Tag Archives: American Association for the Advancement of Science

Science Advice to Government; a global conference in August 2014

There’s a big science advice conference on the horizon for August 28 – 29, 2014 to be held in New Zealand according to David Bruggeman’s March 19, 2014 posting on his Pasco Phronesis blog (Note: Links have been removed),

… It [the global science advice conference] will take place in Auckland, New Zealand August 28 and 29 [2014].  It will be hosted by the New Zealand Chief Science Adviser, Sir Peter Gluckman.

(If you’re not following Sir Peter’s work and writings on science advice and science policy, you’re missing out.)

The announced panelists and speakers include chief scientists and/or chief science advisers from several countries and the European Union.  It’s a very impressive roster.  The conference is organised around five challenges:

  • The process and systems for procuring evidence and developing/delivering scientific      advice for government
  • Science advice in dealing with crisis
  • Science advice in the context of opposing political/ideological positions
  • Developing an approach to international science advice
  • The modalities of science advice: accumulated wisdom

The 2014 Science Advice to Governments; a global conference for leading practitioners is being organized by the International Council for Science. Here’s a list of the confirmed speakers and panellists (Note: Links have been removed),

We are delighted that the following distinguished scientists have confirmed their participation in the formal programme:

Prof. Shaukat Abdulrazak, CEO National Commission for Science, Technology and Innovation, Kenya

Dr. Ian Boyd, Chief Science Advisor, Department of Environment, Food and Rural Affairs (DEFRA) UK

Dr. Phil Campbell, Editor-in-Chief, Nature

Dr. Raja Chidambaram, Principal Scientific Advisor to the Government of India, and Chairman of the Scientific Advisory Committee to the Cabinet, India

Prof. Ian Chubb, Chief Scientist for Australia

Prof. Brian Collins, University College London’s Department of Science, Technology, Engineering and Public Policy (UCL STEaPP)

Dr. Lourdes J Cruz, President of the National Research Council of the Philippines and National Scientist

Prof. Heather Douglas, Chair in Science & Society, Balsillie School of International Affairs, U. of Waterloo Canada

Prof. Mark Ferguson, Chief Scientific Adviser to the Government of Ireland, and Director General, Science Foundation Ireland

Prof. Anne Glover, Chief Science Adviser to the President of the European Commission

Sir Peter Gluckman, Prime Minister’s Chief Science Advisor, New Zealand

Dr. Jörg Hacker, President of the German Academy of Sciences – Leopoldina; Member of UN Secretary General’s Scientific Advisory Board

Dr. Yuko Harayama, Executive member of Council for Science and Technology Policy, Cabinet Office of Japan; Member of UN Secretary General’s Scientific Advisory Board; former Deputy Director OECD Directorate for Science, Technology and Industry

Prof. Andreas Hensel, President of the Federal Institute for Risk Assessment (BfR), Germany

Prof. Gordon McBean, President-elect, International Council for Science (ICSU)

Prof. Romain Murenzi, Executive Director of The World Academy of Sciences (TWAS)

Dr. Mary Okane, Chief Scientist and Engineer, New South Wales Australia

Prof. Remi Quirion, Chief Scientist, Province of Quebec, Canada

Chancellor Emeritus Kari Raivio, Council of Finnish Academies, Finland

Prof. Nils Chr. Stenseth, President of the Norwegian Academy of Science and Letters and President of the International Biological Union (IUBS)

Dr. Chris Tyler, Director of the Parliamentary Office of Science and Technology (POST) in UK

Sir Mark Walport, Chief Scientific Advisor to the Government of the UK

Dr. James Wilsdon, Professor of Science and Democracy, University of Sussex, UK

Dr. Steven Wilson, Executive Director, International Council for Science (ICSU)

Dr. Hamid Zakri, Science Advisor to the Prime Minister of Malaysia; Member of UN Secretary General’s Scientific Advisory Board

I noticed a couple of Canadian representatives (Heather Douglas, Chair in Science & Society at the University of Waterloo, and Remi Quirion, Chief Scientist, province of Québec) on the list. We don’t have any science advisors for the Canadian federal government but it seems they’ve instituted some such position for the province of Québec. In lieu of a science advisor, there is the Council of Canadian Academies, which “is an independent, not-for-profit organization that supports independent, authoritative, and evidence-based expert assessments that inform public policy development in Canada” (from their About page).

One other person should be noted (within the Canadian context), James Wilsdon is a member of the Expert Panel for the Council of Canadian Academies’ still-in-progress assessment, The State of State of Canada’s Science Culture. (My Feb. 22, 2013 posting about the assessments provides a lengthy discourse about the assessment and my concerns about both it and the panel.)

Getting back to this meeting in New Zealand, the organizers have added a pre-conference symposium on science diplomacy (from the Science and Diplomacy webpage), Note: A link has been removed,

We are pleased to announce the addition of a pre-conference symposium to our programme of events. Co-chaired by Dr. Vaughan Turekian, Editor-in-Chief of the AAAS Journal Science and Diplomacy, and the CE of New Zealand Ministry of Foreign Affairs and Trade, this symposium will explore ‘the place of science in foreign ministries’.

Overview of the symposium

The past decade has seen unprecedented interested in the interface between science and diplomacy from a number of perspectives including:

- Diplomacy for Science – building international relationships to foster robust collaborative scientific networks and shared expertise and infrastructure;
- Science for Diplomacy – the science enterprise as a doorway to relationship building between nations with shared goals and values;
- Science in Diplomacy – the role of science in various diplomatic endeavours (e.g.: verification of agreements on climate change, nuclear treaties etc; in support of aid projects; in promoting economic and trade relationships; and in various international agreements and instruments such as phyto-sanitary regulations, free trade agreements, biodiversity agreements etc.).

Yet, despite the growing interest in this intersection, there has been little discussion of the practical realities of fostering the rapprochement between two very distinct professional cultures and practices, particularly with specific reference to the classical pillars of foreign policy: diplomacy; trade/economic; and aid. Thus, this pre-conference symposium will be focusing on the essential question:

How should scientists have input into the operation of foreign ministries and in particular into three pillars of foreign affairs (diplomacy, trade/economics and foreign aid)?

