Tag Archives: Alberta

Ora Sound, a Montréal-based startup, and its ‘graphene’ headphones

For all the excitement about graphene there aren’t that many products as Glenn Zorpette notes in a June 20, 2017 posting about Ora Sound and its headphones on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

Graphene has long been touted as a miracle material that would deliver everything from tiny, ultralow-power transistors to the vastly long and ultrastrong cable [PDF] needed for a space elevator. And yet, 13 years of graphene development, and R&D expenditures well in the tens of billions of dollars have so far yielded just a handful of niche products. The most notable by far is a line of tennis racquets in which relatively small amounts of graphene are used to stiffen parts of the frame.

Ora Sound, a Montreal-based [Québec, Canada] startup, hopes to change all that. On 20 June [2017], it unveiled a Kickstarter campaign for a new audiophile-grade headphone that uses cones, also known as membranes, made of a form of graphene. “To the best of our knowledge, we are the first company to find a significant, commercially viable application for graphene,” says Ora cofounder Ari Pinkas, noting that the cones in the headphones are 95 percent graphene.

Kickstarter

It should be noted that participating in a Kickstarter campaign is an investment/gamble. I am not endorsing Ora Sound or its products. That said, this does look interesting (from the ORA: The World’s First Graphene Headphones Kickstarter campaign webpage),

ORA GQ Headphones uses nanotechnology to deliver the most groundbreaking audio listening experience. Scientists have long promised that one day Graphene will find its way into many facets of our lives including displays, electronic circuits and sensors. ORA’s Graphene technology makes it one of the first companies to have created a commercially viable application for this Nobel-prize winning material, a major scientific achievement.

The GQ Headphones come equipped with ORA’s patented GrapheneQ™ membranes, providing unparalleled fidelity. The headphones also offer all the features you would expect from a high-end audio product: wired/wireless operation, a gesture control track-pad, a digital MEMS microphone, breathable lambskin leather and an ear-shaped design optimized for sound quality and isolated comfort.

They have produced a slick video to promote their campaign,

At the time of publishing this post, the campaign will run for another eight days and has raised $650,949 CAD. This is more than $500,000 dollars over the company’s original goal of $135,000. I’m sure they’re ecstatic but this success can be a mixed blessing. They have many more people expecting a set of headphones than they anticipated and that can mean production issues.

Further, there appears to be only one member of the team with business experience and his (Ari Pinkas) experience includes marketing strategy for a few years and then founding an online marketplace for teachers. I would imagine Pinkas will be experiencing a very steep learning curve. Hopefully, Helge Seetzen, a member of the company’s advisory board will be able to offer assistance. According to Seetzen’s Wikipedia entry, he is a “… German technologist and businessman known for imaging & multimedia research and commercialization,” as well as, having a Canadian educational background and business experience. The rest of the team and advisory board appear to be academics.

The technology

A March 14, 2017 article by Andy Riga for the Montréal Gazette gives a general description of the technology,

A Montreal startup is counting on technology sparked by a casual conversation between two brothers pursuing PhDs at McGill University.

They were chatting about their disparate research areas — one, in engineering, was working on using graphene, a form of carbon, in batteries; the other, in music, was looking at the impact of electronics on the perception of audio quality.

At first glance, the invention that ensued sounds humdrum.

It’s a replacement for an item you use every day. It’s paper thin, you probably don’t realize it’s there and its design has not changed much in more than a century. Called a membrane or diaphragm, it’s the part of a loudspeaker that vibrates to create the sound from the headphones over your ears, the wireless speaker on your desk, the cellphone in your hand.

Membranes are normally made of paper, Mylar or aluminum.

Ora’s innovation uses graphene, a remarkable material whose discovery garnered two scientists the 2010 Nobel Prize in physics but which has yet to fulfill its promise.

“Because it’s so stiff, our membrane gets better sound quality,” said Robert-Eric Gaskell, who obtained his PhD in sound recording in 2015. “It can produce more sound with less distortion, and the sound that you hear is more true to the original sound intended by the artist.

“And because it’s so light, we get better efficiency — the lighter it is, the less energy it takes.”

In January, the company demonstrated its membrane in headphones at the Consumer Electronics Show, a big trade convention in Las Vegas.

Six cellphone manufacturers expressed interest in Ora’s technology, some of which are now trying prototypes, said Ari Pinkas, in charge of product marketing at Ora. “We’re talking about big cellphone manufacturers — big, recognizable names,” he said.

