Tag Archives: Amay J. Bandodkar

Do-it-yourself sensors possible with biocatalytic pen technology

The engineers at the University of California at San Diego (UCSD) are envisioning a future where anyone can create a biosensor anywhere. From a March 3, 2015 news item on Azonano,

A new simple tool developed by nanoengineers at the University of California, San Diego, is opening the door to an era when anyone will be able to build sensors, anywhere, including physicians in the clinic, patients in their home and soldiers in the field.

The team from the University of California, San Diego, developed high-tech bio-inks that react with several chemicals, including glucose. They filled off-the-shelf ballpoint pens with the inks and were able to draw sensors to measure glucose directly on the skin and sensors to measure pollution on leaves.

A March 2, 2015 UCSD news release by Ioana Patringenaru, which originated the news item, describes the researchers’ hopes for this technology,

Skin and leaves aren’t the only media on which the pens could be used. Researchers envision sensors drawn directly on smart phones for personalized and inexpensive health monitoring or on external building walls for monitoring of toxic gas pollutants. The sensors also could be used on the battlefield to detect explosives and nerve agents.

The team, led by Joseph Wang, the chairman of the Department of NanoEngineering at the University of California, San Diego, published their findings in the Feb. 26 [2015] issue of Advanced Healthcare Materials. Wang also directs the Center for Wearable Sensors at UC San Diego.

“Our new biocatalytic pen technology, based on novel enzymatic inks, holds considerable promise for a broad range of applications on site and in the field,” Wang said.

The news release goes on to describe one of the key concerns with developing the ink,

The biggest challenge the researchers faced was making inks from chemicals and biochemicals that aren’t harmful to humans or plants; could function as the sensors’ electrodes; and retain their properties over long periods in storage and in various conditions. Researchers turned to biocompatible polyethylene glycol, which is used in several drug delivery applications, as a binder. To make the inks conductive to electric current they used graphite powder. They also added chitosan, an antibacterial agent which is used in bandages to reduce bleeding, to make sure the ink adhered to any surfaces it was used on. The inks’ recipe also includes xylitol, a sugar substitute, which helps stabilize enzymes that react with several chemicals the do-it-yourself sensors are designed to monitor.

There’s a backstory to this research,

Wang’s team has been investigating how to make glucose testing for diabetics easier for several years. The same team of engineers recently developed non-invasive glucose sensors in the form of temporary tattoos. In this study, they used pens, loaded with an ink that reacts to glucose, to draw reusable glucose-measuring sensors on a pattern printed on a transparent, flexible material which includes an electrode. Researchers then pricked a subject’s finger and put the blood sample on the sensor. The enzymatic ink reacted with glucose and the electrode recorded the measurement, which was transmitted to a glucose-measuring device. Researchers then wiped the pattern clean and drew on it again to take another measurement after the subject had eaten.

Researchers estimate that one pen contains enough ink to draw the equivalent of 500 high-fidelity glucose sensor strips. Nanoengineers also demonstrated that the sensors could be drawn directly on the skin and that they could communicate with a Bluetooth-enabled electronic device that controls electrodes called a potentiostat, to gather data.

As mentioned earlier, there are more applications being considered (from the news release),

The pens would also allow users to draw sensors that detect pollutants and potentially harmful chemicals sensors on the spot. Researchers demonstrated that this was possible by drawing a sensor on a leaf with an ink loaded with enzymes that react with phenol, an industrial chemical, which can also be found in cosmetics, including sunscreen. The leaf was then dipped in a solution of water and phenol and the sensor was connected to a pollution detector. The sensors could be modified to react with many pollutants, including heavy metals or pesticides.

Next steps include connecting the sensors wirelessly to monitoring devices and investigating how the sensors perform in difficult conditions, including extreme temperatures, varying humidity and extended exposure to sunlight.

The researchers’ have provided a picture of the pen and a leaf,

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Here’s a link to and a citation for the paper,

Biocompatible Enzymatic Roller Pens for Direct Writing of Biocatalytic Materials: “Do-it-Yourself” Electrochemical Biosensors by Amay J. Bandodkar, Wenzhao Jia, Julian Ramírez, and Joseph Wang. Advanced Healthcare Materials DOI: 10.1002/adhm.201400808 Article first published online: 26 FEB 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Tattoos that detect glucose levels

Temporary tattoos with a biomedical function are a popular topic and one of the latest detects glucose levels without subjecting a person with diabetes to pin pricks. From a Jan. 14, 2015 news item on ScienceDaily,

Scientists have developed the first ultra-thin, flexible device that sticks to skin like a rub-on tattoo and can detect a person’s glucose levels. The sensor, reported in a proof-of-concept study in the ACS [American Chemical Society] journal Analytical Chemistry, has the potential to eliminate finger-pricking for many people with diabetes.