The discussion will focus on questions such as: What are the mechanisms and methods that can bring scientists and policy makers in science and technology in closer alignment with ministries or departments of foreign affairs and vice versa? What is the role of public scientists in assisting countries’ foreign policy positions and how can this be optimised? What are the challenges and opportunities in enhancing the role of science in international affairs? How does the perception of science in diplomacy vary between large and small countries and between developed and developing countries?

To ensure vibrant discussion the workshop will be limited to 70 participants. Anyone interested is invited to write to [email protected] with a request to be considered for this event.

The conference with this newly added symposium looks to be even more interesting than before. As for anyone wishing to attend the science diplomacy symposium, the notice has been up since March 6, 2014 so you may wish to get your request sent off while there’s still space (I assume they’ll put a notice on the webpage once the spaces are spoken for). One final observation, it’s surprising in a science conference of this size that there’s no representation from a US institution (e.g., the National Academy of Sciences, Harvard University, etc.) other than the AAAS (American Association for the Advancement of Science) organizer of the pre-conference symposium.

American Assocation for the Advancement of Science (AAAS) meeting in Chicago, Illinois (13 – 17 February 2014)

The 2014 annual meeting of the American Association for the Advancement of Science (AAAS) will take place Feb. 13 – 17, 2014 in Chicago (one of my favourite places), Illinois. It’s always interesting to take a look at the programme and here’s a few of the items I found interesting,

Thursday, Feb. 13, 2014  the AAAS has arranged a number of talks about ‘communicating science and, as usual, bloggers, etc. are confined to presenting under the rubric of social media:

9:00 AM-10:30 AM

Seminar: Communicating Science

11:00 AM-12:30 PM

Seminar: Communicating Science

Engaging with Social Media

To be more specific, here’s the list of presenters for the ‘Journalist’ talk (Note: I have removed links),

Cornelia Dean, The New York Times and Brown University
Carl Zimmer, Independent Science Journalist [Note: Zimmer writes for the NY Times and other prestigious print publications, as well as, being a blogger]

Robert Lee Hotz, The Wall Street Journal

David Baron, Public Radio International

Paula Apsell, NOVA [science program on the US PBS {Public Broadcasting Service} network)

[emphases mine]

Meanwhile, we have this for social media,

Dominique Brossard, University of Wisconsin
Kim Cobb, University of Georgia
Navigating the Science-Social Media Space: Pitfalls and Opportunities
Danielle N. Lee, Cornell University
Raising STEM Awareness Among Under-Served and Under-Represented Audiences
Maggie Koerth-Baker, BoingBoing.net
What’s the Point of Social Media?

It’s nice to see Danielle N. Lee as one of the presenters. Her blog, The Urban Scientist is on the Scientific American blog network (she also featured as a whistle blower and more in the 2013 science blogging scandals [my first post on the topic was Oct. 18, 2013 towards the end of the scandals and I mused on the scandals and discussed  gender in an end-of-year Dec. 31, 2013 posting ) and there's of course, someone representing BoingBoing, an online publisher,which was conceptualized as a magazine and has now evolved into a group blog.

My basic thesis is that blogs and such are emerging as part of the science media landscape and the types of sessions which isolate bloggers, etc.  do not acknowledge that fact. Yes, it's true that Zimmer blogs but I can guarantee that the discussion will revolve exclusively around his high profile publishers such as the NY Times and how the participants can get their stories in front of mainstream media journalists and as for the social media session that's going to focus on how scientists can directly approach their publics.

Moving on, there's a nanotechnology aspect to the following presentation, although you'd never guess it from the title,

 Preserving Our Cultural Heritage: Science in the Service of Art
Friday, 14 February 2014: 10:00 AM-11:30 AM
Acapulco (Hyatt Regency Chicago)
In 2009 a group of chemists and materials scientists from a wide range of institutions came together for a workshop on “Chemistry and Materials Research at the Interface Between Science and Art,” co-sponsored by the Andrew W. Mellon Foundation and the National Science Foundation. One of the workshop conclusions was that scientists in academia need to be encouraged to collaborate with their peers in cultural heritage institutions, to both increase scientist knowledge of this heritage and also to develop the necessary tools and apply the science to be able to preserve it. The session covers different collaborations that are ongoing in this area, relating to different mediums of art and different technologies that can be applied. The session will also include recent results and successes in this process, both in better understanding of materials as well as in developments for their conservation. The discussion will also address what is needed for collaborations like this to continue to flourish and grow.

One doesn't get to the 'nano' part until looking at the speakers' list (Note: Links have been removed),

Nicholas Bigelow, University of Rochester
Leonor Sierra, University of Rochester
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology '[emphasis mine]
Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS
Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

The 19th Century nanotechnology referred to in the title of Biglow’s talk is the daggeureotype (a type of 19th century photographic process) which gained a lot of attention in the last few years when a display of irreplaceable pieces started showing signs of visible (25 pieces) and catastrophic (five pieces) deterioration. There’s more about this fascinating story in my Jan. 10, 2013 posting.

Saturday, Feb.15, 2014, Alan Alda will be at the meeting as a plenary speaker,

Alan Alda: Getting Beyond a Blind Date with Science
Plenary Lecture
Saturday, 15 February 2014: 5:00 PM-6:00 PM
Imperial Ballroom (Fairmont Chicago)
Alan Alda is an actor, writer, director, and visiting professor at the Alan Alda Center for Communicating Science at Stony Brook University, where he helps current and future scientists learn to communicate more clearly and vividly with the public. In collaboration with theater arts faculty at Stony Brook, he is pioneering the use of improvisational theater exercises to help scientists connect more directly with people outside their field. Alda is best known for his award-winning work in movies, theater, and television, but he also has a distinguished record in the public communication of science. For 13 years he hosted the PBS series Scientific American Frontiers, which he has called “the best thing I ever did in front of a camera.” After interviewing hundreds of scientists around the world, he became convinced that many researchers have wonderful stories but need to learn how to tell them better. That realization inspired the creation of Stony Brook’s multidisciplinary Alan Alda Center for Communicating Science in 2009.

