, gums, pectins or cellulose nanocrystals, into open-porous morphologies, consisting of nano-scale particles and pores.

Gilles Gagnon, M.Sc., MBA, President and CEO of Ceapro, stated, “Our disruptive PGX enabling technology facilitates biopolymer processing at a new level for generating unique highly porous biopolymer morphologies that can be impregnated with bioactives/APIs or functionalized with other biopolymers to generate exfoliated nano-composites and novel advanced material. We believe this technology will provide transformational solutions not only for our internal programs, but importantly, can be applied much more broadly for Companies with whom we intend to partner globally.”

Utilizing its PGX technology, Ceapro successfully produces its bioactive pharmaceutical grade powder formulation of beta glucan, which is an ingredient in a number of personal care cosmeceutical products as well as a therapeutic agent used for wound healing and a lubricative agent integrated into injectable systems used to treat conditions like urinary incontinence. The Company is developing its enabling PGX platform at the commercial scale level. In order to fully exploit the use of this innovative technology, Ceapro has recently decided to further expand its new world-class manufacturing facility by 10,000 square feet.

“The PGX platform generates unique morphologies that are not possible to produce with other conventional drying systems,” Mr. Gagnon continued. “The ultra-light, highly porous polymer structures produced with PGX have a huge potential for use in an abundant number of applications ranging from functional foods, nutraceuticals, drug delivery and cosmeceuticals, to advanced technical applications.”

Ceapro’s novel PGX Technology can be utilized for a wide variety of bio-industrial processing applications including:

  • Dry aqueous solutions or dispersions of polymers derived from agricultural and/or forestry feedstock, such as polysaccharides, gums, biopolymers at mild processing conditions (40⁰C).
  • Purify biopolymers by removing lipids, salts, sugars and other contaminants, impurities and odours during the precipitation and drying process.
  • Micronize the polymer to a matrix consisting of highly porous fibrils or spherical particles having nano-scale features depending on polymer molecular structure.
  • Functionalize the polymer matrix by generating exfoliated nano-composites of various polymers forming fibers and/or spheres simply by mixing various aqueous polymer solutions/dispersions prior to PGX processing.
  • Impregnate the polymer matrix homogeneously with thermo-sensitive bioactives and/or hydrophobic modifiers to tune solubility of the final polymer bioactive matrix all in the same processing equipment at mild conditions (40⁰C).
  • Extract valuable bioactives at mild conditions from fermentation slurries, while drying the residual biomass.

The highly tune-able PGX process can generate exfoliated nano-composites and highly porous morphologies ranging from sub-micron particles (50nm) to micron-sized granules (2mm), as well as micro- and nanofibrils, granules, fine powders and aerogels with porosities of >99% and specific surface areas exceeding 300 m2/gram. The technology is based on a spray drying method, operating at mild temperatures (40°C) and moderate pressures (100-200 bar) utilizing PGX liquids, which is comprised of a mixture of food grade, recyclable solvents, generally regarded as safe (GRAS), such as pressurized carbon dioxide and anhydrous ethanol. The unique properties of PGX liquids afford single phase conditions and very low or vanishing interfacial tension during the spraying process. This then allows the generation of extremely fine particle morphologies with high porosity and a large specific surface area resulting in favorable solubilisation properties. This platform drying technology has been successfully scaled up from lab scale to pilot scale with a processing capacity of about 200 kg/hr of aqueous solutions.

Ceapro is based in Edmonton in the province of Alberta. This is a province with a CNC (cellulose nanocrytals) pilot production plant as I noted in my Nov. 10, 2013 posting where I belatedly mentioned the plant’s September 2013 commissioning date. The plant was supposed to have had a grand opening in 2014 according to a Sept. 12, 2013 Alberta Innovates Technology Futures [AITF] news release,

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s President and CEO. “Today’s commissioning is an important milestone in our ongoing efforts to provide technological know-how to our research and industry partners in their continued applied R&D and commercialization efforts. We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

Members of Alberta’s and Western Canada’s growing CNC communities of expertise and interest spent the afternoon exploring potential commercial applications for the cellulose-based ‘wonder material.’

The CNC Pilot Plant’s Grand Opening is planned for 2014. [emphasis mine]

I have not been able to find any online trace of the plant’s grand opening. But I did find a few things. The AITF website has a page dedicated to CNC and its pilot plant and there’s a slide show about CNC and occupational health and safety from members of Alberta’s CNC Pilot Plant Research Team for their project, which started in 2014.

No mention in the Alberta media materials is ever made of CelluForce, a CNC production plant in the province of Québec, which predates the Alberta plant by more than 18 months (my Dec. 15, 2011 posting).