Technology companies are intrigued by the idea of using Ora’s technology to make smaller speakers so they can squeeze other things, such as bigger batteries, into the limited space in electronic devices, Pinkas said. Others might want to use Ora’s membrane to allow their devices to play music louder, he added.

Makers of regular speakers, hearing aids and virtual-reality headsets have also expressed interest, Pinkas said.

Ora is still working on headphones.

Riga’s article offers a good overview for people who are not familiar with graphene.

Zorpette’s June 20, 2017 posting (on Nanoclast) offers a few more technical details (Note: Links have been removed),

During an interview and demonstration in the IEEE Spectrum offices, Pinkas and Robert-Eric Gaskell, another of the company’s cofounders, explained graphene’s allure to audiophiles. “Graphene has the ideal properties for a membrane,” Gaskell says. “It’s incredibly stiff, very lightweight—a rare combination—and it’s well damped,” which means it tends to quell spurious vibrations. By those metrics, graphene soundly beats all the usual choices: mylar, paper, aluminum, or even beryllium, Gaskell adds.

The problem is making it in sheets large enough to fashion into cones. So-called “pristine” graphene exists as flakes, [emphasis mine] perhaps 10 micrometers across, and a single atom thick. To make larger, strong sheets of graphene, researchers attach oxygen atoms to the flakes, and then other elements to the oxygen atoms to cross-link the flakes and hold them together strongly in what materials scientists call a laminate structure. The intellectual property behind Ora’s advance came from figuring out how to make these structures suitably thick and in the proper shape to function as speaker cones, Gaskell says. In short, he explains, the breakthrough was, “being able to manufacture” in large numbers, “and in any geometery we want.”

Much of the R&D work that led to Ora’s process was done at nearby McGill University, by professor Thomas Szkopek of the Electrical and Computer Engineering department. Szkopek worked with Peter Gaskell, Robert-Eric’s younger brother. Ora is also making use of patents that arose from work done on graphene by the Nguyen Group at Northwestern University, in Evanston, Ill.

Robert-Eric Gaskell and Pinkas arrived at Spectrum with a preproduction model of their headphones, as well as some other headphones for the sake of comparison. The Ora prototype is clearly superior to the comparison models, but that’s not much of a surprise. …

… In the 20 minutes or so I had to audition Ora’s preproduction model, I listened to an assortment of classical and jazz standards and I came away impressed. The sound is precise, with fine details sharply rendered. To my surprise, I was reminded of planar-magnetic type headphones that are now surging in popularity in the upper reaches of the audiophile headphone market. Bass is smooth and tight. Overall, the unit holds up quite well against closed-back models in the $400 to $500 range I’ve listened to from Grado, Bowers & Wilkins, and Audeze.

Ora’s Kickstarter campaign page (Graphene vs GrapheneQ subsection) offers some information about their unique graphene composite,

A TECHNICAL INTRODUCTION TO GRAPHENE

Graphene is a new material, first isolated only 13 years ago. Formed from a single layer of carbon atoms, Graphene is a hexagonal crystal lattice in a perfect honeycomb structure. This fundamental geometry makes Graphene ridiculously strong and lightweight. In its pure form, Graphene is a single atomic layer of carbon. It can be very expensive and difficult to produce in sizes any bigger than small flakes. These challenges have prevented pristine Graphene from being integrated into consumer technologies.

THE GRAPHENEQ™ SOLUTION

At ORA, we’ve spent the last few years creating GrapheneQ, our own, proprietary Graphene-based nanocomposite formulation. We’ve specifically designed and optimized it for use in acoustic transducers. GrapheneQ is a composite material which is over 95% Graphene by weight. It is formed by depositing flakes of Graphene into thousands of layers that are bonded together with proprietary cross-linking agents. Rather than trying to form one, continuous layer of Graphene, GrapheneQ stacks flakes of Graphene together into a laminate material that preserves the benefits of Graphene while allowing the material to be formed into loudspeaker cones.

Scanning Electron Microscope (SEM) Comparison
Scanning Electron Microscope (SEM) Comparison

If you’re interested in more technical information on sound, acoustics, soundspeakers, and Ora’s graphene-based headphones, it’s all there on Ora’s Kickstarter campaign page.

The Québec nanotechnology scene in context and graphite flakes for graphene

There are two Canadian provinces that are heavily invested in nanotechnology research and commercialization efforts. The province of Québec has poured money into their nanotechnology efforts, while the province of Alberta has also invested heavily in nanotechnology, it has also managed to snare additional federal funds to host Canada’s National Institute of Nanotechnology (NINT). (This appears to be a current NINT website or you can try this one on the National Research Council website). I’d rank Ontario as being a third centre with the other provinces being considerably less invested. As for the North, I’ve not come across any nanotechnology research from that region. Finally, as I stumble more material about nanotechnology in Québec than I do for any other province, that’s the reason I rate Québec as the most successful in its efforts.

