Tag Archives: Alberta

Tim Blais and A Capella Science

Thanks to David Bruggeman’s July 16, 2014 ‘musical science’ posting on his Pasco Phronesis blog for information about another Canadian ‘science musician’. Tim Blais has been producing science music videos for almost two years now. His first video, posted on YouTube, in August 2012 featured an Adele tune ‘Rolling in the deep’ sung to lyrics featuring the Higgs Boson (‘Rolling in the Higgs’),

He shares the text of the lyrics (from http://www.youtube.com/watch?v=VtItBX1l1VY&list=UUTev4RNBiu6lqtx8z1e87fQ),

There’s a collider under Geneva
Reaching new energies that we’ve never achieved before
Finally we can see with this machine
A brand new data peak at 125 GeV
See how gluons and vector bosons fuse
Muons and gamma rays emerge from something new
There’s a collider under Geneva
Making one particle that we’ve never seen before

The complex scalar
Elusive boson
Escaped detection by the LEP and Tevatron
The complex scalar
What is its purpose?
It’s got me thinking

Chorus:
We could have had a model (Particle breakthrough, at the LHC)
Without a scalar field (5-sigma result, could it be the Higgs)
But symmetry requires no mass (Particle breakthrough, at the LHC)
So we break it, with the Higgs (5-sigma result, could it be the Higgs)

Baby I have a theory to be told
The standard model used to discover our quantum world
SU(3), U(1), SU(2)’s our gauge
Make a transform and the equations shouldn’t change

The particles then must all be massless
Cause mass terms vary under gauge transformation
The one solution is spontaneous
Symmetry breaking

Roll your vacuum to minimum potential
Break your SU(2) down to massless modes
Into mass terms of gauge bosons they go
Fermions sink in like skiers into snow

Lyrics and arrangement by Tim Blais and A Capella Science
Original music by Adele

In a Sept. 17, 2012 article by Ethan Yang for The McGill Daily (University of McGill, Montréal, Québec) Blais describes his background and inspiration,

How does a master’s physics student create a Higgs boson-based parody of Adele’s “Rolling in the Deep” that goes viral and gets featured in popular science magazines and blogs? We sat down with Tim Blais to learn more about the personal experiences leading to his musical and scientific project, “A Capella Science”.

McGill Daily: Could you tell us a little bit about yourself: where you’re from, your childhood, and other experiences that in hindsight you think might have led you to where you are now?
Tim Blais: I grew up in a family of five in the little town of Hudson, Quebec, twenty minutes west of the island of Montreal. My childhood was pretty full of music; I started experimenting with the piano, figuring out songs my older siblings were playing, when I was about four, and soon got actual piano lessons. My mom also ran, and continues to run, our local church choir, so from the time I was three I was singing in front of people as well. Also at about three or four a kid in my preschool introduced me to Bill Nye the Science Guy, which became the only TV I watched for about six years. After kindergarten I didn’t go to school until Grade 10, but was homeschooled by my parents. We had a very multifaceted way of learning [...] that I think allowed me to see the big picture of things without getting bogged down in the horrible little details that are often the stumbling block when you start learning something. That gave me a fascination with science that’s essentially carried me through a science DEC and one-and-a-half university degrees. But my parents have always been super cool about not pressuring us kids to be anything in particular, and now to show for it they’ve got an emerging rock star – my brother, Tom; a dedicated speech pathologist – my sister, Mary-Jane; and me, researcher in incomprehensible physics and recently popular internet fool. I think they did alright.

Since 2012, Blais has graduated with a masters in physics and is now devoted to a life as a musician (from a 2013 [?] posting on redefineschool.com),

Blais has just finished up his master’s degree program at McGill, and he says he’s putting academia aside for a while. “I’ve been in school all my life so I’m switching gears and being a musician this year!” he tweeted. And that career choice is just fine by McGill theoretical physicist Alex Maloney, Blais’ faculty adviser.

To bring us up-to-date with Blais, David has featured the latest A Capella Science music video titled: ‘Eminemium (Choose Yourself)’ in his July 16, 2014 ‘musical science’ posting on the Pasco Phronesis blog.

One last tidbit, Blais will be appearing at Calgary’s (Alberta) Beakerhead ‘festival’ (Sept. 10 – 14, 2014). Specifically, he will be at (from the TELUS Sept. 11, 2014 event page):

TELUS Spark Adults Only Night
September 11 [2014] @ 6:00 pm – 10:00 pm
[TELUS Spark Adults Only Night]

Mark your calendar for this special Beakerhead-themed adult night at TELUS Spark Science Centre. Meet the Festo Automation folks from Germany and see their mind-boggling biomechanical creatures up close. Are you also a fan of the internet sensation A Capella Science Bohemian Gravity? Meet the maker, Tim Blais, here in Calgary for Beakerhead.

This event is included with Admission and Membership. TOP TIP: Skip the queue with advance tickets. [go to TELUS event page to buy tickets]

You can find out more about A Capella Science on its Facebook page or via its Twitter feed. For more about Beakerhead events, go here.

Deadline extension (travel grants and poster abstracts) for alternate testing strategies (ATS) of nanomaterials workshop

It seems there have been a couple of deadline extensions (to August 1, 2014) for the September 15-16, 2014 ‘Workshop to Explore How a Multiple Models Approach can Advance Risk Analysis of Nanoscale Materials’ in Washington, DC (first mentioned in my July 10, 2014 posting featuring a description of the workshop). You can go here to submit a poster abstract (from any country) and you can go here if you’re a student or young professional (from any country) in search of a $500 travel award.

I managed to speak to one of the organizers, Lorraine Sheremeta, (Assistant Director, Ingenuity Lab, University of Alberta and co-author a July 9, 2014 Nanowerk Spotlight article about the workshop). Lorraine (Lori) kindly spoke to me about the upcoming workshop, which she described as an academic conference,.

As I understand what she told me, the hosts for the September 15-16, 2014 Workshop to Explore How a Multiple Models Approach can Advance Risk Analysis of Nanoscale Materials in Washington, DC want to attract a multidisciplinary group of people to grapple with a few questions. First, they want to establish a framework for establishing which are the best test methods for nanomaterials. Second, they are trying to move away from animal testing and want to establish which methods are equal to or better than animal testing. Thirdly, they want to discuss what they are going to do with the toxicological data  that we have  been collecting on nanomaterials for years now.

Or, as she and her colleague from the Society of Risk Analysis (Jo Anne Shatkin) have put in it in their Nanowerk Spotlight article:

… develop a report on the State of the Science for ATS for nanomaterials, catalogue of existing and emerging ATS [alternate testing strategies] methods in a database; and develop a case study to inform workshop deliberations and expert recommendations

The collaborative team behind this event includes, the University of Alberta’s Ingenuity Lab, the Society for Risk Analysis, Environment Canada, Health Canada, and the Organization for Economic Co-operation and Development (OECD) Working Party on Manufactured Nanomaterials (WPMN) .

The speaker lineup isn’t settled at this time although they have confirmed Vicki Stone of Heriot-Watt University in Scotland (from her university bio page),

Vicki Stone, Professor of Toxicology, studies the effects of nanomaterials on humans and environmentally relevant species.  Current research projects investigate the mechanism of toxicity of a range of nanomaterials in cells of the immune system (macrophages and neutrophils), liver (hepatocytes) , gastrointestinal tract, blood vessels (endothelium) and lung.  She is interested in interactions between nanomaterials, proteins and lipids, and how this influences subsequent toxicity.  Current projects also develop in vitro alternatives using microfluidics as well as high resolution imaging of individual nanomaterials in 3D and over time.  In addition Vicki collaborates with ecotoxicologists to investigate the impacts of nanomaterials on aquatic organisms. Vicki coordinated a European project to identify the research priorities to develop an intelligent testing strategy for nanomaterials (www.its-nano.eu).