One last comment, CNC or cellulose nanocrystals are sometimes called nanocrystalline cellulose or NCC. This is a result of Canadians who were leaders at the time naming the substance NCC but over time researchers and producers from other countries have favoured the term CNC. Today (2015), the NCC term has been trademarked by Celluforce.

Open access week (Oct. 19 – 25, 2015)

In the better late than never category I’m developing for this blog (why can’t I stumble across these things in a more timely fashion?): Canadian Science Publishing (CSP) is celebrating International Open Access Week (Oct. 19 -25, 2015). While the opening event will be past by the time you read this, CSP offers other opportunities to participate (from an Oct. 19, 2015 posting on the Canadian Science Publishing blog),

We’ll be celebrating open access all week, starting with a joint event today [link removed for Oct. 19, 2015 event] at the University of Ottawa Library where we’ll hear from Dr. Jules Blais, founding Senior Editor of our new multidisciplinary open access journal, FACETS. Can’t make it to the event? Don’t worry, we’ll be live tweeting [link removed since the event will be over by the time you read this] and you still have the chance to enter into a draw to win a free e-reader. All you have to do is sign-up for the FACETS newsletter before Friday [Oct. 23, 2015] at midnight [EST?]. Not only will you have the chance to win a great prize, but by signing up for the newsletter you’ll also be the first to know about any FACETS-related news including information about open access, calls for submissions, newly available open access articles and more.

Considering this is open access week, we’d also like to take this opportunity to highlight our open access products and services. …

Introducing CSP Open

To keep things simple, we’ve collected all of our open access products, services and information in one handy place: www.cspopen.com. On this hub page you’ll find links to our fully OA journals, FACETS and Arctic Science. You’ll also find information about OpenArticle, our gold open access option for our subscription-based journals.

There is a listing of other 2015 Open Access Week events in Canada here but I notice it’s not exhaustive. For example, the Canadian Science Publishing/University of Ottawa event was not listed yesterday, Oct. 19, 2015, when I checked. Most of the action appears to be taking place in Alberta and Ontario.

Beakerhead’s Big Bang (art/engineering) Residency in Alberta, Canada

I am sorry for the late notice as the deadline for submissions is Oct. 9, 2015 so there’s not much time to prepare. In any event, here’s more information about the Big Bang Residency Program call for proposals,

Every September, Beakerhead erupts onto the streets and venues of Calgary with cultural works that have science or engineering at their core. This is a call for proposals to build a creative work through an initiative called the Big Bang Residency Program. The work will be built over the course of a year with a collaborative team and will premiere on September 14, 2016, at Beakerhead in Calgary, Canada.

About the Big Bang Residency Program

The Big Bang Residency Program is funded by the Remarkable Experience Accelerator; a joint initiative of Calgary Arts Development and the Calgary Hotel Association. The program is led by Beakerhead with partnership support from the internationally renowned Banff Centre.

The program will support the creation of a total of three major new artworks over three years that will premiere internationally in Calgary during Beakerhead each year. This residency program will support:

  • One team per year each consisting of no less than four and no more than five individuals (additional support members are possible; however, the maximum size of the core team in residence will be five).
  • Two weeks in residence total; one week in the late fall and one week the following summer, with exact dates to be arranged with The Banff Centre and the selected team in residence. The production of the work is expected to take place in-between these two residency periods in Calgary.
  • Call for Proposals

    Beakerhead and The Banff Centre will support the design and build of a work to be shared with the world during Beakerhead, September 14 to 18, 2016. It will be created over the course of the year, which will include two weeks in residence at The Banff Centre with an interdisciplinary team of collaborators.

    Who is Eligible?

    This Call for Proposals is open to international artists, engineers, architects, designers, scientists and others. In addition to meeting the requirements for team composition below, the team must have a connection to Calgary so that the building of the work takes place in Calgary, the work is developed in Banff, the work premieres in Calgary and calls Calgary its home base. The proposal need not be submitted by a complete team: individuals may apply. The team can be assembled with support from The Banff Centre and Beakerhead to ensure that the collaboration of artists and engineers will result in a project that is created in Calgary/Banff over the course of the year.

    Team Composition 

    Each team must include:

    1. At least one individual who has received specialized art training (degree from a recognizing art institution) and has developed and exhibited a body of work;
    2. At least one individual who has received specialized engineering training (degree from an accredited engineering school), and previous experience in any artistic medium;
    3. Other members of the team should bring additional art and design skills, technical skills and project management skills. They may include emerging and professional roles.

    Staging and Exhibition

    The engineered artworks produced during the residency will be presented during Beakerhead in an unprecedented spectacle of performance and public engagement. The staging of the premiere may be developed in partnership with other venues, as dictated by the artworks. Many Beakerhead events take place in partnership with existing venues, such as theatres, galleries, public spaces, business revitalization zones, universities and libraries. The artistic disciplines may include installation, performance, visual art, music or any other media.