The last two sessions I’m highlighting are on standard nanotechnology topics. On Sunday, Feb. 16, 2014, there’s

Nanoelectronics for Renewable Energy: How Nanoscale Innovations Address Global Needs
Sunday, 16 February 2014: 1:30 PM-4:30 PM
Regency B (Hyatt Regency Chicago)
Sometimes it’s possible to get a handle on the world’s biggest problems by thinking creatively on a very small scale—and advances in the rapidly maturing field of nanoelectronics prove it. Innovations that hold promise for broader and faster adoption of renewable energy technologies loom large against a backdrop of population growth, rapid industrialization in developing countries, and initiatives to decrease reliance on both fossil fuels and nuclear power. In this symposium, researchers from the U.S. and Europe will review the latest progress in nanoelectronics for renewable energy across a series of interrelated programs. For instance, new manufacturing approaches such as nanoimprinting, nanotransfer, and spray-on fabrication of organic semiconductors not only point the way toward low-cost production of large-scale electronics such as solar panels, they also enable and inspire novel nanoelectronic device designs. These device-level innovations range from ultrasensitive molecular sensors to nanomagnet logic circuits, and they are of particular interest in solar energy applications. Many lines of research appear to be converging on nanostructure-based solar cells that will be vastly more efficient in capturing sunlight (or even heat) and converting it to electrical power. In addition to outlining these promising paths toward higher-efficiency, lower-cost photovoltaics, the symposium will highlight some of the remaining hurdles, including needed advances in fundamental science.
Patrick Regan, Technical University Munich
William Gilroy, University of Notre Dame
and Hillary Sanctuary, Swiss Federal Institute of Technology (EPFL)

On Monday, Feb. 17, 2014,  nanotechnology features in the final plenary session,

John A. Rogers: Stretchy Electronics That Dissolve in Your Body
Plenary Lecture
Monday, 17 February 2014: 8:30 AM-9:30 AM
Imperial Ballroom (Fairmont Chicago)
Dr. John Rogers’ research includes fundamental and applied aspects of nano- and molecular scale fabrication. He also studies materials and patterning techniques for unusual electronic and photonic devices, with an emphasis on bio-integrated and bio-inspired systems. He received a Ph.D. in physical chemistry from Massachusetts Institute of Technology in 2005. He has published more than 350 papers and is an inventor on over 80 patents and patent applications, many of which are licensed or in active use by large companies and startups that he co-founded. He previously worked for Bell Laboratories as director of its research program in condensed matter physics. He has received recognition including a MacArthur Fellowship from the John D. and Catherine T. MacArthur Foundation, the Lemelson-MIT Prize, the National Security Science and Engineering Faculty Fellowship from the U.S. Department of Defense, the George Smith Award from IEEE, the Robert Henry Thurston Award from American Society of Mechanical Engineers, the Mid-Career Researcher Award from Materials Research Society, the Leo Hendrick Baekeland Award from the American Chemical Society, and the Daniel Drucker Eminent Faculty Award from the University of Illinois.
John Rogers, Ph. D., University of Illinois, Urbana-Champaign

You can find out more about registration and public events for the AAAS 2014 annual meeting here.

Nicholas Bigelow, University of Rochester
Leonor Sierra, University of Rochester
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology

Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS

Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

Final report on joint OECD/NNI report on assessing nanotechnology’s economic impact

In March 2012, the Organization for Economic Cooperation and Development (OECD) and the US National Nanotechnology Initiative (NNI) held a symposium on assessing the economic impacts of nanotechnology, which was hosted by American Association for the Advancement of Science (AAAS) in Washington, DC.  Lynn Bergeson announced the release of the symposium’s final report in her Sept. 16, 2013 posting on the Nanotechnology Now website.

The title of the final report published by the OECD is Symposium on Assessing the Economic  Impact of Nanotechnology: Synthesis Report. I have excerpted some information including this introductory paragraph from the executive summary of this 81 pp report,

Governments have a fiscal and social responsibility to ensure that limited research and development resources are used wisely and cost-effectively in support of social, economic, and scientific aspirations. As a result of significant public and private investments in nanotechnology during the past decade and an expanding array of commercial applications, the field of nanotechnology has matured to the point of showing significant potential to help societies achieve the shared goal of improving efficiencies and accelerating progress in a range of economic sectors, including medicine, manufacturing, and energy. Countries that wish to promote the continued responsible development of nanotechnology will, however, need quantitative data on the economic impact of nanotechnology to guide further investment and policy decisions. Few widely accepted economic impact assessments have been conducted, however, and there are many questions regarding the best methodologies to be used. (p. 4)

The attendees considered the challenges associated with evaluating the impact of nanotechnology, some of which are common to emerging technologies in general and some or which are specific to nanotechnology (from the report),

The attendees also considered the question of a definition for nanotechnology. While operational definitions are developed at national or regional levels, e.g. for statistical or regulatory purposes, there are relatively few internationally agreed upon definitions or classifications for nanotechnology or its products and processes. Such definitions are essential for developing a methodology for an economic impact assessment and/or to facilitate data collection. Participants mentioned that definitions should be flexible so that they facilitate the development and valuation of the technology; they also noted that definitions might vary in different contexts or sectors.

Additional issues were raised:

 Its multipurpose, enabling nature makes measuring the impact of nanotechnology difficult. It can be fundamental to a product’s key functionality (e.g. battery charge time or capacity) but ancillary to the value chain (E.g. represent a small portion of the final product or process). Nanotechnology is also likely to have a range of incremental impacts on goods and services as well as existing manufacturing techniques. This requires understanding the value added at different stages of the production chain.

 Nanotechnology’s impact is often intermingled with that of many other interventions and technologies so that determining its precise role can be difficult.