Vicki is Director of the Nano Safety Research Group at Heriot-Watt University, Edinburgh, and Director of Toxicology for SAFENANO (www.safenano.org). She has acted as the Editor-in-chief of the journal Nanotoxicology (http://informahealthcare.com/nan) for 6 years (2006-2011). Vicki has also published over 130 publications pertaining to particle toxicology over the last 16 years and has provided evidence for the government commissioned reports published by the Royal Society (2003) and the on Environmental Pollution (2008).  Vicki was previously a member of the UK Government Committee on the Medical Effects of Air Pollution (COMEAP) and an advisory board member for the Center for the Environmental Implications of NanoTechnology (CEINT; funded by the US Environmental Protection Agency)).

A representative from PETA (People for the Ethical Treatment of Animals) will also be speaking. I believe that will be Amy Clippinger (from the PETA website’s Regulatory Testing webpage; scroll down about 70% of the way),

Science adviser Amy Clippinger has a Ph.D. in cellular and molecular biology and genetics and several years of research experience at the University of Pennsylvania.

PETA representatives have been to at least one other conference on the topic of nano, toxicology, and animal testing as per my April 24, 2014 posting about NANOTOX 2014 in Turkey,

Writing about nanotechnology can lead you in many different directions such as the news about PETA (People for the Ethical Treatment of Animals) and its poster presentation at the NanoTox 2014 conference being held in Antalya, Turkey from April 23 – 26, 2014. From the April 22, 2014 PETA news release on EurekAlert,

PETA International Science Consortium Ltd.’s nanotechnology expert will present a poster titled “A tiered-testing strategy for nanomaterial hazard assessment” at the 7th International Nanotoxicology Congress [NanoTox 2014] to be held April 23-26, 2014, in Antalya, Turkey.

Dr. Monita Sharma will outline a strategy consistent with the 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy,” which recommends use of non-animal methods involving human cells and cell lines for mechanistic pathway–based toxicity studies.

There is a lot of interest internationally in improving how we test for toxicity of nanomaterials. As well, the drive to eliminate or minimize as much as possible the use of animals in testing seems to be gaining momentum.

Good luck to everyone submitting a poster abstract and/or an application for a travel grant!

In case you don’t want to scroll up, the SRA nano workshop website is here.

Canada’s Ingenuity Lab looks for the causes of cataract formation and preventive treatment

The Ingenuity Lab (based in Alberta) is pursuing three queries in its Health portfolio,

WHAT IF we could develop a way to replace lost neurological functions?
WHAT IF we can improve the delivery of oral vaccinations to maximize the efficiency of absorption?
WHAT IF we can treat cataracts without surgery?

Here’s how they describe the situation regarding sight and cataracts, from the WHAT IF we can treat cataracts without surgery? webpage,

Cataracts is an aggregation of lens proteins that lead to a decrease in vision. [emphasis mine] It is one of the biggest challenges in ophthalmic research due to accessibility to the lens and highly structured proteins in the lens that make it difficult to treat.

It is estimated that 88 per cent of people older than 75 years will have some form of this condition which is the leading cause of blindness worldwide. Currently, there are more than 2.5 million Canadians who are affected by cataracts and that number is expected to double by 2031.

While cataract surgery remains an effective option for many, Ingenuity researchers have their sights set on a new model of cataract treatment that does not rely on surgical intervention, by engineering molecules that would have capabilities to detect, inhibit and restore the affected proteins in the lens. The technology would also prevent further formation of the aggregate proteins that decrease vision.

This potential technology is particularly exciting for developing nations where surgical access is often limited and holds great promise for ageing populations around the world.

I’d never previously noticed ‘cataracts’ used with the singular version of a verb. It seems this is a matter for some debate as per this 2007 discussion Wordreference.com resulting in a ‘ymmv’ (your mileage may vary) situation with an edge given to the use of the plural version of the verb. Personally, I prefer the plural with ‘cataracts’.

Getting back to Ingenuity Lab and its ‘cataracts’ query, there’s a July 4, 2014 Nanowerk Spotlight article written by someone from Ingenuity Lab describing their latest developments,

At Ingenuity Lab in Edmonton, a multidisciplinary team of researchers with partners in Alberta, U.S.A. and Nepal, are busy trying to understand the fundamental mechanisms of how the aggregates that cause cataracts form, and how nanotechnology may be used to prevent or at least inhibit them.

Researchers are taking lessons learned from earlier discoveries and have honed in on target specific peptide screening techniques in the hopes that they will provide a much-needed solution for communities around the world. The work aims to harness the specific binding abilities of peptides for recognition of crystallin protein aggregates7, as well as the unique peptide characteristics that influence stabilization of protein/aggregate and activity depending on the binding region8.

This research is encouraging because it recognizes the potential of crystallin specific peptides not only as drug delivery mediators but also as aggregation inhibitory molecules. Using combinatorial biology approaches, the team has is working to select peptides in both recombinant and ex vivo systems. Once the specific peptides are chosen, their effect on the aggregation process is will be carefully followed by in-situ time sequenced atomic force microscopy visualizations. These peptides will then be screened for particular inhibitory properties, considered as a potential therapeutical agent and evaluated on lens tissue and animal models at the state-of-the art lab in Alberta.

An added benefit to identifying peptides that bind to crystallin aggregates, is that their application extends beyond the treatment of cataract. While the hope and goal is that the peptides themselves will serve as a biologically based, mild, non-invasive treatment, these molecules could also serve to selectively target affected areas of the lens for delivery of other therapies.

The Nanowerk Spotlight article includes more information about the condition. about eyes, references, and an image illustrating the effects of peptides.

Canada Grand Challenges May 2014 grants

Grand Challenges Canada (mentioned here many times including this Nov. 21, 2013 posting which featured their ‘Stars in Global Health’ programme grants announcement for Fall 2013) has announced a new round of awards. From a May 22, 2014 Grand Challenges Canada news release (can be found on EurekAlert),

Grand Challenges Canada, funded by the Government of Canada, today announces investments of $12 million in projects worldwide, aimed squarely at improving the health and saving the lives of mothers, newborns and children in developing countries.

The news release goes on to describe two different grants,

Four Canadian-based projects (from Guelph, Toronto, Waterloo and Winnipeg) with proven impact and sustainability will share $2.6 million in scale-up grants and loans from Grand Challenges Canada, matched by $2.6 million from private and public partners, bringing total “transition-to-scale” investments to $5.2 million.

In addition, Grand Challenges Canada “Stars in Global Health” [awarded] seed grants of $112,000 each ($6.8 million in total) …

[emphases mine]

I checked here to find Spring 2014 ‘Transition to scale’ grants and ‘Seed’ grants for the Canada Grand Challenges (GCC) programme.

I’m highlighting two of the funded projects. First, there’s ‘Lucky Iron Fish’ which won a ‘transition-scale-grant’ for the University of Guelph, from the news release on EurekAlert,

The little “Lucky Iron Fish,” now in growing use by cooks in Cambodia, has proven effective in reducing rampant iron deficiency among women – the cause of premature labour, hemorrhaging during childbirth and poor brain development among babies. Initial local reluctance to use a loose piece of iron in cooking pots was overcome by a clever design tapping into Cambodian folklore about a fish species that brings good fortune. In partnership with small businesses across Cambodia, plans for this year and next call for production and distribution of 60,000 lucky iron fish, made from recycled material at a cost of about $5 each, which provide health benefits for roughly three years.