    The Details

    Design Criteria

    The successful proposal will meet the following criteria.

    • Location: The installation will be in a public location or available venue in Calgary, Alberta, from September 14 to 18 2016, and can be toured afterwards. Park-like settings and public roadways may be possible.
    • Dimension: There is no limit on dimension. However, proposals for works that can engage larger numbers of people at the scale of public art will be given preference.
    • Scope: Preference will be given to works that are both arresting to view and interesting to experience first-hand.
    • Install and De-install: Up to four days can be provided to install and de-install. The successful team must be capable of completing this work with volunteer crews.
    • Material: All materials must meet North American and European building and fire safety codes.


    A budget of CAD 24,000 is available for materials and supplies. The artist/collaborator fee is CAD 5,000 per team member up to CAD 25,000. Two weeks in residence will be provided for a five-person team, including accommodation and meals at The Banff Centre. Support for venue rental over the winter for build space will be provided, as well as heavy equipment costs.

    The budget may include:

    • All additional materials costs
    • Equipment services/rental for installation and de-installation
    • Contracted labour for specialized services
    • Documentation expenses
    • Stipend per team member (CAD 5,000 per member up to CAD 25,000)
    • Workshop and fabrication space rental in Calgary

    The budget may not include:

    • Travel costs
    • Salaries and wages

    If the budget proposed exceeds the amount of funding available, please detail your plans for acquiring additional funds to make up any projected shortfall.


    Preference will be given to projects that consider:

    • Delightful and thought-provoking experiences at the crossroads of art and engineering
    • Use of public space
    • Assembly, strike and touring ability
    • Engagement of a large volume of viewers
    • Durability for multiple days of high volume public interaction


    Important 2015/16 Dates

    • Aug 6, 2015:  Call for proposals
    • Oct 9: Deadline for submissions
    • Nov 6: Announcement of the successful proposal
    • Dec 6: Presentation of the successful team at the annual Beakerhead partners meeting
    • Dec 7-12*: Residency Week 1 in Banff: Detailed production plan completed
    • Jan 20, 2016: Concept unveiled to public and build volunteers engaged
    • Feb-August: Build period in Calgary
    • Aug 22-27*: Residency Week 2 in Banff: Presentation planning and rehearsals
    • Sept 14 – 18: International premiere at Beakerhead!

    *dates may change

    Timeline Details

    The program will lift off with an announcement in August 2015, and the first major artworks premiered in September 2016. A second round will be announced in the summer of 2016, and a third in the summer of 2017.

    Interested applicants are encouraged to attend Beakerhead 2015 (September 16 – 20), or have an associate attend, to fully understand the presentation opportunities. The final team will be announced in the fall, and will commence the term with a one-week period “in residence” at the Banff Centre (a week to work full-time on the project) to develop the detailed design and production plan. The partnership with The Banff Centre will support the development of design drawings and a business strategy.

    The build will then take place over the winter and summer in Calgary. Beakerhead will support the successful team by making introductions to local resources and facilities.

    The team in residence will be strongly encouraged to engage an expanded team of volunteers in the building process to create a community of support around the spectacle element.

There are more details here including the information on how to make a submission.

Of Canadian 2015 election science debates and science weeks

You’d think science and technology might rate a mention in a debate focused on the economy but according to all accounts, that wasn’t the case last night in a Sept. 17, 2015 Canadian federal election debate featuring three party leaders, Justin Trudeau of the Liberal Party, Thomas Mulcair of the New Democratic Party (NDP), and Stephen Harper, Prime Minister and leader of the Conservative Party. BTW, Elizabeth May, leader of the Green Party, was not invited but managed to participate by tweeting video responses to the debate questions. For one of the more amusing and, in its way, insightful commentaries on the debate, there’s a Sept. 17, 2015 blog posting on CBC [Canadian Broadcasting Corporation] News titled: ‘Old stock Canadians,’ egg timer, creepy set top debate’s odd moments; Moderator David Walmsley’s Irish accent and a ringing bell get reaction on social media.

As for science and the 2015 Canadian federal election, Science Borealis has compiled an informal resource list in a Sept. 18, 2015 posting and while I’ve excerpted the resources where you can find suggested questions for candidates, there’s much more to be found there,



Interestingly, the journal Nature has published a Sept. 17, 2015 article (h/t @CBC Quirks) by Nicola Jones featuring the Canadian election and science concerns and the impact science concerns have had on opposition party platforms (Note: Links have been removed),

Canadians will head to the polls on 19 October [2015], in a federal election that many scientists hope will mark a turning point after years of declining research budgets and allegations of government censorship.