 The large and varied amount of data linked to nanotechnology development may lead to difficulties in cleaning and manipulating the data meaningfully.

 Confidential business information and the proprietary nature of products and services may make it difficult to obtain information from industry. Moreover, it is not clear how a nanotechnology company or a company using nanotechnology is defined or defines itself or to what extent companies, universities and associate institutions are involved in exploiting and developing nanotechnology.

 For now, data are mainly collected through surveys. It is important to weigh the benefits against the additional workload that surveys place on administrations, research institutes and industries. Information should be obtained efficiently, focusing on the data of greatest interest for assessing the value of the technology.

 The nanotechnology policy landscape is evolving. It is important to consider non-specific, rather than nanotechnology-specific, funding strategies and policies when assessing economic impacts such as return on investment.

While certain issues may be resolved through improvements and over time, some restrict the ability to conduct valid nanotechnology impact assessments, such as the complex relationship between science, innovation and the economy; the interaction between public and private actors; the role of other factors in technology development and innovation; and the time lag between investments and their returns. (p. 8)

Of course the main issue being addressed was the development of tools/instruments to assess nanotechnology’s economic impact (from the report),

Some steps have been taken towards assessing the impact of nanotechnology. Examples mentioned during the symposium include the U.S. STAR METRICS database, which uses an input/output approach to determine the outputs of federal funding of science and technology, and Brazil’s Lattes system, in which researchers, students and institutions share information about their interests and backgrounds to facilitate information sharing and collaboration. The Lattes system is also intended to aid in the design of science, technology and innovation policies and to help understand the social and economic impacts of previous investments. DEFRA (Department for Environment, Food and Rural Affairs, United Kingdom) values a given nanotechnology product in monetary terms against an incumbent and thus calculates additional value added over current technology.

Other valuation methods mentioned included the “traditional” cost/ benefit analysis (often accompanied by scenario development for immature technologies such as nanotechnology) and life cycle assessment (LCA). LCA addresses the impact of nanotechnology along the entire product value chain. It is important to conduct LCAs as early as possible in product development to define the full value of a product using nanotechnology. Value chain assessments can also help address the challenge of determining the role of nanotechnology in a final product, where economic value is most commonly assessed. (p. 9)

Participants recognised the difficulty of developing a “one size fits all” methodology. The data collected and the indicators and the methodologies chosen need to fit the situation. Precisely defining the objectives of the impact assessment is critical: “What do we want to measure?” (e.g. the impact of a specific nanotechnology investment or the impact of a nano-enabled replacement product on environmental performance). “What outcomes do we want from the analysis?” (e.g. monetary value and GDP growth or qualitative measures of environmental and social benefits).

Input indicators (e.g. R&D investment, infrastructure) are the easiest to collect; they provide information on the development of a technology in a given region, country or globally. Output indicators, such as patents and publications, provide information on the trajectories of a technology and on key areas of innovation. The most useful for policy makers are indicators of impact, but high-quality data, especially quantitative data, are difficult to collect. Indicators of impact provide a basis for assessing direct (market share, growth of companies, new products, wealth creation) and indirect impacts (welfare gains, consumer surplus). The economic and social impact of nanotechnology goes beyond what can be measured with existing statistics and traditional surveys. A pilot survey by the Russian Federation plans to examine nanotechnology issues that are not necessarily covered by traditional statistical surveys, such as technology transfer and linkages between different segments of the national innovation system. The OECD Working Party of National Experts on Science and Technology Indicators is also working on the development of a statistical framework for the measurement of emerging, enabling and general purpose technologies, which includes the notion of impact.
While quantitative measures may be preferable, impact assessments based on qualitative indicators using methods such as technology assessment scenarios and mapping of value chains can also provide valuable information.

I haven’t read the entire report yet but the material after the executive summary bears a similarity to field notes. Generally in reports like this everything is stated in an impersonal third person with the speaker being mentioned only in the header for the section  so the contents have an  authority associated with holy books. While I haven’t seen any quotes, the speakers here are noted as having said such and such, e.g., “Mr. Tassey suggested a “technology-element” model as an alternative means of driving policy and managing the R&D cycle.” (p. 15) It’s not unheard of, just unusual.

For anyone interested in the earlier reports and/or in the Canadian participation in this 2012 symposium, there’s an interview with Vanessa Clive, Industry Canada, Nanotechnology Policy Advisor in my July 23, 2012 posting where she discusses the symposium and offers links to documents used as background material for the symposium.

Study tracks evolution of world’s first 500 bio-nano firms

Elicia Maine, a professor at Simon Fraser University’s Beedie School of Business, is presenting right now (9:45 am – 12:45 pm EST, Feb. 18, 2013) at the AAAS (American Association for the Advancement of Science) 2013 meeting in Boston, Massachusetts in a session titled, Confluence of Streams of Knowledge: Biotechnology and Nanotechnology, about her study on bio-nano firms. Here’s more about her and her work in a Feb. 15, 2013 news release from Simon Fraser University (SFU), Note: I have removed a link,

Elicia Maine, an SFU associate professor of technology management and strategy at the Beedie School of Business, has co-authored a study that puts bio-nano firms under the microscope.

They are a new breed of business at the intersection of biotechnology and nanotechnology.

Maine will unveil a groundbreaking study on bio-nano firms in a seminar she has co-organized (with James Utterback, a Massachusetts Institute of Technology professor) at the world’s largest science research meeting.

Maine’s presentation, followed by a panel discussion, will take place at the annual American Association for the Advancement of Science (AAAS) convention in Boston, Massachusetts on Monday, Feb. 18, 9:45 a.m.-12:45 p.m. (Pacific time) Location: Room 300, Hynes Convention Centre.

The study, the first of its kind, tracks the evolution of the world’s first 500 bio-nano firms from their inception until now. “We are interested in seeing when these firms developed or acquired nanotechnology and biotechnology capabilities, and what they have done with those capabilities in terms of integrating the knowledge into new products and processes,” says Maine.