Regarding graphene, Canada seems to have an advantage. We have great graphite flakes for making graphene. With mines in at least two provinces, Ontario and Québec, we have a ready source of supply. In my first posting (July 25, 2011) about graphite mines here, I had this,

Who knew large flakes could be this exciting? From the July 25, 2011 news item on Nanowerk,

Northern Graphite Corporation has announced that graphene has been successfully made on a test basis using large flake graphite from the Company’s Bissett Creek project in Northern Ontario. Northern’s standard 95%C, large flake graphite was evaluated as a source material for making graphene by an eminent professor in the field at the Chinese Academy of Sciences who is doing research making graphene sheets larger than 30cm2 in size using the graphene oxide methodology. The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

Approximately 70% of production from the Bissett Creek property will be large flake (+80 mesh) and almost all of this will in fact be +48 mesh jumbo flake which is expected to attract premium pricing and be a better source material for the potential manufacture of graphene. The very high percentage of large flakes makes Bissett Creek unique compared to most graphite deposits worldwide which produce a blend of large, medium and small flakes, as well as a large percentage of low value -150 mesh flake and amorphous powder which are not suitable for graphene, Li ion batteries or other high end, high growth applications.

Since then I’ve stumbled across more information about Québec’s mines than Ontario’s  as can be seen:

There are some other mentions of graphite mines in other postings but they are tangential to what’s being featured:

  • (my Oct. 26, 2015 posting about St. Jean Carbon and its superconducting graphene and
  • my Feb. 20, 2015 posting about Nanoxplore and graphene production in Québec; and
  • this Feb. 23, 2015 posting about Grafoid and its sister company, Focus Graphite which gets its graphite flakes from a deposit in the northeastern part of Québec).

 

After reviewing these posts, I’ve begun to wonder where Ora’s graphite flakes come from? In any event, I wish the folks at Ora and their Kickstarter funders the best of luck.

Artificial intelligence (AI) company (in Montréal, Canada) attracts $135M in funding from Microsoft, Intel, Nvidia and others

It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.

In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government  budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),

One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.

The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.

It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.

It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.

In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.

They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.

The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.

The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),

The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.

What will it help the company do? Scale, its founders say.

“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.

“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”

Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.

There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),

Element AI isn’t the only organization in Canada that investors are interested in.

In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.

Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.

For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),

Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.

The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.

AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.

“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”

The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.

The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.”  Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.

Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),

It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.

Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.

…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.

Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.

The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.

“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.

The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.

Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.

The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.

But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.

Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.

“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.

Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.

Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.

Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.

nano tech 2017 being held in Tokyo from February 15-17, 2017

I found some news about the Alberta technology scene in the programme for Japan’s nano tech 2017 exhibition and conference to be held Feb. 15 – 17, 2017 in Tokyo. First, here’s more about the show in Japan from a Jan. 17, 2017 nano tech 2017 press release on Business Wire (also on Yahoo News),

The nano tech executive committee (chairman: Tomoji Kawai, Specially Appointed Professor, Osaka University) will be holding “nano tech 2017” – one of the world’s largest nanotechnology exhibitions, now in its 16th year – on February 15, 2017, at the Tokyo Big Sight convention center in Japan. 600 organizations (including over 40 first-time exhibitors) from 23 countries and regions are set to exhibit at the event in 1,000 booths, demonstrating revolutionary and cutting edge core technologies spanning such industries as automotive, aerospace, environment/energy, next-generation sensors, cutting-edge medicine, and more. Including attendees at the concurrently held exhibitions, the total number of visitors to the event is expected to exceed 50,000.

The theme of this year’s nano tech exhibition is “Open Nano Collaboration.” By bringing together organizations working in a wide variety of fields, the business matching event aims to promote joint development through cross-field collaboration.

Special Symposium: “Nanotechnology Contributing to the Super Smart Society”

Each year nano tech holds Special Symposium, in which industry specialists from top organizations from Japan and abroad speak about the issues surrounding the latest trends in nanotech. The themes of this year’s Symposium are Life Nanotechnology, Graphene, AI/IoT, Cellulose Nanofibers, and Materials Informatics.