A Jan. 14, 2015 ACS news release on EurekAlert, which originated the news item, describes the current approaches to testing glucose and the new painless technique,

Joseph Wang and colleagues in San Diego note that diabetes affects hundreds of millions of people worldwide. Many of these patients are instructed to monitor closely their blood glucose levels to manage the disease. But the standard way of checking glucose requires a prick to the finger to draw blood for testing. The pain associated with this technique can discourage people from keeping tabs on their glucose regularly. A glucose sensing wristband had been introduced to patients, but it caused skin irritation and was discontinued. Wang’s team wanted to find a better approach.

The researchers made a wearable, non-irritating platform that can detect glucose in the fluid just under the skin based on integrating glucose extraction and electrochemical biosensing. Preliminary testing on seven healthy volunteers showed it was able to accurately determine glucose levels. The researchers conclude that the device could potentially be used for diabetes management and for other conditions such as kidney disease.

There is a Jan. 14, 2015 University of California at San Diego news release (also on EurekAlert) describing the work in more detail,

Nanoengineers at the University of California, San Diego have tested a temporary tattoo that both extracts and measures the level of glucose in the fluid in between skin cells. …

The sensor was developed and tested by graduate student Amay Bandodkar and colleagues in Professor Joseph Wang’s laboratory at the NanoEngineering Department and the Center for Wearable Sensors at the Jacobs School of Engineering at UC San Diego. Bandodkar said this “proof-of-concept” tattoo could pave the way for the Center to explore other uses of the device, such as detecting other important metabolites in the body or delivering medicines through the skin.

At the moment, the tattoo doesn’t provide the kind of numerical readout that a patient would need to monitor his or her own glucose. But this type of readout is being developed by electrical and computer engineering researchers in the Center for Wearable Sensors. “The readout instrument will also eventually have Bluetooth capabilities to send this information directly to the patient’s doctor in real-time or store data in the cloud,” said Bandodkar.

The research team is also working on ways to make the tattoo last longer while keeping its overall cost down, he noted. “Presently the tattoo sensor can easily survive for a day. These are extremely inexpensive—a few cents—and hence can be replaced without much financial burden on the patient.”

The Center “envisions using these glucose tattoo sensors to continuously monitor glucose levels of large populations as a function of their dietary habits,” Bandodkar said. Data from this wider population could help researchers learn more about the causes and potential prevention of diabetes, which affects hundreds of millions of people and is one of the leading causes of death and disability worldwide.

People with diabetes often must test their glucose levels multiple times per day, using devices that use a tiny needle to extract a small blood sample from a fingertip. Patients who avoid this testing because they find it unpleasant or difficult to perform are at a higher risk for poor health, so researchers have been searching for less invasive ways to monitor glucose.

In their report in the journal Analytical Chemistry, Wang and his co-workers describe their flexible device, which consists of carefully patterned electrodes printed on temporary tattoo paper. A very mild electrical current applied to the skin for 10 minutes forces sodium ions in the fluid between skin cells to migrate toward the tattoo’s electrodes. These ions carry glucose molecules that are also found in the fluid. A sensor built into the tattoo then measures the strength of the electrical charge produced by the glucose to determine a person’s overall glucose levels.

“The concentration of glucose extracted by the non-invasive tattoo device is almost hundred times lower than the corresponding level in the human blood,” Bandodkar explained. “Thus we had to develop a highly sensitive glucose sensor that could detect such low levels of glucose with high selectivity.”

A similar device called GlucoWatch from Cygnus Inc. was marketed in 2002, but the device was discontinued because it caused skin irritation, the UC San Diego researchers note. Their proof-of-concept tattoo sensor avoids this irritation by using a lower electrical current to extract the glucose.

Wang and colleagues applied the tattoo to seven men and women between the ages of 20 and 40 with no history of diabetes. None of the volunteers reported feeling discomfort during the tattoo test, and only a few people reported feeling a mild tingling in the first 10 seconds of the test.