“We’ve classified the pioneers of this new breed of firms at the confluence of biotechnology and nanotechnology based on their primary role in innovation. They cover the areas of biopharma, drug delivery, diagnostics, biomaterials, medical devices, suppliers and instrumentation, and bioinformatics.”

Unfortunately, this is an unpublished study (I haven’t been able to find any reference to it online) but there is a video of Maine talking about her research on bio-nano firms,

ETA Feb. 21, 2012, There was a second news release from SFU dated Feb. 18, 2012, which provided some additional information and quotes about Maine’s research,

The study’s authors have identified, classified and analysed more than 500 of the world’s first companies in the emerging bio-nano sector. Their data shows these companies are taking hold not just in technology hotbeds such as California’s Silicon Valley and the northeastern United States but also across the country, and in Europe.

“We have watched the ecosystem emerge in terms of the number and type of firms entering,” says Maine.  “This confluence of technology silos in the emerging bio-nano sector is enabling radical innovation, new products and connections that didn’t exist before. Some of the things we’re talking about are targeted drug delivery, tissue engineering, enhanced medical diagnostics and new therapeutics.”

Between 2005 and 2011, the number of bio-nano firms nearly doubled to 507, with more than 100 of them emerging in North America alone.

Unintended consequences of reading science news online

University of Wisconsin-Madison researchers Dominique Brossard and  Dietram Scheufele have written a cautionary piece for the AAAS’s (American Association for the Advancement of Science) magazine, Science, according to a Jan. 3, 2013 news item on ScienceDaily,

A science-inclined audience and wide array of communications tools make the Internet an excellent opportunity for scientists hoping to share their research with the world. But that opportunity is fraught with unintended consequences, according to a pair of University of Wisconsin-Madison life sciences communication professors.

Dominique Brossard and Dietram Scheufele, writing in a Perspectives piece for the journal Science, encourage scientists to join an effort to make sure the public receives full, accurate and unbiased information on science and technology.

“This is an opportunity to promote interest in science — especially basic research, fundamental science — but, on the other hand, we could be missing the boat,” Brossard says. “Even our most well-intended effort could backfire, because we don’t understand the ways these same tools can work against us.”

The Jan. 3, 2012 University of Wisconsin-Madison news release by Chris Barncard (which originated the news item) notes,

Recent research by Brossard and Scheufele has described the way the Internet may be narrowing public discourse, and new work shows that a staple of online news presentation — the comments section — and other ubiquitous means to provide endorsement or feedback can color the opinions of readers of even the most neutral science stories.

Online news sources pare down discussion or limit visibility of some information in several ways, according to Brossard and Scheufele.

Many news sites use the popularity of stories or subjects (measured by the numbers of clicks they receive, or the rate at which users share that content with others, or other metrics) to guide the presentation of material.

The search engine Google offers users suggested search terms as they make requests, offering up “nanotechnology in medicine,” for example, to those who begin typing “nanotechnology” in a search box. Users often avail themselves of the list of suggestions, making certain searches more popular, which in turn makes those search terms even more likely to appear as suggestions.

Brossard and Scheufele have published an earlier study about the ‘narrowing’ effects of search engines such as Google, using the example of the topic ‘nanotechnology’, as per my May 19, 2010 posting. The researchers appear to be building on this earlier work,

The consequences become more daunting for the researchers as Brossard and Scheufele uncover more surprising effects of Web 2.0.

In their newest study, they show that independent of the content of an article about a new technological development, the tone of comments posted by other readers can make a significant difference in the way new readers feel about the article’s subject. The less civil the accompanying comments, the more risk readers attributed to the research described in the news story.

“The day of reading a story and then turning the page to read another is over,” Scheufele says. “Now each story is surrounded by numbers of Facebook likes and tweets and comments that color the way readers interpret even truly unbiased information. This will produce more and more unintended effects on readers, and unless we understand what those are and even capitalize on them, they will just cause more and more problems.”

If even some of the for-profit media world and advocacy organizations are approaching the digital landscape from a marketing perspective, Brossard and Scheufele argue, scientists need to turn to more empirical communications research and engage in active discussions across disciplines of how to most effectively reach large audiences.

“It’s not because there is not decent science writing out there. We know all kinds of excellent writers and sources,” Brossard says. “But can people be certain that those are the sites they will find when they search for information? That is not clear.”

It’s not about preparing for the future. It’s about catching up to the present. And the present, Scheufele says, includes scientific subjects — think fracking, or synthetic biology — that need debate and input from the public.

Here’s a citation and link for the Science article,

Science, New Media, and the Public by Dominique Brossard and Dietram A. Scheufele in Science 4 January 2013: Vol. 339 no. 6115 pp. 40-41 DOI: 10.1126/science.1232329

This article is behind a paywall.

Industry Canada, Vanessa Clive, nanotechnology, and assessing economic impacts

I have long (one year) wanted to feature an interview with Vanessa Clive, Nanotechnology Policy Advisor; Industry Sector, at Industry Canada but have been distracted from sending interview questions until about several weeks ago.  (Sometimes, I lose track *of time.)

Here then are the interview questions  I asked and the answers Vanessa very kindly provided,

1.      Could you describe your role? 

Industry Canada’s mandate is to help make Canadian industry more productive and competitive in the global economy, thus improving the economic and social well-being of Canadians.  As an emerging/nascent technology, nanotechnology can help contribute towards this objective.  Our role vis a vis nanotechology is to:

  • better understand Canadian capabilities, strengths and expertise
  • contribute to effective policy development
  • contribute to the development of a supportive business environment for innovation and commercialization

2.       Recently, you helped organize an event in Washington, DC (International Symposium on Assessing the Economic Impact of Nanotechnology, March 27-28, 2012). Could you give a brief overview of why this was needed, who attended, & what happened? 

The Symposium was organized jointly by the OECD Working Party on Nanotechnology (WPN) and the National Nanotechnology Coordinating Office for the U.S. National Nanotechnology Initiative (NNI), and hosted by the American Association for the Advancement of Science (AAAS). I was a member of the OECD WPN Steering Committee which worked with the NNI to organize the event.