In an unprecedented move, the Professional Institute of the Public Service of Canada — a union in Ottawa that represents more than 57,000 government scientists and other professionals — is campaigning in a federal race. “Here’s how we do things in the Harper government,” declares one of the union’s radio advertisements. “We muzzle scientists, we cut research and we ignore anyone who doesn’t tell us what we want to hear.”

Science advocates see little chance that their issues will be aired during a 17 September [2015] debate in Calgary that will pit Harper against NDP [New Democratic Party] leader Thomas Mulcair and Liberal leader Justin Trudeau. But concerns about the state of Canadian science have nevertheless influenced party platforms.

The middle-left Liberal Party has made scientific integrity part of its election campaign, proposing the creation of a central public portal to disseminate government-funded research. The party seeks to appoint a chief science officer to ensure the free flow of information.

Similarly, the NDP has called for a parliamentary science officer, a position that would be independent of the majority party or coalition leading the government.

Adding to the concern about the practice of science in Canada is the delayed release of a biennial report from the government’s Science, Technology and Innovation Council (STIC). Paul Wells in a June 26, 2015 article for Maclean’s Magazine discusses the situation (Note: Links have been removed),

It is distressing when organizations with no partisan role play the sort of games partisans want. The latest example is the advisory board that the Harper government created to tell it how Canada is doing in science.

I have written about the Science, Technology and Innovation Council every two years since it produced its first major report, in May 2009. STIC, as it’s known, is not some fringe group of pinko malcontents trying to stir up trouble and turn the people against their right and proper governing party. It was conceived by the Harper government (in 2007), appointed by the Harper government (in bits ever since), and it consists, in part, of senior officials who work with the Harper government every day. …

This group gives the feds the best advice they can get about how Canada is faring against other countries in its science, research and technology efforts. Its reports have been increasingly discouraging.

Perhaps you wonder: What’s the situation now? Keep wondering. Every previous STIC biennial report was released in the spring. This winter, I met a STIC member, who told me the next report would come out in May 2015 and that it would continue most of the declining trend lines established by the first three reports. I wrote to the STIC to ascertain the status of the latest report. Here’s the answer I received:

“Thank you for your interest. STIC’s next State of the Nation report will be released later in the Fall. We will be happy to inform you of the precise date and release details when they have been confirmed.”

There is no reason this year’s report was not released in the spring, as every previous report was. None except the approach of a federal election.

Getting back to a national science debate, I have written about a proposed debate to be held on the CBC Quirks and Quarks radio programme here in a Sept. 3, 2015 posting which also features a local upcoming (on Weds., Sept. 23, 2015) election science and technology debate amongst  federal candidates in Victoria, BC. I cannot find anything more current about the proposed national science debate other than the CBC radio producer’s claim that it would occur in early October. Earlier today (Sept. 18, 2015) I checked their Twitter feed (https://twitter.com/CBCQuirks) and their website (http://www.cbc.ca/radio/quirks). I wonder what’s taking so long for an announcement. In the space of a few hours, I managed to get Ted Hsu and Lynne Quarmby, science shadow ministers for the Liberal and Green parties, respectively, to express interest in participating.

Well, whether or not there is a 2015 national science debate, I find the level of interest, in contrast to the 2011 election, exciting and affirming.

In the midst of all this election and science discussion, there are some big Canadian science events on the horizon. First and technically speaking not on the horizon, there’s Beakerhead (a smashup of art, science, and engineering) in Calgary, Alberta which runs from Sept. 16 – 20, 2015. Here are a few of the exhibits and installations you can find should you get to Calgary in time (from a Sept. 16, 2015 Beakerhead news release),

The five days of Beakerhead officially get rolling today with the world’s largest pop-up gallery, called a String (Theory) of Incredible Encounters, with a circumference of five kilometres around downtown Calgary.

The series of public art installations is an exploration in creativity at the crossroads of art, science and engineering, and can be seen by touring Calgary’s neighbourhoods, from Inglewood to East Village to Victoria Park, 17th Ave and Kensington. The home base or hub for Beakerhead this year is at Station B (the Beakerhead moniker for installations at Fort Calgary).

Station B is home to two other massive firsts – a 30-foot high version of the arcade claw game, and a 6,400 square foot sandbox – all designed to inspire human ingenuity.

Beakerhead 2015 event will erupt on the streets and venues of Calgary from September 16 to 20, and includes more than 160 collaborators and 60 public events, ranging from theatre where the audience is dining as part of the show to installations where you walk through a human nose. More than 25,000 students will be engaged in Beakerhead through field trips, classroom visits and ingenuity challenges.