To test how well the tattoo picked up the spike in glucose levels after a meal, the volunteers ate a carb-rich meal of a sandwich and soda in the lab. The device performed just as well at detecting this glucose spike as a traditional finger-stick monitor.

The researchers say the device could be used to measure other important chemicals such as lactate, a metabolite analyzed in athletes to monitor their fitness. The tattoo might also someday be used to test how well a medication is working by monitoring certain protein products in the intercellular fluid, or to detect alcohol or illegal drug consumption.

This reminds me a little of the Google moonshot project concerning health diagnostics. Announced in Oct. 2014, that project involved swallowing a pill containing nanoparticles that would circulate through your body monitoring your health and recongregating at your wrist so a band worn there could display your health status (Oct. 30, 2014 article by Signe Brewster for GigaOm). Experts welcomed the funding while warning the expectations seemed unrealistic given the current state of research and technology. This temporary tattoo seems much better grounded in terms of the technology used and achievable results.

Here’s a link to and a citation for the paper,

Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study by Amay J. Bandodkar, Wenzhao Jia, Ceren Yardımcı, Xuan Wang, Julian Ramirez, and Joseph Wang. Anal. Chem., 2015, 87 (1), pp 394–398 DOI: 10.1021/ac504300n Publication Date (Web): December 12, 2014

Copyright © 2014 American Chemical Society

This appears to be an open access paper.

My latest posting posting on medical tattoos (prior to this) is an Aug. 13, 2014 post about a wearable biobattery.

University of Toronto’s (Canada) smiley face tattoo/sensor

Researchers at the University of Toronto have created a medical sensor that can be applied to the skin like a temporary tattoo.

University of Toronto Scarborough student Vinci Hung helped create the smiley face sensor shown here in the box at upper right (photo by Ken Jones)

The Dec. 3, 2012 news item on ScienceDaily notes,

A medical sensor that attaches to the skin like a temporary tattoo could make it easier for doctors to detect metabolic problems in patients and for coaches to fine-tune athletes’ training routines. And the entire sensor comes in a thin, flexible package shaped like a smiley face.

“We wanted a design that could conceal the electrodes,” says Vinci Hung, a PhD candidate in the Department of Physical & Environmental Sciences at UTSC [University of Toronto Scarborough], who helped create the new sensor. “We also wanted to showcase the variety of designs that can be accomplished with this fabrication technique.”

The Dec. 3, 2012 University of Toronto news release by Kurt Kleiner, which originated the news item, provides details about how the sensor/tattoo is fabricated and how it functions on the skin,

The new tattoo-based solid-contact ion-selective electrode (ISE) is made using standard screen printing techniques and commercially available transfer tattoo paper, the same kind of paper that usually carries tattoos of Spiderman or Disney princesses. In the case of the smiley face sensor, the “eyes” function as the working and reference electrodes, and the “ears” are contacts to which a measurement device can connect.

The sensor Hung helped make can detect changes in the skin’s pH levels in response to metabolic stress from exertion. Similar devices, called ion-selective electrodes (ISEs), are already used by medical researchers and athletic trainers. They can give clues to underlying metabolic diseases such as Addison’s disease, or simply signal whether an athlete is fatigued or dehydrated during training. The devices are also useful in the cosmetics industry for monitoring skin secretions.

But existing devices can be bulky, or hard to keep adhered to sweating skin. The new tattoo-based sensor stayed in place during tests, and continued to work even when the people wearing them were exercising and sweating extensively. The tattoos were applied in a similar way to regular transfer tattoos, right down to using a paper towel soaked in warm water to remove the base paper.

To make the sensors, Hung and her colleagues used a standard screen printer to lay down consecutive layers of silver, carbon fibre-modified carbon and insulator inks, followed by electropolymerization of aniline to complete the sensing surface.

By using different sensing materials, the tattoos can also be modified to detect other components of sweat, such as sodium, potassium or magnesium, all of which are of potential interest to researchers in medicine and cosmetology.

You can find the reserchers’ article in the Royal Society’s Analyst journal,

Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring
Amay J. Bandodkar ,  Vinci W. S. Hung ,  Wenzhao Jia ,  Gabriela Valdés-Ramírez ,  Joshua R. Windmiller ,  Alexandra G. Martinez ,  Julian Ramírez ,  Garrett Chan ,  Kagan Kerman and Joseph Wang in Analyst, 2013,138, 123-128 DOI: 10.1039/C2AN36422K

The article is open access but you do need to register for a free account with the Royal Society’s RSC [ublishing platform.