(Lucky Iron Fish, Guelph, a transition-to-scale investment, grant #0355, video, images. More information: http://bit.ly/1mIZeWr)

Here’s more detail about the project from the GCC’s list of May 2014 successful GCC grants,

A lucky little fish to fight iron deficiency among women in Cambodia
Lucky Iron Fish, Guelph
Project number: 0355-05-30
Total new transition to scale investment: $860,000

In Cambodia, six in 10 women are anemic due to iron deficiency in their diets, causing premature labour, hemorrhaging during childbirth and the impaired brain development of their babies.

Usually obtained through red meat or other iron-rich foods, a small chunk of iron added to water in the cooking pot can release a life-saving iron supplement.  But attempts to persuaders to do so were unsuccessful.

On a 2008 study mission in Cambodia, University of Guelph researcher Chris Charles thought of creating a piece of iron shaped like a local river fish believed to bring good luck and fortune.

His simple idea succeeded beyond all expectations.  Women happily placed the Lucky Iron Fish in their cooking pots and, in the months that followed, anemia in the village fell dramatically.

A Lucky Iron Fish is small enough to be stirred easily but large enough to provide about 75 per cent of daily iron requirements.

“The results are stunning,” says Dr. Alastair Summerlee, President of the University of Guelph and Chair of the Board of Directors of Lucky Iron Fish. “Initial results show a huge decrease in anemia and the village women say they feel good, experience no dizziness and have fewer headaches. The iron fish is incredibly powerful.”

Small businesses across Cambodia will produce and distribute the fish with quality control measures in place.  About 7.5 cm (3 inches) long, and made from recycled material at a cost of about $5 each, the iron fish provides health benefits for roughly three years.

“Our goal is to produce 10,000 Lucky Iron Fish this year and another 150,000 next year,” says Gavin Armstrong, President and CEO of Lucky Iron Fish.

Taking the project to scale offers profound potential health benefits to many women in Cambodia with potential markets throughout the world.
Grand Challenges Canada’s $500,000 loan to Lucky Iron Fish is part of a total scale-up financing package of $860,000, and augments earlier commitments of equity investors, Innovation Guelph, and the University of Guelph.

The second one is a ‘Rising Star’ project at the University of Alberta. From a May 22, 2014 University of Alberta news release (also on EurekAlert but dated May 23, 2014),

A University of Alberta researcher’s star is rising thanks to her idea to detect deadly pathogens such as E. coli using a paper device only slightly larger than a postage stamp.

Frédérique Deiss, a post-doctoral fellow in the Faculty of Science, is working on ways to help detect food- and water-borne pathogens using a paper-based diagnostic tool that could be used anywhere, including developing countries. The idea earned the electrochemist $112,000 in research funding from Grand Challenges Canada after being selected as one of their Stars in Global Health.

For the next 18 months, Deiss will be working at the U of A and with farmers near Nairobi, Kenya, in collaboration with the International Livestock Research Institute, to develop and test a prototype that provides an affordable method for detecting pathogens such as salmonella or E. coli, which can be present in raw milk, on equipment, or in water or waste water.

“Some areas do not have the infrastructure to do this kind of monitoring all the time. These devices are simple and sensible enough to use that farmers could almost do the tests themselves, and test every day rather than once a week or even more sporadically,” said Deiss, who is working in the lab of Ratmir Derda.

Her idea for a diagnostic tool made of paper is just that at the moment—an idea. Funding from Grand Challenges Canada will allow her to develop an electrochemical diagnostic device made of paper and tape. Conductive ink applied to the paper would create an electrode that would allow researchers to detect the presence of targeted bacteria.

Slightly larger than a postage stamp and even cheaper to make at less than 10 cents, the device would be extremely portable, self-contained and sealed—meaning anyone performing the tests would not risk exposure to potentially harmful bacteria, Deiss said. It would also allow testing of non-purified samples—a time- and cost-saving step not possible in some parts of the world, including farms around Nairobi, she added.

Within six months, Deiss hopes to develop a working prototype capable of detecting non-pathogenic bacteria, and by one year a device able to safely detect deadly pathogens such as E. coli. She also plans to work with ILRI and farmers in Nairobi to test the device in the field, comparing results with conventional methods.

Here’s a video of Deiss describing her idea,

You can find more videos featuring researchers and their GCC projects on GCC’s YouTube channel.

I wish all the best of luck to all the researchers and I’m pretending to myself that the two projects featured here can be described as nanotechnology.

Mopping up that oil spill with a nanocellulose sponge and a segue into Canadian oil and politics

Empa (Swiss Federal Laboratories for Materials Science and Technology or ,in German, Eidgenössische Materialprüfungs- und Forschungsanstalt) has announced the development of a nanocellulose sponge useful for cleaning up oil spills in a May 5, 2014 news item on Nanowerk (Note: A link has been removed),

A new, absorbable material from Empa wood research could be of assistance in future oil spill accidents: a chemically modified nanocellulose sponge. The light material absorbs the oil spill, remains floating on the surface and can then be recovered. The absorbent can be produced in an environmentally-friendly manner from recycled paper, wood or agricultural by-products (“Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water”).

A May 2, 2014 Empa news release (also on EurekAlert*}, which originated the news item, includes a description of the potential for oil spills due to transport issues, Empa’s proposed clean-up technology, and a request for investment,

All industrial nations need large volumes of oil which is normally delivered by ocean-going tankers or via inland waterways to its destination. The most environmentally-friendly way of cleaning up nature after an oil spill accident is to absorb and recover the floating film of oil. The Empa researchers Tanja Zimmermann and Philippe Tingaut, in collaboration with Gilles Sèbe from the University of Bordeaux, have now succeeded in developing a highly absorbent material which separates the oil film from the water and can then be easily recovered, “silylated” nanocellulose sponge. In laboratory tests the sponges absorbed up to 50 times their own weight of mineral oil or engine oil. They kept their shape to such an extent that they could be removed with pincers from the water. The next step is to fine tune the sponges so that they can be used not only on a laboratory scale but also in real disasters. To this end, a partner from industry is currently seeked.

Here’s what the nanocellulose sponge looks like (oil was dyed red and the sponge has absorbed it from the water),

The sponge remains afloat and can be pulled out easily. The oil phase is selectively removed from the surface of water. Image: Empa

The sponge remains afloat and can be pulled out easily. The oil phase is selectively removed from the surface of water.
Image: Empa

The news release describes the substance, nanofibrillated cellulose (NFC), and its advantages,

Nanofibrillated Cellulose (NFC), the basic material for the sponges, is extracted from cellulose-containing materials like wood pulp, agricultural by products (such as straw) or waste materials (such as recycled paper) by adding water to them and pressing the aqueous pulp through several narrow nozzles at high pressure. This produces a suspension with gel-like properties containing long and interconnected cellulose nanofibres .

When the water from the gel is replaced with air by freeze-drying, a nanocellulose sponge is formed which absorbs both water and oil. This pristine material sinks in water and is thus not useful for the envisaged purpose. The Empa researchers have succeeded in modifying the chemical properties of the nanocellulose in just one process step by admixing a reactive alkoxysilane molecule in the gel before freeze-drying. The nanocellulose sponge loses its hydrophilic properties, is no longer suffused with water and only binds with oily substances.

In the laboratory the “silylated” nanocellulose sponge absorbed test substances like engine oil, silicone oil, ethanol, acetone or chloroform within seconds. Nanofibrillated cellulose sponge, therefore, reconciles several desirable properties: it is absorbent, floats reliably on water even when fully saturated and is biodegradable.