Just as Beakerhead ends, Canada’s 2015 Science Literacy Week opens Sept. 21 – 27, 2015. Here’s more about the week from a Sept. 18, 2015 article by Natalie Samson for University Affairs,

On Nov. 12 last year [2014], the European Space Agency landed a robot on a comet. It was a remarkable moment in the history of space exploration and scientific inquiry. The feat amounted to “trying to throw a dart and hit a fly 10 miles away,” said Jesse Hildebrand, a science educator and communicator. “The math and the physics behind that is mindboggling.”

Imagine Mr. Hildebrand’s disappointment then, as national news programs that night spent about half as much time reporting on the comet landing as they did covering Barack Obama’s gum-chewing faux pas in China. For Mr. Hildebrand, the incident perfectly illustrates why he founded Science Literacy Week, a Canada-wide public education campaign celebrating all things scientific.

From Sept. 21 to 27 [2015], several universities, libraries and museums will highlight the value of science in our contemporary world by hosting events and exhibits on topics ranging from the lifecycle of a honeybee to the science behind Hollywood films like Jurassic World and Contact.

Mr. Hildebrand began developing the campaign last year, shortly after graduating from the University of Toronto with a bachelor’s degree in ecology and evolutionary biology. He approached the U of T Libraries for support and “it really snowballed from there,” the 23-year-old said.

Though Mr. Hildebrand said Science Literacy Week wasn’t inspired by public criticism against the federal government’s approach to scientific research and communication, he admitted that it makes the campaign seem that much more important. “I’ve always wanted to shout from the rooftops how cool science is. This is my way of shouting from the rooftops,” he said.

In the lead-up to Science Literacy Week, museum scientists with the Alliance of Natural History Museums of Canada have been posting videos of what they do and why it’s important under the hashtag #canadalovesscience. The end of the campaign will coincide with a lunar eclipse and will see several universities and observatories hosting stargazing parties.

You can find out more about this year’s events on the Science Literacy Week website. Here are a few of the BC events I found particularly intriguing,

UBC Botanical Garden – Jointly run as part of National Forest Week/Organic Week

September 20th, 10 a.m-12 p.m – A Walk in the Woods

Come discover the forest above, below and in between on our guided forest tour! Explore and connect with trees that hold up our 300-metre long canopy walkway. [emphasis mine] Meet with grand Firs, Douglas Firs and Western Red Cedars and learn about the importance of forests to biodiversity, climate change and our lives.

September 24th, 7:30-11 P.M – Food Garden Tour and Outdoor Movie Night

What better way to celebrate Organic Week than to hear about our exciting plans for the UBC Food Garden? Tour renewed garden beds to see what’s been growing. Learn about rootstocks, cultivars, training techniques and tree forms for fruit trees in this area.  Then make your way to out enchanting outdoor Ampitheatre and watch Symphony of the Soil, a film celebrated by the UN for 2015, the International Year of the Soil.

I highlighted the UBC Botanical Garden canopy walkway because you really do walk high up in the forest as you can see in this image of the walkway,

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

This image is from an undated article by Lindsay Follett for Family Fun Vancouver.

While it’s still a month away, there is Canada’s upcoming 2015 National Science and Technology Week, which will run from Oct. 16 – 25. To date, they do not have any events listed for this year’s week but they do invite you to submit your planned event for inclusion in their 2015 event map and list of events.

Abakan makes good on Alberta (Canada) promise (coating for better pipeline transport of oil)

It took three years but it seems that US company Abakan Inc.’s announcement of a joint research development centre at the Northern Alberta Institute of Technology (NAIT), (mentioned here in a May 7, 2012 post [US company, Abakan, wants to get in on the Canadian oils sands market]), has borne fruit. A June 8, 2015 news item on Azonano describes the latest developments,

Abakan Inc., an emerging leader in the advanced coatings and metal formulations markets, today announced that it has begun operations at its joint-development facility in Edmonton, Alberta.

Abakan’s subsidiary, MesoCoat Inc., along with the lead project partner, Northern Alberta Institute of Technology (NAIT) will embark on an 18-month collaborative effort to establish a prototype demonstration facility for developing, testing and commercializing wear-resistant clad pipe and components. Western Economic Diversification Canada is also supporting this initiative through a $1.5 million investment toward NAIT. Improvements in wear resistance are expected to make a significant impact in reducing maintenance and downtime costs while increasing productivity in oil sands and other mining applications.