Some 200 people participated from OECD and non-OECD countries, representing a broad spectrum of sectors, industries, and areas of expertise. In addition to plenary sessions, industry break-out discussions were organized on advanced materials, food packaging, transportation, nanomedicine, energy, and electronics.

The decision to hold the event recognized the important potential contribution of nanotechnology to innovation, as reflected in rising R&D investments over the past decade. OECD member countries wish to explore ways to assess returns to these investments and the broader economic impacts of nanotechnology more generally, as well as the challenges for effective innovation policy development in this area.

The agenda and presentations can be viewed at http://nano.gov/node/729. Four background papers on related topics were also commissioned for the Symposium and can be found at the same site.

3.      What can be said about nanotechnology’s economic impacts and what information (e.g. bibliometric measures, no. of patents, etc.) is being used to arrive at that conclusion? 

Given the still relatively early stage of developments, the range of potential applications, and other factors, there are major challenges to estimating potential impacts. Holding this Symposium was intended to provide a start to develop useful indicators and other assessment tools.

4.      So, how is Canada doing relative to the international scene?

As discussed above, given the lack of measures, it is difficult to assess our relative position. However, Canadian federal and provincial governments have invested increasing amounts in nanotechnology R&D over the past decade or so. These investments have supported an array of government funding programs and contributed to the establishment of a world-class R&D infrastructure and research community and a growing number of companies involved in nanotechnology across industry sectors in Canada.

5.      Is there anything that stands out from the symposium?

It was clear from the level of attendance, presentations, and discussions which took place, that there is widespread interest in the symposium topics. To learn more about the event, I would encourage interested people to visit the website where presentations and background papers are posted – http://nano.gov/node/729.

6.      Are there any Industry Canada plans in the works for developing new assessment tools given that, unlike many countries, Canada does not have a national nanotechnology funding hub? 

We are working with the OECD to develop useful tools that would enable us to estimate or measure the economic impacts of nanotechnology.

7.      Are there any plans for a nanotechnology ‘road map’ similar to the digital media road map? Or perhaps there’s something else in the works?

Industry Canada is focused on assisting Canadian industry to grow, compete in the global economy, and create jobs. In order to do so we are building the department’s knowledge base about Canadian activities and capabilities, contributing to sound policy development in domestic and international for a, and contributing to building a supportive business environment for responsible innovation and commercialization in this field.

Thank you for the insight into the Canadian nanotechnology situation and the issues around economic impacts as per Industry Canada and tor taking the time to do this . Also, I am very happy to see the link to the presentations and background papers for the March 2012 nanotechnology and economic impacts event in Washington, DC (first mentioned in my Jan. 27, 2012 posting).

I did briefly visit the website which is a US National Nanotechnology Initiative website. The event page for which Vanessa provided a link hosts the background papers and links to other pages hosting the presentations and the agenda providing a rich resource for anyone interested in the issue of nanotechnology and its possible economic impacts.

* Changed preposition from ‘to’ to ‘of’ on Sept. 19, 2013.

Nanotechnology policy primer for US Congress

I was hoping to get more information about that symposium I mentioned in my Jan. 27, 2012 posting (in addition to the news about one of the presentations which I mentioned in my March 29, 2012 posting about assessing lifecycles and economic impacts),

The Organization for Economic Cooperation and Development (OECD), the American Association for the Advancement of Science (AAAS), and the US National Nanotechnology Initiative (NNI) are hosting an  International Symposium on Assessing the Economic Impact of Nanotechnology, March 27 – 28, 2012 in Washington, D.C.

As it turns out, an April 13, 2102 brief (Nanotechnology: A Policy Primer) prepared by John Sargent for the US Congress relies on some data that was provided to the symposium. Unfortunately, there’s not much and it’s about funding, not nanotechnology’s economic impacts. From Sargent’s policy primer, page 12,

The United States has led, and continues to lead, all nations in known public investments in nanotechnology R&D, though the estimated U.S. share of global public investments has fallen as other nations have established similar programs and increased funding. In 2011, Lux Research, an emerging technologies consulting firm, estimated total (public and private) global nanotechnology funding for 2010 to be approximately $17.8 billion with corporate R&D accounting for a majority of funding for the first time.[14] Cientifica, a privately held nanotechnology business analysis and consulting firm, estimated global public investments in nanotechnology in 2010 to be approximately $10 billion per year, with cumulative global public investments through 2011 reaching approximately $67.5 billion. Cientifica also concluded that the United States had fallen behind both Russia and China in nanotechnology R&D funding on a purchasing power parity (PPP) basis (which takes into account the price of goods and services in each nation), but still leads the world in real dollar terms (adjusted on a currency exchange rate basis).[15]

Private investments in nanotechnology R&D come from two primary sources, corporations and venture capital investors. Lux Research estimated that total global private sector nanotechnology funding had risen from $9.2 billion in 2009 to $9.6 billion in 2010, while the venture capital component of the investment had fallen from $822 million in 2009 to $646 million in 2010. According to the firm, U.S. private sector funding of approximately $3.5 billion led all other nations, followed by Japan (almost $3 billion), and Germany (about $1 billion). Lux Research also reported that the amount of venture capital funding in Europe was one-fifth that of the North American level.[16]

14 OECD /NNI International Symposium on Assessing the Economic Impact of Nanotechnology, Background Paper 2: Finance and Investor Models in Nanotechnology, Working Party on Nanotechnology, Organization for Economic Cooperation and Development, March 16, 2012, p. 4.

15 Global Funding of Nanotechnologies and Its Impact, Cientifica, July 2011, available at http://cientifica.eu/blog/wpcontent/ uploads/downloads/2011/07/Global-Nanotechnology-Funding-Report-2011.pdf.

16 OECD /NNI International Symposium on Assessing the Economic Impact of Nanotechnology, Background Paper 2: Finance and Investor Models in Nanotechnology, Working Party on Nanotechnology, Organization for Economic Cooperation and Development, March 16, 2012, p. 4.

