Tag Archives: American Association for the Advancement of Science

Omnidirectional fish camouflage and polarizing light

I find this camouflage technique quite interesting due to some nice writing, from a Nov. 19, 2015 Florida Atlantic University (FAU) news release on EurekAlert,

The vast open ocean presents an especially challenging environment for its inhabitants since there is nowhere for them to hide. Yet, nature has found a remarkable way for fish to hide from their predators using camouflage techniques. In a study published in the current issue of Science, researchers from Harbor Branch Oceanographic Institute at Florida Atlantic University and collaborators show that fish scales have evolved to not only reflect light, but to also scramble polarization. They identified the tissue structure that fish evolved to do this, which could be an analog to develop new materials to help hide objects in the water.

HBOI researchers and colleagues collected more than 1,500 video-polarimetry measurements from live fish from distinct habitats under a variety of viewing conditions, and have revealed for the first time that fish have an ‘omnidirectional’ solution they use to camouflage themselves, demonstrating a new form of camouflage in nature — light polarization matching.

“We’ve known that open water fish have silvery scales for skin that reflect light from above so the reflected intensity is comparable to the background intensity when looking up, obliquely at the fish, as a predator would,” said Michael Twardowski, Ph.D., research professor at FAU’s HBOI and co-author of the study who collaborated with co-author James M. Sullivan, Ph.D., also a research professor at FAU’s HBOI. “This is one form of camouflage in the ocean.”

Typical light coloring on the ventral side (belly) and dark coloring on the dorsal (top) side of the fish also can help match intensity by differential absorption of light, in addition to reflection matching.

Light-scattering processes in the open ocean create spatially heterogeneous backgrounds. Polarization (the directional vibration of light waves) generates changes in the light environment that vary with the Sun’s position in the sky.

Polarization is a fundamental property of light, like color, but human eyes do not have the ability to sense it. Light travels in waves, and for natural sunlight, the direction of these waves is random around a central viewing axis. But when light reflects off a surface, waves parallel to that surface are dominant in the reflected beam. Many visual systems for fish have the ability to discriminate polarization, like built-in polarized sunglasses.

“Polarized sunglasses help you see better by blocking horizontal waves to reduce bright reflections,” said Twardowski. “The same principle helps fish discriminate objects better in water.”

Twardowski believes that even though light reflecting off silvery scales does a good job matching intensity of the background, if the scales acted as simple mirrors they would impart a polarization signature to the reflected light very different from the more random polarization of the background light field.

“This signature would be easily apparent to a predator with ability to discriminate polarization, resulting in poor camouflage,” he said. “Fish have evolved a solution to this potential vulnerability.”

To empirically determine whether open-ocean fish have evolved a cryptic reflectance strategy for their heterogeneous polarized environments, the researchers measured the contrasts of live open-ocean and coastal fish against the pelagic background in the Florida Keys and Curaçao. They used a single 360 degree camera around the horizontal plane of the targets and used both light microscopy and full-body video-polarimetry.

The American Association for the Advancement of Science (AAAS), publisher of Science magazine where the researchers’ study can be found issued a Nov. 19, 2015 news release on EurekAlert further describing the work,

… The study’s insights could pave the way to improvements in materials like polarization-sensitive satellites. Underwater, light vibrates in way that “polarizes” it. While humans cannot detect this vibrational state of light without technology, it is becoming increasingly evident that many species of fish can; lab-based studies hint that some fish have even adapted ways to use polarization to their advantage, including developing platelets within their skin that reflect and manipulate polarized light so the fish are camouflaged. To gain more insights into this form of camouflage, Parrish Brady and colleagues measured the polarization abilities of live fish as they swam in the open ocean. Using a specialized underwater camera (…), the researchers took numerous polarization measurements of several open water and coastal species of fish throughout the day as the sun changed position in the sky, causing subsequent changes in the polarization of light underwater. They found that open water fish from the Carangidae fish family, such as lookdowns and bigeye scad, exhibited significantly lower polarization contrast with their backgrounds (making them harder to spot) than carangid species that normally inhabit reefs. Furthermore, the researchers found that this reflective camouflage was optimal at angles from which predators most often spot fish, such as from directly below the fish and at angles perpendicular to their length. By looking at the platelets of open water fish under the microscope, the team found that the platelets align well on vertical axes, allowing fish to reflect the predictable downward direction of light in the open ocean. Yet the platelets are angled in way that diffuses light along the horizontal axis, the researchers say. They suggest that these different axes work together to reflect a wide range of depolarized light, offering better camouflage abilities to their hosts.