Here’s a link to and a citation for the paper,

Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water by Zheng Zhang, Gilles Sèbe, Daniel Rentsch, Tanja Zimmermann, and Philippe Tingaut. Chem. Mater., 2014, 26 (8), pp 2659–2668 DOI: 10.1021/cm5004164 Publication Date (Web): April 10, 2014

Copyright © 2014 American Chemical Society

This article is behind a paywall.

I featured ‘nanocellulose and oil spills’ research at the University Wisconsin-Madison in a Feb. 26, 2014 post titled, Cleaning up oil* spills with cellulose nanofibril aerogels (Note: I corrected a typo in my headline hence the asterisk). I also have a Dec. 31, 2013 piece about a nanotechnology-enabled oil spill recovery technology project (Naimor) searching for funds via crowdfunding. Some major oil projects being considered in Canada and the lack of research on remediation are also mentioned in the post.

Segue Alert! As for the latest on Canada and its oil export situation, there’s a rather interesting May 2, 2014 Bloomberg.com article Canada Finds China Option No Easy Answer to Keystone Snub‘ by Edward Greenspon, Andrew Mayeda, Jeremy van Loon and Rebecca Penty describing two Canadian oil projects and offering a US perspective,

It was February 2012, three months since President Barack Obama had phoned the Canadian prime minister to say the Keystone XL pipeline designed to carry vast volumes of Canadian crude to American markets would be delayed.

Now Harper [Canadian Prime Minister Stephen Harper] found himself thousands of miles from Canada on the banks of the Pearl River promoting Plan B: a pipeline from Alberta’s landlocked oil sands to the Pacific Coast where it could be shipped in tankers to a place that would certainly have it — China. It was a country to which he had never warmed yet that served his current purposes. [China's President at that time was Hu Jintao, 2002 - 2012; currently the President is Xi Jinping, 2013 - ]

The writers do a good job of describing a number of factors having an impact on one or both of the pipeline projects. However, no mention is made in the article that Harper is from the province of Alberta and represents that province’s Calgary Southwest riding. For those unfamiliar with Calgary, it is a city dominated by oil companies. I imagine Mr. Harper is under considerable pressure to resolve oil export and transport issues and I would expect they would prefer to resolve the US issues since many of those oil companies in Calgary have US headquarters.

Still, it seems simple, if the US is not interested as per the problems with the Keystone XL pipeline project, ship the oil to China via a pipeline through the province of British Columbia and onto a tanker. What the writers do not mention is yet another complicating factor, Trudeau, both Justin and, the deceased, Pierre.

As Prime Minister of Canada, Pierre Trudeau was unloved in Alberta, Harper’s home province, due to his energy policies and the formation of the National Energy Board. Harper appears, despite his denials, to have an antipathy towards Pierre Trudeau that goes beyond the political to the personal and it seems to extend beyond Pierre’s grave to his son, Justin. A March 21, 2014 article by Mark Kennedy for the National Post describes Harper’s response to Trudeau’s 2000 funeral this way,

Stephen Harper, then the 41-year-old president of the National Citizens Coalition (NCC), was a proud conservative who had spent three years as a Reform MP. He had entered politics in the mid-1980s, in part because of his disdain for how Pierre Trudeau’s “Just Society” had changed Canada.

So while others were celebrating Trudeau’s legacy, Harper hammered out a newspaper article eviscerating the former prime minister on everything from policy to personality.

Harper blasted Trudeau Sr. for creating “huge deficits, a mammoth national debt, high taxes, bloated bureaucracy, rising unemployment, record inflation, curtailed trade and declining competitiveness.”

On national unity, he wrote that Trudeau was a failure. “Only a bastardized version of his unity vision remains and his other policies have been rejected and repealed by even his own Liberal party.”

Trudeau had merely “embraced the fashionable causes of his time,” wrote Harper.

Getting personal, he took a jab at Trudeau over not joining the military during the Second World War: “He was also a member of the ‘greatest generation,’ the one that defeated the Nazis in war and resolutely stood down the Soviets in the decades that followed. In those battles however, the ones that truly defined his century, Mr. Trudeau took a pass.”

The article was published in the National Post Oct. 5, 2000 — two days after the funeral.

Kennedy’s article was occasioned by the campaign being led by Harper’;s Conservative party against the  leader (as of April 2013) of the Liberal Party, Justin Trudeau.

It’s hard to believe that Harper’s hesitation over China is solely due to human rights issues especially  since Harper has not been noted for consistent interest in those issues and, more particularly, since Prime Minister Pierre Trudeau was one of the first ‘Western’ leaders to visit communist China . Interestingly, Harper has been much more enthusiastic about the US than Pierre Trudeau who while addressing the Press Club in Washington, DC in March 1969, made this observation (from the Pierre Trudeau Wikiquote entry),

Living next to you [the US] is in some ways like sleeping with an elephant. No matter how friendly and even-tempered is the beast, if I can call it that, one is affected by every twitch and grunt.

On that note, I think Canada is always going to be sleeping with an elephant; the only question is, who’s the elephant now? In any event, perhaps Harper is more comfortable with the elephant he knows and that may explain why China’s offer to negotiate a free trade agreement has been left unanswered (this too was not noted in the Bloomberg article). The offer and lack of response were mentioned by Yuen Pau Woo, President and CEO of the Asia Pacific Foundation of Canada, who spoke at length about China, Canada, and their trade relations at a Jan. 31, 2014 MP breakfast (scroll down for video highlights of the Jan. 31, 2014 breakfast) held by Member of Parliament (MP) for Vancouver-Quadra, Joyce Murray.

Geopolitical tensions and Canadian sensitivities aside, I think Canadians in British Columbia (BC), at least, had best prepare for more oil being transported and the likelihood of spills. In fact, there are already more shipments according to a May 6, 2014 article by Larry Pynn for the Vancouver Sun,

B.C. municipalities work to prevent a disastrous accident as rail transport of oil skyrockets

The number of rail cars transporting crude oil and petroleum products through B.C. jumped almost 200 per cent last year, reinforcing the resolve of municipalities to prevent a disastrous accident similar to the derailment in Lac-Mégantic in Quebec last July [2013].

Transport Canada figures provided at The Vancouver Sun’s request show just under 3,400 oil and petroleum rail-car shipments in B.C. last year, compared with about 1,200 in 2012 and 50 in 2011.

The figures come a week after The Sun revealed that train derailments jumped 20 per cent to 110 incidents last year in B.C., the highest level in five years.

Between 2011 and 2012, there was an increase of 2400% (from 50 to 1200) of oil and petroleum rail-car shipments in BC. The almost 300% increase in shipments between 2012 and 2013 seems paltry in comparison.  Given the increase in shipments and the rise in the percentage of derailments, one assumes there’s an oil spill waiting to happen. Especially so, if the Canadian government manages to come to an agreement regarding the proposed pipeline for BC and frankly, I have concerns about the other pipeline too, since either will require more rail cars, trucks, and/or tankers for transport to major centres edging us all closer to a major oil spill.

All of this brings me back to Empa, its oil-absorbing nanocellulose sponges, and the researchers’ plea for investors and funds to further their research. I hope they and all the other researchers (e.g., Naimor) searching for ways to develop and bring their clean-up ideas to market find some support.

*EurekAlert link added May 7, 2014.