A June 4, 2015 Abakan news release, which originated the news item, provides more detail about the proposed facility, the difficulties encountered during the setup, and some interesting information about pipes,

Abakan shipped its CermaClad high-speed large-area cladding system for installation at the Northern Alberta Institute of Technology’s (NAIT) campus in Edmonton, Alberta in early 2015. Despite delays associated with the installation of some interrelated equipment and machinery, the CermaClad system and other ancillary equipment are now installed at the Edmonton facility. The Edmonton facility is intended to serve as a pilot-scale wear-resistant clad pipe manufacturing facility for the development and qualification of wear-resistant clad pipes, and as a stepping stone for setting-up a full-scale wear-resistant clad pipe manufacturing facility in Alberta. The new facility will also serve as a platform for Abakan’s introduction to the Alberta oil sands market, which, with proven reserves estimated at more than 169 billion barrels, is one of the largest oil resources in the world and a major source of oil for Canada, the United States and Asia. Since Alberta oil sands production is expected to increase significantly over the next decade, producers want to extend the life of the carbon steel pipes used for the hydro-transportation of tailings with harder, tougher coatings that protect pipes from the abrasiveness of tar-like bituminous oil sands.

“Our aim is to fast-track market entry of our wear-resistant clad pipe products for the transportation of oil sands and mining slurries. We have received commitments from oil sands producers in Canada and mining companies in Mexico and Brazil to field-test CermaClad wear-resistant clad pipe products as soon as our system is ready for testing. Apart from our work with conventional less expensive chrome carbide and the more expensive tungsten carbide wear-resistant cladding on pipes, Abakan also expects to introduce new iron-based structurally amorphous metal (SAM) alloy cladding that in testing has exhibited better performance than tungsten carbide cladding, but at a fraction of the cost.” Robert Miller stated further that “although more expensive than the more widely used chrome carbide cladding, our new alloy cladding is expected to be a significantly better value proposition when you consider an estimated life of three times that of chrome carbide cladding and those cost efficiencies that correspond to less downtime revenue losses, and lower maintenance and replacement costs.”

The costs associated with downtime and maintenance in the Alberta oil sands industry estimated at more than $10 billion a year are expected to grow as production expands, according to the Materials and Reliability in Oil Sands (MARIOS) consortium in Alberta. The development of Alberta’s oil sands has been held up by the lack of materials for transport lines and components that are resistant to the highly abrasive slurry. Due to high abrasion, the pipelines have to be rotated every three to four months and replaced every 12 to 15 months. [emphasis mine] The costs involved just in rotating and replacing the pipes is approximately $2 billion annually. The same is true of large components, for example the steel teeth on the giant electric shovels used to recover oil sands, must be replaced approximately every two days.

Abakan’s combination of high productivity coating processes and groundbreaking materials are expected to facilitate significant efficiencies associated with the extraction of these oil resources. Our proprietary materials combined with CermaClad large-area based fusion cladding technology, have demonstrated in laboratory tests a three to eight times improvement in wear and corrosion resistance when compared with traditional weld overlays at costs comparable to rubber and metal matrix composite alternatives. Abakan intends to complete development and initiate field-testing by end of year 2016 and begin the construction of a full-scale wear-resistant clad pipe manufacturing facility in Alberta in early-2017.

Given that there is extensive talk about expanding oil pipelines from Alberta to British Columbia (where I live), the information about the wear and tear is fascinating and disturbing. Emotions are high with regard to the proposed increase in oil flow to the coast as can be seen in a May 27, 2015 article by Mike Howell for the Vancouver Courier about a city hall report on the matter,

A major oil spill in Vancouver waters could potentially expose up to one million people to unsafe levels of a toxic vapour released from diluted bitumen, city council heard Wednesday in a damning city staff report on Kinder Morgan’s proposal to build a pipeline from Alberta to Burnaby [British Columbia].

In presenting the report, deputy city manager Sadhu Johnston outlined scenarios where exposure to the chemical benzene could lead to adverse health effects for residents and visitors, ranging from dizziness to nausea to possible death.

“For folks that are on the seawall, they could be actually struck with this wave of toxic gases that could render them unable to evacuate,” said Johnston, noting 25,000 residents live within 300 metres of the city’s waterfront. “These are serious health impacts. So this is not just about oil hitting shorelines, this is about our residents being exposed to very serious health effects.

  • Kinder Morgan’s own estimate is that pipeline leaks under 75 litres per hour may not be detected.

While I find the presentation’s hysteria a little off-putting, it did alert me to one or two new issues, benzene gas and when spillage from the pipes raises an alarm. For anyone curious about benzene gas and other chemical aspects of an oil spill, there’s a US National Oceanic and Atmospheric Administration (NOAA) webpage titled, Chemistry of an Oil Spill.

Getting back to the pipes, that figure of 75 litres per hour puts a new perspective on the proposed Abakan solution and it suggests that whether or not more and bigger pipes are in our future, we should do a better of job of protecting our environment now. That means better cladding for the pipes and better dispersants and remediation for water, earth, air when there’s a spill.