Notable sessions include:

Life Nanotechnology
“Development of microRNA liquid biopsy for early detection of cancer”
Takahiro Ochiya, National Cancer Center Research Institute Division of Molecular and Cellular Medicine, Chief

AI / IoT
“AI Embedded in the Real World”
Hideki Asoh, AIST Deputy Director, Artificial Intelligence Research Center

Cellulose Nanofibers [emphasis mine]
“The Current Trends and Challenges for Industrialization of Nanocellulose”
Satoshi Hirata, Nanocellulose Forum Secretary-General

Materials Informatics
“Perspective of Materials Research”
Hideo Hosono, Tokyo Institute of Technology Professor

View the full list of sessions:
>> http://nanotech2017.icsbizmatch.jp/Presentation/en/Info/List#main_theater

nano tech 2017 Homepage:
>> http://nanotechexpo.jp/

nano tech 2017, the 16th International Nanotechnology Exhibition & Conference
Date: February 15-17, 2017, 10:00-17:00
Venue: Tokyo Big Sight (East Halls 4-6 & Conference Tower)
Organizer: nano tech Executive Committee, JTB Communication Design

As you may have guessed the Alberta information can be found in the .Cellulose Nanofibers session. From the conference/seminar program page; scroll down about 25% of the way to find the Alberta presentation,

Production and Applications Development of Cellulose Nanocrystals (CNC) at InnoTech Alberta

Behzad (Benji) Ahvazi
InnoTech Alberta Team Lead, Cellulose Nanocrystals (CNC)

[ Abstract ]

The production and use of cellulose nanocrystals (CNC) is an emerging technology that has gained considerable interest from a range of industries that are working towards increased use of “green” biobased materials. The construction of one-of-a-kind CNC pilot plant [emphasis mine] at InnoTech Alberta and production of CNC samples represents a critical step for introducing the cellulosic based biomaterials to industrial markets and provides a platform for the development of novel high value and high volume applications. Major key components including feedstock, acid hydrolysis formulation, purification, and drying processes were optimized significantly to reduce the operation cost. Fully characterized CNC samples were provided to a large number of academic and research laboratories including various industries domestically and internationally for applications development.

[ Profile ]

Dr. Ahvazi completed his Bachelor of Science in Honours program at the Department of Chemistry and Biochemistry and graduated with distinction at Concordia University in Montréal, Québec. His Ph.D. program was completed in 1998 at McGill Pulp and Paper Research Centre in the area of macromolecules with solid background in Lignocellulosic, organic wood chemistry as well as pulping and paper technology. After completing his post-doctoral fellowship, he joined FPInnovations formally [formerly?] known as PAPRICAN as a research scientist (R&D) focusing on a number of confidential chemical pulping and bleaching projects. In 2006, he worked at Tembec as a senior research scientist and as a Leader in Alcohol and Lignin (R&D). In April 2009, he held a position as a Research Officer in both National Bioproducts (NBP1 & NBP2) and Industrial Biomaterials Flagship programs at National Research Council Canada (NRC). During his tenure, he had directed and performed innovative R&D activities within both programs on extraction, modification, and characterization of biomass as well as polymer synthesis and formulation for industrial applications. Currently, he is working at InnoTech Alberta as Team Lead for Biomass Conversion and Processing Technologies.

Canada scene update

InnoTech Alberta was until Nov. 1, 2016 known as Alberta Innovates – Technology Futures. Here’s more about InnoTech Alberta from the Alberta Innovates … home page,

Effective November 1, 2016, Alberta Innovates – Technology Futures is one of four corporations now consolidated into Alberta Innovates and a wholly owned subsidiary called InnoTech Alberta.

You will find all the existing programs, services and information offered by InnoTech Alberta on this website. To access the basic research funding and commercialization programs previously offered by Alberta Innovates – Technology Futures, explore here. For more information on Alberta Innovates, visit the new Alberta Innovates website.

As for InnoTech Alberta’s “one-of-a-kind CNC pilot plant,” I’d like to know more about it’s one-of-a-kind status since there are two other CNC production plants in Canada. (Is the status a consequence of regional chauvinism or a writer unfamiliar with the topic?). Getting back to the topic, the largest company (and I believe the first) with a CNC plant was CelluForce, which started as a joint venture between Domtar and FPInnovations and powered with some very heavy investment from the government of Canada. (See my July 16, 2010 posting about the construction of the plant in Quebec and my June 6, 2011 posting about the newly named CelluForce.) Interestingly, CelluForce will have a booth at nano tech 2017 (according to its Jan. 27, 2017 news release) although the company doesn’t seem to have any presentations on the schedule. The other Canadian company is Blue Goose Biorefineries in Saskatchewan. Here’s more about Blue Goose from the company website’s home page,

Blue Goose Biorefineries Inc. (Blue Goose) is pleased to introduce our R3TM process. R3TM technology incorporates green chemistry to fractionate renewable plant biomass into high value products.