ETA May 8, 2014:  Some types of crude oil are more flammable than others according to a May 7, 2014 article by Lindsay Abrams for Salon.com (Note: Links have been removed),

Why oil-by-rail is an explosive disaster waiting to happen
A recent spate of fiery train accidents all have one thing in common: highly volatile cargo from North Dakota

In case the near continuous reports of fiery, deadly oil train accidents hasn’t been enough to convince you, Earth Island Journal is out with a startling investigative piece on North Dakota’s oil boom and the dire need for regulations governing that oil’s transport by rail.

The article is pegged to the train that derailed and exploded last summer in  [Lac-Mégantic] Quebec, killing 47 people, although it just as well could have been the story of the train that derailed and exploded in Alabama last November, the train that derailed and exploded in North Dakota last December, the train that derailed and exploded in Virginia last week or — let’s face it — any future accidents that many see as an inevitability.

The Bakken oil fields in North Dakota are producing over a million barrels of crude oil a day, more than 60 percent of which is shipped by rail. All that greenhouse gas-emitting fossil fuel is bad enough; that more oil spilled in rail accidents last year than the past 35 years combined is also no small thing. But the particular chemical composition of Bakken oil lends an extra weight to these concerns: according to the Pipeline and Hazardous Materials Safety Administration, it may be more flammable and explosive than traditional crude.

While Abrams’ piece is not focused on oil cleanups, it does raise some interesting questions about crude oil transport and whether or not the oil from Alberta might also be more than usually dangerous.

Earth Day, Water Day, and every day

I’m blaming my confusion on the American Chemical Society (ACS) which seemed to be celebrating Earth Day on April 15, 2014 as per its news release highlighting their “Chemists Celebrate Earth Day” video series  while in Vancouver, Canada, we’re celebrating it on April 26, 2014 and elsewhere it seems to be on April 20, this year. Regardless, here’s more about how chemist’s are celebrating from the ACS news release,

Water is arguably the most important resource on the planet. In celebration of Earth Day, the American Chemical Society (ACS) is showcasing three scientists whose research keeps water safe, clean and available for future generations. Geared toward elementary and middle school students, the “Chemists Celebrate Earth Day” series highlights the important work that chemists and chemical engineers do every day. The videos are available at http://bit.ly/CCED2014.

The series focuses on the following subjects:

  • Transforming Tech Toys- Featuring Aydogan Ozcan, Ph.D., of UCLA: Ozcan takes everyday gadgets and turns them into powerful mobile laboratories. He’s made a cell phone into a blood analyzer and a bacteria detector, and now he’s built a device that turns a cell phone into a water tester. It can detect very harmful mercury even at very low levels.
  • All About Droughts - Featuring Collins Balcombe of the U.S. Bureau of Reclamation: Balcombe’s job is to keep your drinking water safe and to find new ways to re-use the water that we flush away everyday so that it doesn’t go to waste, especially in areas that don’t get much rain.
  • Cleaning Up Our Water – Featuring Anne Morrissey, Ph.D., of Dublin City University: We all take medicines, but did you know that sometimes the medicine doesn’t stay in our bodies? It’s up to Anne Morrissey to figure out how to get potentially harmful pharmaceuticals out of the water supply, and she’s doing it using one of the most plentiful things on the planet: sunlight.

Sadly, I missed marking World Water Day which according to a March 21, 2014 news release I received was being celebrated on Saturday, March 22, 2014 with worldwide events and the release of a new UN report,

World Water Day: UN Stresses Water and Energy Issues 

Tokyo Leads Public Celebrations Around the World

Tokyo — March 21 — The deep-rooted relationships between water and energy were highlighted today during main global celebrations in Tokyo marking the United Nations’ annual World Water Day.

“Water and energy are among the world’s most pre-eminent challenges. This year’s focus of World Water Day brings these issues to the attention of the world,” said Michel Jarraud, Secretary-General of the World Meteorological Organization and Chair of UN-Water, which coordinates World Water Day and freshwater-related efforts UN system-wide.

The UN predicts that by 2030 the global population will need 35% more food, 40% more water and 50% more energy. Already today 768 million people lack access to improved water sources, 2.5 billion people have no improved sanitation and 1.3 billion people cannot access electricity.

“These issues need urgent attention – both now and in the post-2015 development discussions. The situation is unacceptable. It is often the same people who lack access to water and sanitation who also lack access to energy, ” said Mr. Jarraud.

The 2014 World Water Development Report (WWDR) – a UN-Water flagship report, produced and coordinated by the World Water Assessment Programme, which is hosted and led by UNESCO – is released on World Water Day as an authoritative status report on global freshwater resources. It highlights the need for policies and regulatory frameworks that recognize and integrate approaches to water and energy priorities.

WWDR, a triennial report from 2003 to 2012, this year becomes an annual edition, responding to the international community’s expression of interest in a concise, evidence-based and yearly publication with a specific thematic focus and recommendations.

WWDR 2014 underlines how water-related issues and choices impact energy and vice versa. For example: drought diminishes energy production, while lack of access to electricity limits irrigation possibilities.

The report notes that roughly 75% of all industrial water withdrawals are used for energy production. Tariffs also illustrate this interdependence: if water is subsidized to sell below cost (as is often the case), energy producers – major water consumers – are less likely to conserve it.  Energy subsidies, in turn, drive up water usage.

The report stresses the imperative of coordinating political governance and ensuring that water and energy prices reflect real costs and environmental impacts.

“Energy and water are at the top of the global development agenda,” said the Rector of United Nations University, David Malone, this year’s coordinator of World Water Day on behalf of UN-Water together with the United Nations Industrial Development Organization (UNIDO).

“Significant policy gaps exist in this nexus at present, and the UN plays an instrumental role in providing evidence and policy-relevant guidance. Through this day, we seek to inform decision-makers, stakeholders and practitioners about the interlinkages, potential synergies and trade-offs, and highlight the need for appropriate responses and regulatory frameworks that account for both water and energy priorities. From UNU’s perspective, it is essential that we stimulate more debate and interactive dialogue around possible solutions to our energy and water challenges.”

UNIDO Director-General LI Yong, emphasized the importance of water and energy for inclusive and sustainable industrial development.

“There is a strong call today for integrating the economic dimension, and the role of industry and manufacturing in particular, into the global post-2015 development priorities. Experience shows that environmentally sound interventions in manufacturing industries can be highly effective and can significantly reduce environmental degradation. I am convinced that inclusive and sustainable industrial development will be a key driver for the successful integration of the economic, social and environmental dimensions,” said Mr. LI.

Rather unusually, Michael Bergerrecently published two Nanowerk Spotlight articles about water (is there theme, anyone?) within 24 hours of each other. In his March 26, 2014 Spotlight article, Michael Berger focuses on graphene and water remediation (Note: Links have been removed),

The unique properties of nanomaterials are beneficial in applications to remove pollutants from the environment. The extremely small size of nanomaterial particles creates a large surface area in relation to their volume, which makes them highly reactive, compared to non-nano forms of the same materials.

The potential impact areas for nanotechnology in water applications are divided into three categories: treatment and remediation; sensing and detection: and pollution prevention (read more: “Nanotechnology and water treatment”).

Silver, iron, gold, titanium oxides and iron oxides are some of the commonly used nanoscale metals and metal oxides cited by the researchers that can be used in environmental remediation (read more: “Overview of nanomaterials for cleaning up the environment”).

A more recent entrant into this nanomaterial arsenal is graphene. Individual graphene sheets and their functionalized derivatives have been used to remove metal ions and organic pollutants from water. These graphene-based nanomaterials show quite high adsorption performance as adsorbents. However they also cause additional cost because the removal of these adsorbent materials after usage is difficult and there is the risk of secondary environmental pollution unless the nanomaterials are collected completely after usage.