This primer provides a good brief (17 pp.) introduction for anyone who’s not familiar with the field of nanotechnology.

AAAS 2012, the Sunday, Feb. 19, 2012 experience: art/sci, HUBzero, and a news scoop from the exhibition floor

“New Concepts in Integrating Arts and Science Research for a Global Knowledge Society” at the AAAS 2012 annual meeting provided some thought provoking moments courtesy of Gunalan Nadarajan, Vice Provost at the Maryland Institute College of Art. It’s always good to be reminded that art schools are only about 300 years old and the notion of studying science as a separate discipline is only about 200 years old. We tend talk about the arts and the sciences as if they’ve always been separate pursuits when, as Nadarajan pointed out, they were part of a larger pursuit, which included philosophy and religion as well. That pursuit was knowledge.

Nadarajan mentioned a new network (a pilot project) in the US called the Network for Science Engineering Art and Design where they hope to bring scientists and artists together for collaborative work. These relationships are not always successful and Nadarajan noted that the problems tend to boil down to relationship issues (sometimes people don’t get along very well even with the best of intentions). He did say that he wanted to encourage people to get to know each other first in nonstressful environments such as sharing a meal or coffee. It sounded a little bit like dating but rather than a romantic encounter (or that might be a possibility too), the emphasis is on your work compatibility.

According to a blog posting by one of the organizers of the Network for Science Engineering Art and Design, Roger Malina, it is searching for a new name (search engine issues). You can get more information about the new network in Malina’s Feb. 19, 2012 posting.

“HUBzero: Building Collaboratories for Research on a Global Scale” was a session I anticipated with much interest and I’m glad to say it was very good with all the speakers being articulate and excited about their topics. I did not realize that there are a number of hubs in the US; I’m familiar only with the nanoHUB based at Purdue University in Indiana. (My most recent posting about this was the Dec. 5, 2011 posting about their NanoHUB-U initiative.)

nanoHUB and the others all run on an open source software designed for scientific collaboration. What I found most fascinating was the differences between the various hubs. Michael McLennan spoke about both the HUBzero software (which can be downloaded for free from the HUBzero website) and the nanoHUB, which services the nanotechnology community and has approximately 200,000 registered users at this time (they double their numbers every 12 – 18 months according to McLennan).

There are videos, papers, courses, social networking opportunities and more can be made available through the HUBzero software but uniquely configured to each group’s needs. Ellen M. Rathje (University of Texas, Austin) spoke at length about some of the challenges the earthquake engineers (NEES.org) addressed when developing their hub with regard to sharing data and some of the analytical difficulties associated with earthquake data.

Each group that uses the software to create a hub has its own culture and customs and the software has to be tweaked such that the advantages to adopting new work strategies outweigh the disadvantages of making changes. William K. Barnett whose portfolio includes encouraging the use of collaborative technologies for the Indiana Clinical and Translational Sciences Institute (CSTI) had to adopt an approach for doctors who typically have very little time to adopt new technologies and who have requirements regarding confidentiality that are far different than that of nanoscientists or earthquake engineers.

I got my ‘scooplet’ when I visited the exhibition floor. The 2012 Canadian Science Policy Conference (2012 CSPC) will be held in Alberta as you can see in this Feb. 19, 2012 posting on the Government of Canada science site.

Apparently, there are two cities under consideration and, for anyone  who’s been hoping for a meeting in Wetaskawin, I must grind your dreams into dust. As most Canadians would expect, the choice is between Edmonton and Calgary. I understand the scales are tipped towards Calgary (that’s the scooplet) but these things can change in a heartbeat (no, don’t get your hopes up about Wetaskawin). I understand we should be learning the decision soon (I wonder if Banff might emerge as a dark horse contender).

Picture still not worth 1000 words but here are the 2011 International Science and Engineering Visualization Challenge winners

About this time last year I wrote an impassioned piece on the importance of words (Feb. 22, 2012 posting) while making note of the 2010 International Science and Engineering Visualization Challenge winners. For the record, I haven’t changed my mind about the importance of either words or visuals; I still don’t believe that there’s a one size fits all approach to communicating about anything let alone science. (I have had more than one convo with graphic designers who bring up that ‘picture worth …’ as they explain why my words on the page are in a four-point font [I exaggerate but only mildly], so this protest was based on previous bad experiences rather than any hostility towards the Challenge.)

Science magazine (published by the American Association for the Advancement of Science [AAAS]) announced the winners for the 2011 International Science and Engineering Visualization Challenge today. Tomorrow, Science will feature the winning entries in its Feb. 3,  2012 issue. From the Feb. 2, 2012 news release on EurekAlert,

The international competition, currently in its ninth year, honors recipients who use visual media to promote understanding of scientific research. The criteria for judging the 212 entries, from 33 countries, included visual impact, effective communication, freshness and originality.

Here’s a brief description of the some of the winning entries,

Solve the Protein Puzzle: A multiplayer online computer game puzzle, called “Foldit,” that allows users to bend and fold amino acids into realistic proteins and solve the problem of protein folding was developed by Seth Cooper of the University of Washington, Seattle and his team.

“We strove to make the visualizations in folding both fun to look at and informative about where there are problems with the protein that players might be able to fix,” said Cooper, a first-place winner in the Interactive Games category. “We tried to make the visualizations clear and approachable, so the game can be played by people who don’t have a scientific background.”

View a Cell in 3D: The movie “Rapid Visual Inventory & Comparison of Complex 3D Structures” depicts a novel three-dimensional model view of a whole cell in minute detail and helps biologists better understand complex visual data for a general audience. The video was selected as the first-place Video category winner by the judges as well as the People’s Choice.

“Morphing the cell from the complicated native model to the simplified version and back gets general audiences excited about the subject matter and reminds even expert audiences of the complex interplay of randomness and specific interaction that enables life to exist,” said winning animator Graham T. Johnson of the Scripps Research Institute in San Diego, California, and now at the University of California San Francisco.