The AAAS has made available a video combining recordings from the researchers and animation to illustrate the research,

Be sure you can hear the audio as this won’t make much sense otherwise.

Here’s a link to and a citation for the paper,

Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments by Parrish C. Brady, Alexander A. Gilerson, George W. Kattawar, James M. Sullivan, Michael S. Twardowski, Heidi M. Dierssen, Meng Gao, Kort Travis, Robert Ian Etheredge, Alberto Tonizzo, Amir Ibrahim, Carlos Carrizo, Yalong Gu, Brandon J. Russell, Kathryn Mislinski, Shulei Zha1, Molly E. Cummings. Science 20 November 2015: Vol. 350 no. 6263 pp. 965-969 DOI: 10.1126/science.aad5284

This paper is behind a paywall.

Call for AAAS Kavli science journalism award submission goes international, for the first time

From a June 22, 2015 American Association for the Advancement of Science (AAAS) news release in my mailbox,

The contest year for the 2015 AAAS Kavli Science Journalism Awards will close on 15 July. Be sure to enter your best work that appeared in print, online or on air between 1 July 2014 and 15 July 2015. The entry deadline is August 1, 2015. [emphasis mine]

Thanks to an expanded endowment from The Kavli Foundation, the competition is open for the first time to professional journalists from around the world in each of the eight reporting categories. There is no entry fee. Please read the Contest Rules and Frequently Asked Questions before submitting.

Note: If the submitted work was published or broadcast in a language other than English, you must provide an English translation.

The awards recognize outstanding reporting for a general audience and honor individuals for coverage of the sciences, engineering, and mathematics. Stories on the environment, energy, science policy, and health qualify if they deal in a substantive way with underlying science. Independent committees of journalists select the winning entries.

The categories:
·  Large Newspaper (circulation of 150,000 or more, daily or weekly)
·  Small Newspaper (circulation of less than 150,000, daily or weekly)
·  Magazine
·  TV – Spot News/Feature Reporting (20 minutes or less)
·  TV – In-Depth Reporting (more than 20 minutes)
·  Radio
·  Online
·  Children’s Science News (reporting on science for children, including young teens up to age 14)

You can find Contest Rules here and you can find Frequently Asked Questions (FAQs) here,

Q: I work for a state-funded news organization. Am I eligible?

A. The news outlet must be editorially independent. Questions about eligibility are decided by the awards administrator in consultation with the Managing Committee (an advisory panel of science journalists.)

Q. Are commentaries or articles in advocacy publications eligible for the award?

A. No.

Q. Are books eligible?

No, books, book chapters and e-books are not eligible.

Q. Are stories written by public information officers or freelancers for university-funded research magazines or Web sites eligible for the awards?

A. No. The Managing Committee has determined that such publications are not eligible for the awards.

Q. Are podcasts eligible for the award?

A. Some podcasts are eligible for consideration within the Online category. They must be science-news-only podcasts aimed at a general audience and prepared by reporters. Institutional podcasts from university news or research offices, or podcasts featuring news as well as other types of segments are not eligible.

Q. Are blogs eligible?

A. Yes, in the “Online” category. The judges will determine whether a blog entry meets the standards of professional journalism and is accessible to a general audience.

Finally, you can make your submission by clicking the link on this page which includes a summary of the rules and FAQs.

Good luck!

Hydrogels and cartilage; repurposing vehicles in space; big bang has ‘fingerprints’

The American Institute of Physics (AIP) has made a selection of four articles freely available (h/t Mar. 9, 2015 news item on Azonano).

From a March 6, 2015 AIP news release,

WASHINGTON D.C., March 6, 2015 — The following articles are freely available online from Physics Today (www.physicstoday.org), the world’s most influential and closely followed magazine devoted to physics and the physical science community.

You are invited to read, share, blog about, link to, or otherwise enjoy:

1) STIFF AND SUPPLE CARTILAGE SUBSTITUTE

Physics Today‘s Ashley Smart reports on hydrogels that mimic the tricky nature of cartilage thanks to magnetically aligned nanosheets.