One solution to this problem would be the assembly of individual sheets into three-dimensional (3D) macroscopic structures which would preserve the unique properties of individual graphene sheets, and offer easy collecting and recycling after water remediation.

The March 27, 2014 Nanowerk Spotlight article was written by someone at Alberta’s (Canada) Ingenuity Lab and focuses on their ‘nanobiological’ approach to water remediation (Note: Links have been removed),

At Ingenuity Lab in Edmonton, Alberta, Dr. Carlo Montemagno and a team of world-class researchers have been investigating plausible solutions to existing water purification challenges. They are building on Dr. Montemagno’s earlier patented discoveries by using a naturally-existing water channel protein as the functional unit in water purification membranes [4].

Aquaporins are water-transport proteins that play an important osmoregulation role in living organisms [5]. These proteins boast exceptionally high water permeability (~ 1010 water molecules/s), high selectivity for pure water molecules, and a low energy cost, which make aquaporin-embedded membrane well suited as an alternative to conventional RO membranes.

Unlike synthetic polymeric membranes, which are driven by the high pressure-induced diffusion of water through size selective pores, this technology utilizes the biological osmosis mechanism to control the flow of water in cellular systems at low energy. In nature, the direction of osmotic water flow is determined by the osmotic pressure difference between compartments, i.e. water flows toward higher osmotic pressure compartment (salty solution or contaminated water). This direction can however be reversed by applying a pressure to the salty solution (i.e., RO).

The principle of RO is based on the semipermeable characteristics of the separating membrane, which allows the transport of only water molecules depending on the direction of osmotic gradient. Therefore, as envisioned in the recent publication (“Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications”), the core of Ingenuity Lab’s approach is to control the direction of water flow through aquaporin channels with a minimum level of pressure and to use aquaporin-embedded biomimetic membranes as an alternative to conventional RO membranes.

Here’s a link to and a citation for Montemagno’s and his colleague’s paper,

Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications by Hyo-Jick Choi and Carlo D. Montemagno. Materials 2013, 6(12), 5821-5856; doi:10.3390/ma6125821

This paper is open access.

Returning to where I started, here’s a water video featuring graphene from the ACS celebration of Earth Day 2014,

Happy Earth Day!

Xerox Research Centre Canada, authentic currency, etc. and a ‘nano’ deal with Authentix

An April 1, 2014 news item on labcanada.com describes a recently signed deal which may turn up the competition in Canada’s currency authentication business sector,

The Xerox Research Centre Canada [XRCC] says it has signed a multi-year materials research services agreement with Dallas-based Authentix, a provider of anti-counterfeiting, brand protection and program integrity solutions for the oil and gas industry; currency, branded products and tax stamp markets.

“Working with companies like Authentix adds to the value our scientists bring to the research world,” said Paul Smith, vice president and director of the Xerox Research Centre Canada. “Not only do we continue to strengthen our scientific role in Canadian innovation, we are now bringing valuable research capabilities to other companies globally.”

Given that Xerox is a US company with a Canadian branch, I’m not sure how signing a deal with another US company aids Canadian innovation. On the plus side, it does give some Canadian scientists a job.

I also noted the reference to “currency authentication”, which suggests that Authentix could be in direct competition with the Canadian company, Nanotech Security Corp. (I have written about Nanotech Security Corp. previously with the two most recent being a Jan. 31, 2014 posting about the company’s presentation at an Optical Document Security Conference and a March 17, 2014 posting about the company’s first commercial client, TED.) Perhaps Xerox plans to spur Canadian innovation by providing more competition for our technology companies.

Here’s more from the March 31, 2014 Xerox news release, which originated the news item about the deal with Authentix,

Scientists at XRCC specialize in the design and development of electronic materials and specialty components; environmentally-friendly processes; coatings, applied nanotechnology; polymer science, engineering and pilot plant scale-up. [emphasis mine]

“Materials science research makes it possible to bring new levels of security, accuracy and efficiency to product authentication,” said Jeff Conroy, chief technology officer of Authentix.  “Leveraging the core competencies of Xerox’s materials lab in Canada expands and accelerates our ability to bring innovative solutions to the authentication market.”

Located near Toronto, XRCC is part of the global Xerox Innovation Group made up of researchers and engineers in five world-renowned research centers. Each center leverages XRCC’s unique, integrated, global materials research and development mandate.

You can find out more about Authentix here.

Getting back to XRCC, they had a longstanding relationship with Canada’s National Institute of Nanotechnology (NINT) having signed a 2007 contract with NINT and the Government of Alberta, from a Xerox Innovation Story,

In Canada’s first major public-private nanotechnology research partnership, the Xerox Research Centre of Canada (XRCC), NRC National Institute for Nanotechnology (NINT) and Government of Alberta will provide approximately $4.5 million for research and development of materials-based nanotechnology over the next three years.

The three partners will invest funds, human resources, and available infrastructures to create a research program and teams focused on developing commercially successful nanotechnology-based discoveries. Personnel from NINT and XRCC will collaborate on research projects at NINT in Edmonton, Alberta, and at XRCC in Mississauga, Ontario.

The funds will contribute to the hiring of eight to 10 scientists who will investigate materials-based nanotechnologies, including document- and display-related technologies. The research program, co-managed by XRCC and NINT, will allow access to Xerox’s experience in successfully commercializing technology to facilitate the market application of resulting inventions.

“This level of public and private sector partnership helps fuel the type of innovation that will keep Alberta, and Canada as a whole, strong and competitive in an increasingly global, knowledge-based economy,” said Doug Horner, minister for Advanced Education and Technology, Government of Alberta. “The investments from the Government of Alberta, Xerox and NINT will build a world-class nanotechnology research program that embraces the spirit of innovation, but also that of commercialization.”

I find the references to Xerox and innovation and commercialization amusing since the company is famous for its innovation missteps. For example, the company owned the photocopying business from the 1960s into the 1970s due to its patent rights but once those rights ran out (there’s usually a time limit on a patent) the company was poorly equipped to compete. My guess is that they didn’t know how in an environment where they no longer held a monopoly. The other famous story concerns the mouse and the graphical user interface both of which were developed at Xerox but the company never pursued those innovations leaving Stephen Jobs and his colleagues to found Apple.

At any rate, Xerox survived those missteps so perhaps they learned something and they really do mean it when they talk about spurring innovation. Although, given the business model for most Canadian technology companies, I expect Nanotech Security Corp. to get purchased by Authentix or one of its competitors with the consequence that Canadian taxpayers have helped to pay, yet again, for innovation that will be purchased by a corporate entity with headquarters in another country and much less interest in maintaining a business presence in Canada. If you think I’m being cynical about another country’s corporate interests in Canada, take a look at this excerpt from Derrick Penner’s March 28, 2014 article for the Vancouver Sun about Vancouver’s recent Globe 2014 conference,

Globe, the biannual conference on sustainable development [March 26 - 28, 2014], is as much about doing business as it is about discussing bright ideas for reducing the impact of industry on the environment.

And a new twist for European delegates, such as Roumeas [Vincent Roumeas, a business development manager for the Paris Region Economic Development Agency], is the prospect of Canada Europe Free Trade.

Prime Minister Stephen Harper and European Commission President José Manuel Barroso, last October, signed an agreement in principal, which commits the two sides to finalizing a full agreement giving each other tariff-free access to each others’ markets.

Roumeas said it is too soon to tell how much of a draw EU free trade will be because he is working on developing immediate prospects within the next 18 months, which would be before any benefits from free trade would kick in, if the deal is concluded.