Traditionally, separating lignocellulosic biomass required high temperatures, harsh chemicals, and complicated processes. R3TM breaks this costly compromise to yield high quality cellulose, lignin and hemicellulose products.

The robust and environmentally friendly R3TM technology has numerous applications. Our current product focus is cellulose nanocrystals (CNC). Cellulose nanocrystals are “Mother Nature’s Building Blocks” possessing unique properties. These unique properties encourage the design of innovative products from a safe, inherently renewable, sustainable, and carbon neutral resource.

Blue Goose assists companies and research groups in the development of applications for CNC, by offering CNC for sale without Intellectual Property restrictions. [emphasis mine]

Bravo to Blue Goose! Unfortunately, I was not able to determine if the company will be at nano tech 2017.

One final comment, there was some excitement about CNC a while back where I had more than one person contact me asking for information about how to buy CNC. I wasn’t able to be helpful because there was, apparently, an attempt by producers to control sales and limit CNC access to a select few for competitive advantage. Coincidentally or not, CelluForce developed a stockpile which has persisted for some years as I noted in my Aug. 17, 2016 posting (scroll down about 70% of the way) where the company announced amongst other events that it expected deplete its stockpile by mid-2017.

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for thestar.com,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for thestar.com,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.

Bob McDonald: How is Canada on the ‘forefront of pushing nanotechnology forward’?

Mr. Quirks & Quarks, also known as the Canadian Broadcasting Corporation’s (CBC) Bob McDonald, host of the science radio programme Quirks & Quarks, published an Oct. 9, 2016 posting on the programme’s CBC blog about the recently awarded 2016 Nobel Prize for Chemistry and Canada’s efforts in the field of nanotechnology (Links have been removed),

The Nobel Prize in Chemistry awarded this week for developments in nanotechnology heralds a new era in science, akin to the discovery of electromagnetic induction 185 years ago. And like electricity, nanotechnology could influence the world in dramatic ways, not even imaginable today.

The world’s tiniest machines

The Nobel Laureates developed molecular machines, which are incredibly tiny devices assembled one molecule at a time, including a working motor, a lifting machine, a micro-muscle, and even a four wheel drive vehicle, all of which can only be seen with the most powerful electron microscopes. While these lab experiments are novel curiosities, the implications are huge, and Canada is on the forefront of pushing this research forward. [emphasis mine]

McDonald never explains how Canadians are pushing nanotechnology research further but there is this (Note: Links have been removed),

Many universities offer degree programs on the subject while organizations such as the National Institute for Nanotechnology at the University of Alberta, and the Waterloo Institute for Nanotechnology at the University of Waterloo in Ontario, are conducting fundamental research on these new novel materials.

Somehow he never mentions any boundary-pushing research. hmmm

To be blunt, it’s very hard to establish Canada’s position in the field since ‘nanotechnolgy research’ as such doesn’t exist here in the way it does in the United States, Korea, Iran, Germany, China, the United Kingdom, Ireland, Austria, and others. It’s not a federally coordinated effort in Canada despite the fact that we have a Canada National Research Council (NRC) National Institute of Nanotechnology (NINT) in Alberta. (There’s very little information about research on the NINT website.) A Government of Canada NanoPortal is poorly maintained and includes information that is seriously out-of-date. One area where Canadians have been influential has been at the international level where we’ve collaborated on a number of OECD (Organization for Economic and Cooperative Development) projects focused on safety (occupational and environmental, in particular) issues.

Canada’s Ingenuity Lab, a nanotechnology project that appeared promising, hasn’t made many research announcements and seems to be a provincial (Alberta) initiative rather than a federal one. In fact, the most activity in the field of nanotechnology research has been at the provincial level with Alberta and Québec in the lead, if financial investment is your primary measure, and Ontario following, then the other provinces trailing from behind. Unfortunately, I’ve never come across any nanotechnology research from the Yukon or other parts North.

With regard to research announcements, the situation changes and you have Québec and Ontario assuming the lead positions with Alberta following. As McDonald noted, the University of Waterloo has a major nanotechnology education programme and the University of Toronto seems to have a very active research focus in that field (Ted Sargent and solar cells and quantum dots) and the University of Guelph is known for its work in agriculture and nanotechnolgy (search this blog using any of the three universities as a search term). In Québec, they’ve made a number of announcements about cutting edge research. You can search this blog for the names Sylvain Martel, Federico Rosei, and Claude Ostiguy (who seems to work primarily in French), amongst others. CelluForce, based in Quebec, and once  a leader (not sure about the situation these days) in the production of cellulose nanocrystals (CNC). One side comment, CNC was first developed at the University of British Columbia, however, Québec showed more support (provincial funding) and interest and the bulk of that research effort moved.