“In the realm of bioengineering, hydrogels are something of an all-purpose material. Made up of networks of interlinked, hydrophilic polymers, they tend to be soft, biocompatible, and highly absorbent…. The new material mimics the articular cartilage that lubricates our joints: It can support a heavy load along one direction while stretching and shearing with ease in the others.”

MORE: http://dx.doi.org/10.1063/PT.3.2707

2) GIVING SPACECRAFT A SECOND LEASE ON LIFE WHILE HURTLING THROUGH THE COSMOS

Physics Today‘s Toni Feder reports on the innovative processes undertaken to repurpose various spacecraft in flight, including Kepler, Voyager, Deep Impact, Spitzer, and the Hubble Space Telescope.

“A comeback like Kepler’s is ‘not unique, but it’s unusual,’ says Derek Buzasi of Florida Gulf Coast University, who reinvented the Wide-Field Infrared Explorer (WIRE) after it failed following its 1999 launch. ‘Spacecraft are built for a specialized purpose, so they are hard to repurpose. You have to come up with something they are capable of at the same time they are incapable of their original mission.’

Deep Impact’s original mission was to hurl a copper ball at a comet and watch the impact. In its continued form as EPOXI, the spacecraft went on to visit another comet and, on the way, served as an observatory for user- proposed targets.”

MORE: http://dx.doi.org/10.1063/PT.3.2713

3) CONGRESSMAN & FUSION RESEARCHER REFLECTS ON SCIENCE POLICY

Physics Today‘s David Kramer interviews Rush Holt, the New Jersey congressman who retired from office and this past December took the helm of the American Association for the Advancement of Science.

“PT: What do you consider to be your accomplishments in Congress?

HOLT: I focused a lot on science education. Our real problem is not that we’re failing to produce excellent scientists, because we are [producing them], but rather that we have failed to maintain an appreciation for and understanding of science in the general population. I was able to keep a spotlight on the need but wasn’t able to accomplish as much as I wanted. We got science included in the subjects emphasized by federal law. But we haven’t really improved teacher professional development and other things we need to do.”

MORE: http://dx.doi.org/10.1063/PT.3.2714

4) PARTICLE PHYSICS AND THE COSMIC MICROWAVE BACKGROUND

In this article, physics researchers John Carlstrom, Tom Crawford and Lloyd Knox discuss the fingerprints of the Big Bang and quantum fluctuations in the early universe, which may soon reveal physics at unprecedented energy scales.

“With its empirical successes, inflation is by consensus the best paradigm—notwithstanding some notable dissenting views—for the mechanism that generated the primordial density fluctuations that led to all structure in the universe. Its success has motivated physicists to search for the siblings of those fluctuations, the gravitational waves, via their signature in the polarization of the CMB. If discovered, that gravitational imprint would open up an observational window onto quantum gravitational effects, extremely early times, and extremely high energies.”

MORE: http://dx.doi.org/10.1063/PT.3.2718

I have checked; all of the links do lead to the articles.

30 or more PhD nanotechnology studentships available in New Zealand

The American Association for the Advancement of Science (AAAS) lists a notice posted Jan. 5, 2015 for 30+ PhD studentships in the field of nanotechnology available in New Zealand. The posting comes from New Zealand’s McDiarmid Institute for Advanced Materials and Nanotechnology on its ‘studentship’ webpage (Note: A link has been removed),

The MacDiarmid Institute for Advanced Materials and Nanotechnology is New Zealand’s premier research organisation concerned with high quality research and research education in materials science and nanotechnology.

30+ PhD studentships are now open across our research areas and partnership institutions.

Successful candidates will be a member of the MacDiarmid Institute, a national Centre of Research Excellence which provides collaborative opportunities and a thriving environment to work in.

Each scholarship is worth NZD$27,000  per annum (not taxed) and includes all student fees.

Come to New Zealand to enjoy the best of life and science!

For more details on specific projects, deadlines, etc – contact the appropriate MacDiarmid Institute investigator  from the list below.

Look out for 6 Postdoctoral Fellowships to be advertised soon.

To give you a sense of the possibilities I have excerpted a few of the studentship descriptions (Note: formatting has been changed and links removed),

Professor Kevin E. Smith

Head, School of Chemical Sciences
University of Auckland
kevin.smith@auckland.ac.nz

Synchrotron Radiation X-Ray Spectroscopic Studies of Functional Metal Oxides

The available Ph.D. project involves the experimental study of the electronic structure of transition metal oxides using a suite of synchrotron radiation-based spectroscopies.