However, his colleague Jeremy Bernard Orawiec, a trade adviser for UbiFrance, does see the agreement as an attraction for French firms interested the American market.

He added that the U.S. is viewed as a tough market to crack, so Canada is looked at as an easier-accessed entry point to all of North America.

“It’s really positive to see Canada able to make an agreement before the U.S.,” Orawiec said. “It gives us a time frame so (companies) can come here [Canada] and explore the whole American market.” [emphases mine]

It’s not clear from his comments but I suspect Orawiec is unaware that Mexico is part of North America. In any event, Canada as a market place or as an innovation centre is not important in and of itself. One can criticize Orawiec for making those comments but I’d like to thank him as he has expressed an attitude that I believe is widely held.

Biomining for rare earth elements with Alberta’s (Canada) Ingenuity Lab

Alberta’s Ingenuity Lab and its biomining efforts are being featured in a Feb. 3, 2014 Nanowerk Spotlight article which was supplied by Ingenuity Lab (Note: A link has been removed),

Scientists at Ingenuity Lab in Edmonton, Alberta are taking cues from nature, as they focus on nanotechnology gains in the area of biomining. Using microorganisms and biomolecules, the group is making significant advances in the recovery of rare earth and precious metals from industrial processes and the environment thanks to superior molecular recognition techniques.

In recent decades, the utility of protein/peptide molecules and their inorganic material recognition and binding abilities has come to light. Combinatorial biology tools have enabled researchers to select peptides for various materials such as ceramics, metal oxides, alloys and pure metals. Even though the binding mechanism of peptides hasn’t yet been fully resolved, studies are ongoing and these peptides continue to be used in many nanotechnology applications.

The Spotlight article further describes the approach being undertaken,

… researchers at Alberta’s first nanotechnology accelerator laboratory (Ingenuity Lab) are looking to take advantage of inorganic binding peptides for mining valuable and rare earth elements/metals that exist in nature or synthetic materials.

Rare earth elements (REE) are sought after materials that facilitate the production of electrical car batteries, high power magnets, lasers, fiber optic technology, MRI contrast agents, fluorescent lightening and much more. Despite increasing demand, mining and processing yields are not enough to satisfy the growing need. This is mainly due to the great loss during mining (25-50%) and beneficiation (10-30%).

Since REEs exist as a mixture in mineral ores, their beneficiation and separation into individual metals requires unique processes. Depending on the chemical form of the metal, different compounds are necessary during beneficiation steps to convert minerals into metal nitrates, oxides, chlorides and fluorides, which would be further extracted individually. Furthermore, this process must be followed with solvent separation to obtain individual metals. These excessive steps not only increase the production cost and energy consumption but also decrease the yield and generate environmental pollution due to the use of various chemicals and organic solvents.

…  Ingenuity Lab is working on generating smart biomaterials composed of inorganic binding peptides coated on the core of magnetic nanoparticles. These smart materials will expose two functions; first they will recognize and bind to a specific REE through the peptide region and they will migrate to magnetic field by the help of Iron Oxide core.

You can find more detail and illustrations in the Spotlight article.

There is biomining research being performed in at least one other lab (in China) as I noted in a Nov. 1, 2013 posting about some work to remove REEs from wastewater and where I noted that China had announced a cap on its exports of REEs.

Tim Harper’s Cientifica emerging technologies and business consultancy offers a white paper (free), Simply No Substitute? [2013?], which contextualizes and provides insight into the situation with REEs and other other critical materials. From Cientifica’s Simply No Substitute? webpage,

There is increasing concern that restricted supplies of certain metals and other critical minerals could hinder the deployment of future technologies. This new white paper by Cientifica and Material Value,  Simply No Substitute? takes a critical look at the current technology and policy landscape in this vital area, and in particular, the attempts to develop substitutes for critical materials.

A huge amount of research and development is currently taking place in academic and industrial research laboratories, with the aim of developing novel, innovative material substitutes or simply to ‘engineer-out’ critical materials with new designs.  As an example, our analysis shows the number of patents related to substitutes for rare earth elements has doubled in the last two years. However, the necessity and effectiveness of this research activity is still unclear and requires greater insight. Certainly, as this white paper details, there is no universal agreement between Governments and other stakeholders on what materials are at risk of future supply disruptions.

In an effort to ensure the interests of end-users are represented across this increasingly complex and rapidly developing issue, the publication proposes the creation of a new industry body. This will benefit not just end-users, but also primary and secondary producers  of critical materials, for who it is currently only feasible to have sporadic and inconsistent interaction with the diverse range of industries that use their materials.

You can download the white paper from here.

Getting back to Ingenuity Lab, there is no research paper mentioned in the Spotlight article. Their website does offer this on the Mining page,

The extraction of oil and gas is key to the economic prosperity of Alberta and Canada. We have the third largest oil reserves in the world behind Saudi Arabia and Venezuela. Not only is our oil and gas sector expected to generate $2.1 trillion in economic activity across Canada over the next 25 years, Canadian employment is expected to grow from 75,000 jobs in 2010 to 905,000 in 2035. However, it’s not without its impacts to the environment. This, we know. There are great strides being made in technology and innovation in this sector, but what if we could do more?

Then, there’s this from the site’s Biomining subpage,

Using a process called biomining, the research team at Ingenuity Lab is engineering new nano particles that have the capability to detect, extract or even bind to rare earth and precious metals that exist in nature or found in man-made materials.

Leveraging off of the incredible advances in targeted medical therapies, active nanoparticle and membrane technologies offer the opportunity to recover valuable resources from mining operations while leading to the remediation of environmentally contaminated soil and water.

Biomining technology offers the opportunity to maximize the utility of our natural resources, establish a new path forward to restore the pristine land and water of our forefathers and redefine Canada’s legacy of societal environmental, and economic prosperity.

Finally, there’s this page (Ingenuity Attracts Attention with Biomining Advances)  which seems to have originated the Spotlight article and is the source of the images in the Spotlight article.  I am curious as to whose attention they’ve attracted although I can certainly understand why various groups and individuals might be,

… Ingenuity’s system will also be able to work in a continuous flow process. There will be a constant input of metal mixture, which could be mine acid drain, tailing ponds or polluted water sources, and smart biomaterial. Biomaterial will be recovered from the end point of the chamber together with the targeted metal. Since the interaction between the peptide and the metal of interest is not covalent bonding, metal will be removed from the material without the need for harsh chemicals. This means valuable materials, currently discarded as waste, will be accessible and the reuse of the smart biomaterial will be an option, lowering the purification cost even more.

These exciting discoveries are welcome news for the mining industry and the environment, but also for communities around the world and generations to come.  Thanks to ingenuity, we will soon be able to maximize the utility of our precious resources as we restore damaged lands and water.

In any event I hope to hear more about this promising work with more details (such as:  At what stage is this work?, Is it scalable?) and the other research being performed at Ingenuity Lab.