There’s one more shout out and that’s for Blue Goose Biorefineries in the province of Saskatchewan, which sells CNC and offers services to help companies  research applications for the material.

One other significant area of interest comes to mind, the graphite mines in Québec and Ontario which supply graphite flakes used to produce graphene, a material that is supposed to revolutionize electronics, in particular.

There are other research efforts and laboratories in Canada but these are the institutions and researchers with which I’m most familiar after more than eight years of blogging about Canadian nanotechnology. That said, if I’ve missed any significant, please do let me know in the comments section of this blog.

Alberta’s Ingenuity Lab opens new facility in India and competes in the Carbon XPRIZE

India

The Ingenuity Lab in Alberta has made two recent announcements. The first one to catch my attention was a May 7, 2016 news item on Nanotechnology Now,

Ingenuity Lab is proud to announce the opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, Kerala India, to implement applied research and enable the translation of new 22nd century technologies. This new facility is the result of collaboration between the International and Inter University Centre for Nanoscience Nanotechnology (IIUCNN) and Ingenuity Lab to leverage what each participant does best.

Should the Nanotechnology Now news item not be available you can find the same information in a May 6, 2016 news item in The Canadian Business News Journal. Here’s the rest of the news item,

Ingenuity Lab, led by Dr. Carlo Montemagno, brings the best minds together to address global challenges and was in 2014 voted the Best Nanotechnology Research Organisation in 2014 by The New Economy. IIUCNN is led by Professor Sabu Thomas, whose vision it is to perform and coordinate academic and research activities in the frontier areas of Nanoscience and Nanotechnology by incorporating physical, chemical, biological and environmental aspects.

The two institutions are world-renowned for their work, and the new partnership should cover areas as diverse as catalysis, macromolecules, environmental chemistry, biological processes and health and wellness.

“The initial focus,” according to Ingenuity Lab’s Director Dr. Carlo Montemagno, “Will be on inexpensive point of care healthcare technologies and water availability for both agriculture and personal consumption.” However, in the future, he says, “We plan to expand the scope to include food safety and energy systems.”

Ingenuity Lab’s role is to focus on producing, adapting and supplying new materials to Ingenuity Lab India to focus on final device development and field-testing. The India team members know what system characteristics work best in developing economies, and will establish the figures of merit to make an appropriate solution. Alberta team members will then use this information to exercise its skills in advance materials and systems design to be crafted into its final form and field-tested.

The collaboration is somewhat unique in that it includes the bilateral exchange of students and researchers to facilitate the commercial translation of new and game changing technologies.

Dr. Babu Sebastian, Honourable Vice Chancellor of Mahatma Gandhi University, will declare the opening of the new facility in the presence of Dr. Montemagno, who will explain the vision of this research hub in association with his plenary lecture of ICM 2016.

Carbon XPRIZE

A May 9, 2016 press release on Market Wired describes Ingenuity Lab’s latest venture into carbon ‘transformation’,

Alberta-based Ingenuity Lab has entered the Carbon XPRIZE under the name of Ingenuity Carbon Solutions. With competition registration taking place in March, Ingenuity Carbon Solutions plans to launch its latest carbon transformation technology and win the backing it so deserves on the world stage.

Ingenuity Lab is working to develop a technology that transforms CO2 emissions and changes the conversation on carbon and its consequences for the environment. By developing nano particles that have the capability to sequester CO2 from facility gas flue emissions, the technology can metabolize emissions into marketable by-products.

The Carbon XPRIZE this year seeks to inspire solutions to the issue of climate change by incentivizing the development of new and emerging CO2 conversation technologies. Described recently in a WEF [World Economic Forum] survey as the biggest potential threat to the economy in 2016, climate change has been targeted as a priority issue, and the XPRIZE has done a great deal to provide answers to the climate question.

Renowned for its role in bringing new and radical thought leaders into the public domain, the XPRIZE Board of Trustees include Elon Musk, James Cameron and Arianna Huffington and the prize never fails to attract the world’s brightest minds.

This year’s Carbon XPRIZE challenges participants including Ingenuity Lab and its Ingenuity Carbon Solutions team to reimagine the climate question by accelerating the development of technologies to convert CO2 into valuable products. Ingenuity Carbon Solutions and others will compete in a three-round competition for a total prize purse of $20m, with the winnings going towards the technology’s continued development.