Professor Jadranka Travas-Sejdic

The University of Auckland(School of Chemical Sciences)
j.travas-sejdic@auckland.ac.nz

2D and 3D conducting polymer structures to interrogate and sense biological cells.

The PhD project will be highly cross-disciplinary involving materials chemistry, microfabrication of conducting polymer structures and their interaction with biological cells.

The PhD will be enrolled at UoA but the project will be highly collaborative between The University of Auckland and the University of Canterbury.

Dr Geoff Willmott

The University of Auckland
g.willmott@auckland.ac.nz

New Tools for Soft Nanomechanics: Nanoaspiration

We have a growing capability in nanofluidics, an emerging field which aims to understand the physics and chemistry of soft nanomaterials, and of fluidic transport in confined spaces.

Dr Duncan McGillivray

d.mcgillivray@auckland.ac.nz
The University of Auckland

Biologicaly patterning of surfaces

A PhD scholarship in chemistry is offered for research into biological patterning of surfaces based at the School of Chemical Sciences at the University of Auckland.

Dr Shane Telfer

Massey University, Palmerston North
s.telfer@massey.ac.nz

Metal-organic frameworks (MOFs) are an exciting class of porous materials with a raft of applications.

The project will focus on the design, synthesis, and characterisation of MOFs for gas storage and separations.  Novel spectroscopic techniques will be employed to gain insight into the MOF structure and functional properties.

Good luck to all the applicants!

Science Advice to Government; a global conference in August 2014

There’s a big science advice conference on the horizon for August 28 – 29, 2014 to be held in New Zealand according to David Bruggeman’s March 19, 2014 posting on his Pasco Phronesis blog (Note: Links have been removed),

… It [the global science advice conference] will take place in Auckland, New Zealand August 28 and 29 [2014].  It will be hosted by the New Zealand Chief Science Adviser, Sir Peter Gluckman.

(If you’re not following Sir Peter’s work and writings on science advice and science policy, you’re missing out.)

The announced panelists and speakers include chief scientists and/or chief science advisers from several countries and the European Union.  It’s a very impressive roster.  The conference is organised around five challenges:

  • The process and systems for procuring evidence and developing/delivering scientific      advice for government
  • Science advice in dealing with crisis
  • Science advice in the context of opposing political/ideological positions
  • Developing an approach to international science advice
  • The modalities of science advice: accumulated wisdom

The 2014 Science Advice to Governments; a global conference for leading practitioners is being organized by the International Council for Science. Here’s a list of the confirmed speakers and panellists (Note: Links have been removed),

We are delighted that the following distinguished scientists have confirmed their participation in the formal programme:

Prof. Shaukat Abdulrazak, CEO National Commission for Science, Technology and Innovation, Kenya

Dr. Ian Boyd, Chief Science Advisor, Department of Environment, Food and Rural Affairs (DEFRA) UK

Dr. Phil Campbell, Editor-in-Chief, Nature

Dr. Raja Chidambaram, Principal Scientific Advisor to the Government of India, and Chairman of the Scientific Advisory Committee to the Cabinet, India

Prof. Ian Chubb, Chief Scientist for Australia

Prof. Brian Collins, University College London’s Department of Science, Technology, Engineering and Public Policy (UCL STEaPP)

Dr. Lourdes J Cruz, President of the National Research Council of the Philippines and National Scientist

Prof. Heather Douglas, Chair in Science & Society, Balsillie School of International Affairs, U. of Waterloo Canada

Prof. Mark Ferguson, Chief Scientific Adviser to the Government of Ireland, and Director General, Science Foundation Ireland

Prof. Anne Glover, Chief Science Adviser to the President of the European Commission

Sir Peter Gluckman, Prime Minister’s Chief Science Advisor, New Zealand

Dr. Jörg Hacker, President of the German Academy of Sciences – Leopoldina; Member of UN Secretary General’s Scientific Advisory Board

Dr. Yuko Harayama, Executive member of Council for Science and Technology Policy, Cabinet Office of Japan; Member of UN Secretary General’s Scientific Advisory Board; former Deputy Director OECD Directorate for Science, Technology and Industry

Prof. Andreas Hensel, President of the Federal Institute for Risk Assessment (BfR), Germany

Prof. Gordon McBean, President-elect, International Council for Science (ICSU)

Prof. Romain Murenzi, Executive Director of The World Academy of Sciences (TWAS)