See the Beauty of a Mouse’s Eye: The first-place photograph, “Metabolomic Eye,” is a metabolic snapshot of the diversity of cells in a mouse eye retina, derived from a technique called computational molecular phenotyping (CMP), explained neuroscientist Bryan William Jones of the University of Utah’s Moran Eye Center in Salt Lake City. The image shows a unique view of normal tissue functioning and reveals complex metabolic signals while preserving the anatomical context of a tissue, added Jones.

Build a Human Body: “Build-a-Body is a great way to virtually learn about human anatomy,” said game designer Jeremy Friedberg of Spongelab Interactive about his educational science game, which won an Honorable Mention, that allows users to use drag and drop tools to learn about organs of the human body. “Our free, open platform fosters a global science community by stitching together educational content, teaching tools and powerful data surrounding class and student performance.”

Since I try to focus on nanotechnology for this blog, here’s a carbon nanotube image that won an honourable mention in this year’s competition in the illustration category,


Variable-diameter carbon nanotubes This 3-D illustration shows the production of variable-diameter carbon nanotubes. University of Nebraska-Lincoln electrical engineering professor, Dr. Yongfeng Lu, discovered laser-based production techniques that can precisely control the length, diameter and properties of carbon nanotubes. Using these highly electrically and thermally conductive nanotubes, Lu’s team developed methods to improve transistors and sensors that may one day speed up computers and other electrical devices, while minimizing energy consumption and heat generation. They also discovered how to control a carbon nanotube’s diameter from one end to the other, which alters its characteristics. Lu envisions variable-diameter nanotubes customized for specific uses. This 3-D illustration was developed to help Dr. Lu's team to visualize these nano-scale discoveries for diverse audiences. [Image courtesy of Joel Brehm, University of Nebraska-Lincoln Office of Research and Economic Development

To me, they look like bowling pins made of pine cones.


Science comic books

Some time before Christmas I came across (via Twitter, sorry I can’t remember who) a listing of comic books that focus on science. The list is on a University of Texas at Dallas web space for their CINDI educational website. From the CINDI home page,

The Coupled Ion Neutral Dynamics Investigation (CINDI) is a joint NASA/US Air Force funded ionospheric (upper atmosphere) plasma sensors built by the Center for Space Sciences at the University of Texas at Dallas. This instrument package is now flying on the Air Force’s Communication/Navigation Outage Forecast Satellite (C/NOFS) launched in spring 2008. On this site you will find a collection of teaching and education resources for grades 6-9 about the CINDI project, the Earth’s atmosphere, space weather, the scale in the Earth-Moon system, satellites and rockets and more.

Amongst other outreach initiatives, they’ve produced a series of ‘Cindi’ comic books. Here’s a copy of one of the covers.


Cover of Issue no. 1 Cindi In Space (Note that all images, characters, and text in this comic book are copyrighted by the University of Texas at Dallas [2005, 2010

This particular issue is intended for students from grades 6 – 9.

The Cindi series was featured in an article by Dan Stillman for NASA (US National Aeronautics and Space Administration). From the article,

… Cindi, a spiky-haired android space girl, and her two space dogs, Teks and Taks, are stars of a comic book series that just released its second installment. With more than enough colorful pictures to go around, the comic books serve up a hearty helping of knowledge about the CINDI mission and the ionosphere, with a side of humor.

“Science is threatening to a lot of people. And even if it’s not threatening, most people have this misconception that ‘science is too hard for me to understand,’” said Hairston, [Mark Hairston]who together with Urquhart [Mary Urquhart] dreamed up the Cindi character and storyline. “But a comic book is not threatening. It’s pretty, it’s entertaining, and it’s easy to understand. So we can get people to read — and read all the way to the end.

“It grabs their interest and attention, and once we have that, we can then smuggle an amazing amount of scientific ideas and concepts into their minds.”

Even for Cindi, it’s no easy task to explain how atoms become ions and what NASA’s CINDI instruments do as they fly aboard an Air Force research satellite. The first Cindi comic book — “Cindi in Space,” published in 2005 — breaks the ice with an analogy involving Cindi’s dogs.

Getting back to where I started, the organizers have created a list of other science-focused comic books including a series from the Solar-Terrestrial Environment Laboratory (STEL) at  Nagoya University (Japan),which are manga-influenced. At this time, nine have been translated into English. Here’s copy of the cover from their latest,

Cover for What is the Sun-Climate Relationship? manga (STEL project at Nagoya University, Japan)

The Cindi folks also mention Jim Ottaviani and G. T. Labs, which has produced a number of graphic novels/comic books including, Bone Sharps, Cowboys, and Thunder Lizards about 19th century dinosaur bone hunters and a very bitter feud between two of them, and Dignifying Science which features stories about women scientists. I went over to the G. T. Labs website where they were featuring their latest, Feynman which was published in August 2011 (from the Feynman webpage),

Physicist . . . Nobel winner . . . bestselling author . . . safe-cracker.

Feynman tells the story of a great man’s life, from his childhood in Long Island to his work on the Manhattan Project and the Challenger disaster. You’ll see him help build the first atomic bomb, give a lecture to Einstein, become a safecracker, try not to win a Nobel Prize (but do it anyway), fall in love, learn how to become an artist, and discover the world.

Anyone who ever wanted to know more about quantum electrodynamics, the fine art of the bongo drums, the outrageously obscure nation of Tuva, or the development and popularization of physics in the United States need look no further!

Feynman explores a wonderful life, lived to the fullest.

Ottaviani’s Dec. 14, 2011 blog posting notes this about Feynman,

Though come to think of it, the context is sort of crazy, as in Feynman is nominated for the American Association for the Advancement of Science’s [AAAS] SB&F Prize, and it was also featured on Oprah.com’s “BookFinder” last week.

Congratulations to Ottaviani and G. T. Labs. (Sidebar: The AAAS 2012 annual meeting will be in Vancouver, Canada this February.)