I hope to hear more good news soon. Alberta could certainly do with some of that as it copes with Fort McMurray’s monstrous wildfire (more here in a NASA/ Goddard Space Flight Center May 9, 2016 news release on EurekAlert).

For anyone interesting Alberta’s ‘nano’ Ingenuity Lab, more can be found here.

New photocatalytic approach to cleaning wastewater from oil sands

With oil sands in the title, this story had to mention the Canadian province of Alberta, which has been widely castigated and applauded for its oil extraction efforts in their massive oil sands field. A Nov. 24, 2015 news item on Nanotechnology Now describes a new technology for cleaning the wastewater from oil sands extraction processes,

Researchers have developed a process to remove contaminants from oil sands wastewater using only sunlight and nanoparticles that is more effective and inexpensive than conventional treatment methods.

Frank Gu, a professor in the Faculty of Engineering at the University of Waterloo [in the province of Ontario] and Canada Research Chair in Nanotechnology Engineering, is the senior researcher on the team that was the first to find that photocatalysis — a chemical reaction that involves the absorption of light by nanoparticles — can completely eliminate naphthenic acids in oil sands wastewater, and within hours. Naphthenic acids pose a threat to ecology and human health. Water in tailing ponds left to biodegrade naturally in the environment still contains these contaminants decades later.

A Nov. 23, 2015 University of Waterloo news release, which originated the news item, expands on the theme but doesn’t provide much in the way of technical detail,

“With about a billion tonnes of water stored in ponds in Alberta, removing naphthenic acids is one of the largest environmental challenges in Canada,” said Tim Leshuk, a PhD candidate in chemical engineering at Waterloo. He is the lead author of this paper and a recipient of the prestigious Vanier Canada Graduate Scholarship. “Conventional treatments people have tried either haven’t worked, or if they have worked, they’ve been far too impractical or expensive to solve the size of the problem.  Waterloo’s technology is the first step of what looks like a very practical and green treatment method.”

Unlike treating polluted water with chlorine or membrane filtering, the Waterloo technology is energy-efficient and relatively inexpensive. Nanoparticles become extremely reactive when exposed to sunlight and break down the persistent pollutants in their individual atoms, completely removing them from the water. This treatment depends on only sunlight for energy, and the nanoparticles can be recovered and reused indefinitely.

Next steps for the Waterloo research include ensuring that the treated water meets all of the objectives Canadian environmental legislation and regulations required to ensure it can be safely discharged from sources larger than the samples, such as tailing ponds.

Here’s a link to and a citation for the paper,

Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water by Tim Leshuk, Timothy Wong, Stuart Linley, Kerry M. Peru, John V. Headley, Frank Gu. Chemosphere Volume 144, February 2016, Pages 1854–1861 doi:10.1016/j.chemosphere.2015.10.073

This paper is behind a paywall.

Ceapro (a Canadian biotech company) and its pressurized gas expanded technology with a mention of cellulose nanocrystals

At the mention of cellulose nanocrystals (CNC), my interest was piqued. From a Nov. 10, 2015 news item on Nanotechnology Now,

Ceapro Inc. (TSX VENTURE:CZO) (“Ceapro” or the “Company”), a growth-stage biotechnology company focused on the development and commercialization of active ingredients for healthcare and cosmetic industries, announced that Bernhard Seifried, Ph.D., Ceapro’s Senior Research Scientist and a co-inventor of its proprietary Pressurized Gas Expanded Technology (PGX) will present this morning [Nov. 10, 2015] at the prestigious 2015 Composites at Lake Louise engineering conference.

A Nov. 10, 2015 Ceapro press release, which originated the news item, describes the technology in a little more detail and briefly mentions cellulose nanocrystals (Note: A link has been removed),

Dr. Seifried will make a podium presentation entitled, “PGX – Technology: A versatile technology for generating advanced biopolymer materials,” which will feature the unique advantages of Ceapro’s enabling technology for processing aqueous solutions or dispersions of high molecular weight biopolymers, such as starch, polysaccharides, gums, pectins or cellulose nanocrystals, into open-porous morphologies, consisting of nano-scale particles and pores.

Gilles Gagnon, M.Sc., MBA, President and CEO of Ceapro, stated, “Our disruptive PGX enabling technology facilitates biopolymer processing at a new level for generating unique highly porous biopolymer morphologies that can be impregnated with bioactives/APIs or functionalized with other biopolymers to generate exfoliated nano-composites and novel advanced material. We believe this technology will provide transformational solutions not only for our internal programs, but importantly, can be applied much more broadly for Companies with whom we intend to partner globally.”