Ingenuity Lab (Alberta, Canada) and The New Economy

Alberta’s Ingenuity Lab has won an award from the UK-based magazine, The New Economy. More details about the magazine and the award follow but, first, from an Oct. 1, 2014 Ingenuity Lab news release,

Ingenuity Lab, Alberta’s first nanotechnology accelerator, has been named ‘Best Nanotechnology Research Organization 2014′ by The New Economy magazine, just under two years after its inception.

The award, which was presented to Ingenuity Lab Director, Carlo Montemagno, PhD last month at the London Stock Exchange studios, honours those who are breaking new ground across technology, energy, business and strategy landscapes.

Here’s a Sept. 15, 2014 video of Montemagno with The New Economy interviewer, Jenny Hammond,

The New Economy has provided a transcription of the video on its Using science to address global challenges: Ingenuity Lab on its progressive approach webpage which also hosts the video. (This particular question and answer interested me most,)

The New Economy: Well what problems do these areas [mining, agriculture, energy and health] pose, and what breakthroughs have you made in these areas?

Carlo Montemagno: We have been able to mimic the way nature works in the production of matter. We look around and we see the original nanotechnology machines of grass and green things. What we’ve figured out how to do is, how do you extract out the metabolism that’s found in those plants and those animals, and impart them inside materials that we engineer and produce. So it’s not alive, but it has the same metabolic pathways. So now we can take just CO2 that’s been emitted from a source, sunlight or another light source, and convert it directly into valuated dropping chemicals. We’ve identified 72 different chemicals that we can produce. That means that we can take an emission which is implicated in global warming and all those other problems, and now instead of emitting it, we use that to provide new products for that drive, and hopefully we’ll drive a new economic sector, and it will be deployable globally.

The New Economy has posted, as of today Oct. 2, 2014, a more substantive description of the work for which the Ingenuity Labs are being honoured, Ingenuity Lab: fighting blindness, influenza and water pollution. This article provides a bit a of a contrast to the video as it makes no mention of mining or emissions.

For anyone interested in the magazine, there’s this on their Contact page,

The New Economy is published quarterly and provided to Finance Directors, Chief Financial Officers and their legal and strategic advisers, corporate treasurers and leading bankers, institutional investors and compliance officers, regulators, Ministers of Finance, Energy/Environment Ministries and their senior council. The New Economy’s remit is to engender financial investment and encourage discussion and debate of appropriate strategies for the promotion of global economic growth in a concise and constructive format.

The approach is to create thought leaders in chosen content areas and invite them to knowledge share, providing a platform which allows their analysis and experience to be seen by enterprise Financial Strategists, whilst their presence identifies their organisations as Market Leaders.

On checking the editorial staff and contributors list on the Contact page I recognized a name,

Executive Editor:
Michael McCaw

Senior Assignment Editor:
Eleni Chalkidou

Donna Dickenson, Esther Dyson, Mohamed A El-Erian, Jules Gray, Rita Lobo, Bjorn Lomborg, David Orrell, Matthew Timms, Claire Vanner [emphasis mine]

Certainly that name gives The New Economy some added cachet (from her Wikipedia entry; Note: Links and footnotes have been removed),

Esther Dyson (born 14 July 1951) is a former journalist and Wall Street technology analyst who is a leading angel investor, philanthropist, and commentator focused on breakthrough efficacy in healthcare, government transparency, digital technology, biotechnology, and space. She recently founded HICCup, which just launched its Way to Wellville contest of five places, five years, five metrics. Hiccup.co blog . Dyson is currently focusing her career on production of health and continues to invest in health and technology startups.

Returning to where this post started, the entire Ingenuity Labs news release about its 2014 award can be found here.

An alliance of nano researchers: Ingenuity Lab and University of Alberta (Canada) professors

This news release from Alberta’s Ingenuity Lab came in this morning (Sept. 16, 2014),

Researchers Form Nano Bond

Ingenuity Sparks Strategic Partnership with UAlberta Professors

September 16, 2014 Edmonton, Alberta – If two heads are better than one, three heads will no doubt be revolutionary. That is what University of Alberta professors Carlo Montemagno,Thomas Thundat and Gane Wong are aiming for.

“The path to discovery lies beyond conventional thinking and the siloed approaches that have hampered our progress thus far,” says Ingenuity Lab Director, Carlo Montemagno, PhD. “By acknowledging the interconnectedness of our systems and facilitating better research integration and the cross pollination of ideas, we give ourselves, and society as a whole, a much better chance of success.”

Whether it is in the oil patch or in the operating room, these heavy hitters will be merging their expertise and research together in the areas of single cell genomics research in breast and prostate cancer and novel physical, chemical and biological detection using micro- and nano- mechanical sensors.

“The purpose of an accelerator is to bring the right people together at the right time,” explains Thundat. “In doing so, we leverage unique knowledge and expertise and significantly boost our ability to develop tangible solutions to the world’s most complex challenges.”