Naimor: innovative nanostructured material for water remediation and oil recovery (crowdfunding project)

The NAIMOR crowdfunding project on indiegogo might be of particular interest to those of us on the West Coast of Canada where there is much talk about a project to create twin pipelines (Enbridge Northern Gateway Pipelines) between the provinces of  Alberta and British Columbia to export oil and import natural gas. The oil will be shipped to Asia by tanker and presumably so will the natural gas. In all the discussion about possible environmental disasters, I haven’t seen any substantive mention of remediation efforts or research to improve the technologies associated with environmental cleanups (remediation of water, soil, and/or air). At any rate, all this talk about the pipelines and oil tankers along Canada’s West Coast brought to mind the BP oil spill, aka the Deepwater Horizon oil spill, from the Wikipedia essay (Note: Links have been removed),

The Deepwater Horizon oil spill (also referred to as the BP oil spill, the BP oil disaster, the Gulf of Mexico oil spill, and the Macondo blowout) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. It claimed eleven lives[5][6][7][8] and is considered the largest accidental marine oil spill in the history of the petroleum industry, an estimated 8% to 31% larger in volume than the previously largest, the Ixtoc I oil spill. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.[7][9] The total discharge has been estimated at 4.9 million barrels (210 million US gal; 780,000 m3).[3]

A massive response ensued to protect beaches, wetlands and estuaries from the spreading oil utilizing skimmer ships, floating booms, controlled burns and 1.84 million US gallons (7,000 m3) of Corexit oil dispersant.[10] After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010.[11] Some reports indicate the well site continues to leak.[12][13] Due to the months-long spill, along with adverse effects from the response and cleanup activities, extensive damage to marine and wildlife habitats, fishing and tourism industries, and human health problems have continued through 2013.[14][15] Three years after the spill, tar balls could still be found on the Mississippi coast.[16] In July 2013, the discovery of a 40,000 pound tar mat near East Grand Terre, Louisiana prompted the closure of waters to commercial fishing.[17][18]

While Canada’s Northern Gateway project does not include any plans for ocean oil rigs, there is still the potential for massive spills either from the tankers or the pipelines. For those old enough to remember or those interested in history, this latest project raises the spectre of the Exxon Valdes oil spill, from the Wikipedia essay (Note: Links have been removed),

The Exxon Valdez oil spill occurred in Prince William Sound, Alaska, on March 24, 1989, when Exxon Valdez, an oil tanker bound for Long Beach, California, struck Prince William Sound’s Bligh Reef at 12:04 a.m.[1] local time and spilled 260,000 to 750,000 barrels (41,000 to 119,000 m3) of crude oil[2][3] over the next few days. It is considered to be one of the most devastating human-caused environmental disasters.[4] The Valdez spill was the largest ever in US waters until the 2010 Deepwater Horizon oil spill, in terms of volume released.[5]  [emphasis mine] However, Prince William Sound’s remote location, accessible only by helicopter, plane, or boat, made government and industry response efforts difficult and severely taxed existing plans for response. The region is a habitat for salmon, sea otters, seals and seabirds. The oil, originally extracted at the Prudhoe Bay oil field, eventually covered 1,300 miles (2,100 km) of coastline,[6] and 11,000 square miles (28,000 km2) of ocean.[7] Exxon’s CEO, Lawrence Rawl, shaped the company’s response.[8]

Some of that ‘difficult to reach’ coastline and habitat was Canadian (province of British Columbia). Astonishingly, given the 20 year gap between the Exxon Valdes spill and the Deepwater Horizon spill, the technology for remediation and cleanup had not changed much, although it seems that the measures* used to stop the oil spill were even older, from my June 4, 2010 posting,

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting from* Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In looking at this website: gatewayfacts.ca, it seems the proponents for the Enbridge Northern Gateway project have supplied some additional information. Here’s what they’ve supplied regarding the project’s spill response (from the Gateway Facts environmental-responsibility/marine-protection page),

A spill response capacity 3x better than required

Emergency response equipment, crews and training staff will be stationed at key points and communities along the marine routes.

I did find a bit more on the website’s What if? page,

Marine response in action

Our spill response capacity will be more than 3x the current Canadian regulation. In addition, tanker escort tugs will carry emergency response and firefighting equipment to be able to respond immediately.

I don’t feel that any real concerns have been addressed by this minimalist approach to communication. Here are some of my questions,

  • What does 3x the current Canadian regulation mean in practical terms and how does this compare with the best safety regulations from an international perspective? Will there be efforts at continuous improvement?
  • Are there going to be any audits by outside parties of the company’s emergency response during the life of the project?
  • How will those audits be conducted? i.e., Will there be notice or are inspectors likely to spring the occasional surprise inspection?
  • What technologies are the proponents planning to use for the cleanup?
  • Is there any research being conducted on new remediation and cleanup technologies?
  • How much money is being devoted to this research and where is it being conducted (university labs, company labs, which countries)?

In light of concerns about environmental remediation technologies, it’s heartening to see this project on indiegogo which according to a Dec. 27, 2013 news item on Nanowerk focuses on an improved approach to remediation for water contaminated by oil,,

Environmental oil spill disasters such as BP’s Deepwater Horizon oil rig in the Gulf of Mexico have enormous environmental consequences, leading to the killing of marine creatures and contamination of natural water streams, storm water systems or even drinking water supplies. Emergency management organizations must be ready to confront such turbulences with effective and eco-friendly solutions to minimize the short term or long term issues.

There are many ineffective and costly conventional technologies for the remedy of oil spills like using of dispersants, oil skimmers, sand barrier berms, oil containment booms, by controlled burning of surface oil, bioremediation and natural degradation.

NAIMOR® – NAnostructure Innovative Material for Oil Recovery – is a three dimensional, nanostructure carbon material that can be produced in different shapes, dimensions. It is highly hydrophobic and can absorb a quantity of oil around 150 times its weight. Light, strong, and flexible, the material can be reused many times without losing its absorption capacity.

I’m not familiar with the researcher who’s making this proposal so I can’t comment on the legitimacy of the project but this does look promising (I have heard of other similar research using carbon-based materials), from the Naimor campaign on indiegogo,

Ivano Aglietto, an Italian engineer with a PhD in Environmental Engineering has devoted his profession for the production of most advanced and innovative nanostructure carbon materials and the industrial development of their proper use in applications for the environmental remediation.

His first invention was RECAM® (REactive Carbon Material), a revolutionary solution for oil spill recovery which had shown extraordinary results but with limitations of usage.

RECAM® is inert, non toxic, regenerable, reusable, eco friendly material and can absorb oil 90 times its weight. It is ferromagnetic in nature and can be recovered from water using magnetic field. The hydrocarbons absorbed can be burnt inorder to reuse the material and no toxic gases are released because of its inert and non-flammable nature. Their is also possibility of extracting the absorbed oil by squeezing the material or by vacuum filtration. Oil recovered does not contain any water because of the hydrophobic behaviour of RECAM®. Recovered oil can be reused as resource and the RECAM® for recovering oil. RECAM® is used for oil spill remediation and successfully passed the Artemia test.

RECAM® is being replaced with his new innovative nanostructure material, NAIMOR®.

NAIMOR® (NAnostructure Innovative Material for Oil Recovery) is a nanostructure material that can be produced in different shapes and dimensions with an incredible efficiency for oil recovery.

Main Characteristics and Properties

Can absorb quantity of oil 150 times its weight.
Inert, made of pure carbon, environmental friendly and no chemicals involved.
Highly hydrophobic and the absorbed oil does not contain any water.
Regenerable and can be used several times without producing any wastes.
It is a three dimensional nanostructure and can be produced in different shapes, dimensions [carpets, booms, sheets'.
Capable of recovering gallons of oil depending on the shape and dimensions of the carpet.

This indiegogo campaign is almost the antithesis of the gatewayfacts.ca website offering a wealth of information and detail including a discussion about the weaknesses associated with the various cleanup technologies that represent the 'state of the art'. Here's an image from the Naimor campaign page,

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

I believe this is a pelican somewhere on the Gulf of Mexico coastline where it was affected by the 2010 Deepwater Horizon oil spill. As for Aglietto’s project, you can find the NAIMOR website here.

* Changed ‘measure’ to ‘measures’ and ‘form’ to ‘from’ May 6, 2014.