Utilizing its PGX technology, Ceapro successfully produces its bioactive pharmaceutical grade powder formulation of beta glucan, which is an ingredient in a number of personal care cosmeceutical products as well as a therapeutic agent used for wound healing and a lubricative agent integrated into injectable systems used to treat conditions like urinary incontinence. The Company is developing its enabling PGX platform at the commercial scale level. In order to fully exploit the use of this innovative technology, Ceapro has recently decided to further expand its new world-class manufacturing facility by 10,000 square feet.

“The PGX platform generates unique morphologies that are not possible to produce with other conventional drying systems,” Mr. Gagnon continued. “The ultra-light, highly porous polymer structures produced with PGX have a huge potential for use in an abundant number of applications ranging from functional foods, nutraceuticals, drug delivery and cosmeceuticals, to advanced technical applications.”

Ceapro’s novel PGX Technology can be utilized for a wide variety of bio-industrial processing applications including:

  • Dry aqueous solutions or dispersions of polymers derived from agricultural and/or forestry feedstock, such as polysaccharides, gums, biopolymers at mild processing conditions (40⁰C).
  • Purify biopolymers by removing lipids, salts, sugars and other contaminants, impurities and odours during the precipitation and drying process.
  • Micronize the polymer to a matrix consisting of highly porous fibrils or spherical particles having nano-scale features depending on polymer molecular structure.
  • Functionalize the polymer matrix by generating exfoliated nano-composites of various polymers forming fibers and/or spheres simply by mixing various aqueous polymer solutions/dispersions prior to PGX processing.
  • Impregnate the polymer matrix homogeneously with thermo-sensitive bioactives and/or hydrophobic modifiers to tune solubility of the final polymer bioactive matrix all in the same processing equipment at mild conditions (40⁰C).
  • Extract valuable bioactives at mild conditions from fermentation slurries, while drying the residual biomass.

The highly tune-able PGX process can generate exfoliated nano-composites and highly porous morphologies ranging from sub-micron particles (50nm) to micron-sized granules (2mm), as well as micro- and nanofibrils, granules, fine powders and aerogels with porosities of >99% and specific surface areas exceeding 300 m2/gram. The technology is based on a spray drying method, operating at mild temperatures (40°C) and moderate pressures (100-200 bar) utilizing PGX liquids, which is comprised of a mixture of food grade, recyclable solvents, generally regarded as safe (GRAS), such as pressurized carbon dioxide and anhydrous ethanol. The unique properties of PGX liquids afford single phase conditions and very low or vanishing interfacial tension during the spraying process. This then allows the generation of extremely fine particle morphologies with high porosity and a large specific surface area resulting in favorable solubilisation properties. This platform drying technology has been successfully scaled up from lab scale to pilot scale with a processing capacity of about 200 kg/hr of aqueous solutions.

Ceapro is based in Edmonton in the province of Alberta. This is a province with a CNC (cellulose nanocrytals) pilot production plant as I noted in my Nov. 10, 2013 posting where I belatedly mentioned the plant’s September 2013 commissioning date. The plant was supposed to have had a grand opening in 2014 according to a Sept. 12, 2013 Alberta Innovates Technology Futures [AITF] news release,

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s President and CEO. “Today’s commissioning is an important milestone in our ongoing efforts to provide technological know-how to our research and industry partners in their continued applied R&D and commercialization efforts. We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

Members of Alberta’s and Western Canada’s growing CNC communities of expertise and interest spent the afternoon exploring potential commercial applications for the cellulose-based ‘wonder material.’

The CNC Pilot Plant’s Grand Opening is planned for 2014. [emphasis mine]

I have not been able to find any online trace of the plant’s grand opening. But I did find a few things. The AITF website has a page dedicated to CNC and its pilot plant and there’s a slide show about CNC and occupational health and safety from members of Alberta’s CNC Pilot Plant Research Team for their project, which started in 2014.

No mention in the Alberta media materials is ever made of CelluForce, a CNC production plant in the province of Québec, which predates the Alberta plant by more than 18 months (my Dec. 15, 2011 posting).

One last comment, CNC or cellulose nanocrystals are sometimes called nanocrystalline cellulose or NCC. This is a result of Canadians who were leaders at the time naming the substance NCC but over time researchers and producers from other countries have favoured the term CNC. Today (2015), the NCC term has been trademarked by Celluforce.