The 10-year provincially funded initiative was launched in November 2013 and is attracting the best and brightest minds from around the world. With a research agenda focused on the province’s most pressing environmental, industrial and health challenges, Ingenuity Lab is a partnership with the University of Alberta and Alberta Innovates Technology Futures and is expected to reach over $100M in funds leveraged from industry partners over the next decade.

“Our hope is that this partnership will help reduce the existing gap between research and development, and end user application,” says Wong. “For example, we have a unique opportunity to engineer and equip industries with next generation tools and resources that will far surpass those currently available.”

The dynamic partnership promises to facilitate deeper learning, critical thinking and enhance networking opportunities. It will also contribute to our province’s competitive advantage by maximising the utility of local resources and channelling existing expertise towards shared goals.

“We are fortunate to have such a dynamic team of influential leaders in our midst,” says Dr. Lorne Babiuk, Vice President of Research at the University of Alberta. “These outstanding individuals have made remarkable progress in their fields and continue to champion leading-edge research, teaching, and learning across our campus and beyond.”

At the risk of adding a slightly sour note, it seems they have high hopes but there’s no detail about what makes this collaboration more newsworthy than any other. That said, I wish them a very fruitful collaboration.

Nanoscale light confinement without metal (photonic circuits) at the University of Alberta (Canada)

To be more accurate, this is a step forward towards photonic circuits according to an Aug. 20, 2014 news item on Azonano,

The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.

This could result in radical increases in computing speeds and reduced energy use by electronic devices.

“We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnects—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professor leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.”

At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

An Aug. 19, 2014 University of Alberta news release by Richard Cairney (also on EurekAlert), which originated the news item, provides more technical detail and information about funding,

 Jahani and Jacob have used metamaterials to redefine the textbook phenomenon of total internal reflection, discovered 400 years ago by German scientist Johannes Kepler while working on telescopes.

Researchers around the world have been stymied in their efforts to develop effective fibre optics at smaller sizes. One popular solution has been reflective metallic claddings that keep light waves inside the cables. But the biggest hurdle is increased temperatures: metal causes problems after a certain point.

“If you use metal, a lot of light gets converted to heat. That has been the major stumbling block. Light gets converted to heat and the information literally burns up—it’s lost.”

Jacob and Jahani have designed a new, non-metallic metamaterial that enables them to “compress” and contain light waves in the smaller cables without creating heat, slowing the signal or losing data. …

The team’s research is funded by the Natural Sciences and Engineering Research Council of Canada and the Helmholtz-Alberta Initiative.

Jacob and Jahani are now building the metamaterials on a silicon chip to outperform current light confining strategies used in industry.

Given that this work is being performed at the nanoscale and these scientists are located within the Canadian university which houses Canada’s National Institute of Nanotechnology (NINT), the absence of any mention of the NINT comes as a surprise (more about this organization after the link to the researchers’ paper).

Here’s a link to and a citation for the paper,

Transparent subdiffraction optics: nanoscale light confinement without metal by Saman Jahani and Zubin Jacob. Optica, Vol. 1, Issue 2, pp. 96-100 (2014) http://dx.doi.org/10.1364/OPTICA.1.000096

This paper is open access.

In a search for the NINT’s website I found this summary at the University of Alberta’s NINT webpage,

The National Institute for Nanotechnology (NINT) was established in 2001 and is operated as a partnership between the National Research Council and the University of Alberta. Many NINT researchers are affiliated with both the National Research Council and University of Alberta.

NINT is a unique, integrated, multidisciplinary institute involving researchers from fields such as physics, chemistry, engineering, biology, informatics, pharmacy, and medicine. The main focus of the research being done at NINT is the integration of nano-scale devices and materials into complex nanosystems that can be put to practical use. Nanotechnology is a relatively new field of research, so people at NINT are working to discover “design rules” for nanotechnology and to develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application. NINT aims to increase knowledge and support innovation in the area of nanotechnology, as well as to create work that will have long-term relevance and value for Alberta and Canada.

The University of Alberta’s NINT webpage also offers a link to the NINT’s latest rebranded website, The failure to mention the NINT gets more curious when looking at a description of NINT’s programmes one of which is hybrid nanoelectronics (Note: A link has been removed),

Hybrid NanoElectronics provide revolutionary electronic functions that may be utilized by industry through creating circuits that operate using mechanisms unique to the nanoscale. This may include functions that are not possible with conventional circuitry to provide smaller, faster and more energy-efficient components, and extend the development of electronics beyond the end of the roadmap.

After looking at a list of the researchers affiliated with the NINT, it’s apparent that neither Jahani or Jacob are part of that team. Perhaps they have preferred to work independently of the NINT ,which is one of the Canada National Research Council’s institutes.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.