Dr. Mary Okane, Chief Scientist and Engineer, New South Wales Australia

Prof. Remi Quirion, Chief Scientist, Province of Quebec, Canada

Chancellor Emeritus Kari Raivio, Council of Finnish Academies, Finland

Prof. Nils Chr. Stenseth, President of the Norwegian Academy of Science and Letters and President of the International Biological Union (IUBS)

Dr. Chris Tyler, Director of the Parliamentary Office of Science and Technology (POST) in UK

Sir Mark Walport, Chief Scientific Advisor to the Government of the UK

Dr. James Wilsdon, Professor of Science and Democracy, University of Sussex, UK

Dr. Steven Wilson, Executive Director, International Council for Science (ICSU)

Dr. Hamid Zakri, Science Advisor to the Prime Minister of Malaysia; Member of UN Secretary General’s Scientific Advisory Board

I noticed a couple of Canadian representatives (Heather Douglas, Chair in Science & Society at the University of Waterloo, and Remi Quirion, Chief Scientist, province of Québec) on the list. We don’t have any science advisors for the Canadian federal government but it seems they’ve instituted some such position for the province of Québec. In lieu of a science advisor, there is the Council of Canadian Academies, which “is an independent, not-for-profit organization that supports independent, authoritative, and evidence-based expert assessments that inform public policy development in Canada” (from their About page).

One other person should be noted (within the Canadian context), James Wilsdon is a member of the Expert Panel for the Council of Canadian Academies’ still-in-progress assessment, The State of State of Canada’s Science Culture. (My Feb. 22, 2013 posting about the assessments provides a lengthy discourse about the assessment and my concerns about both it and the panel.)

Getting back to this meeting in New Zealand, the organizers have added a pre-conference symposium on science diplomacy (from the Science and Diplomacy webpage), Note: A link has been removed,

We are pleased to announce the addition of a pre-conference symposium to our programme of events. Co-chaired by Dr. Vaughan Turekian, Editor-in-Chief of the AAAS Journal Science and Diplomacy, and the CE of New Zealand Ministry of Foreign Affairs and Trade, this symposium will explore ‘the place of science in foreign ministries’.

Overview of the symposium

The past decade has seen unprecedented interested in the interface between science and diplomacy from a number of perspectives including:

– Diplomacy for Science – building international relationships to foster robust collaborative scientific networks and shared expertise and infrastructure;
– Science for Diplomacy – the science enterprise as a doorway to relationship building between nations with shared goals and values;
– Science in Diplomacy – the role of science in various diplomatic endeavours (e.g.: verification of agreements on climate change, nuclear treaties etc; in support of aid projects; in promoting economic and trade relationships; and in various international agreements and instruments such as phyto-sanitary regulations, free trade agreements, biodiversity agreements etc.).

Yet, despite the growing interest in this intersection, there has been little discussion of the practical realities of fostering the rapprochement between two very distinct professional cultures and practices, particularly with specific reference to the classical pillars of foreign policy: diplomacy; trade/economic; and aid. Thus, this pre-conference symposium will be focusing on the essential question:

How should scientists have input into the operation of foreign ministries and in particular into three pillars of foreign affairs (diplomacy, trade/economics and foreign aid)?

The discussion will focus on questions such as: What are the mechanisms and methods that can bring scientists and policy makers in science and technology in closer alignment with ministries or departments of foreign affairs and vice versa? What is the role of public scientists in assisting countries’ foreign policy positions and how can this be optimised? What are the challenges and opportunities in enhancing the role of science in international affairs? How does the perception of science in diplomacy vary between large and small countries and between developed and developing countries?

To ensure vibrant discussion the workshop will be limited to 70 participants. Anyone interested is invited to write to info@globalscienceadvice.org with a request to be considered for this event.

The conference with this newly added symposium looks to be even more interesting than before. As for anyone wishing to attend the science diplomacy symposium, the notice has been up since March 6, 2014 so you may wish to get your request sent off while there’s still space (I assume they’ll put a notice on the webpage once the spaces are spoken for). One final observation, it’s surprising in a science conference of this size that there’s no representation from a US institution (e.g., the National Academy of Sciences, Harvard University, etc.) other than the AAAS (American Association for the Advancement of Science) organizer of the pre-conference symposium.

American Assocation for the Advancement of Science (AAAS) meeting in Chicago, Illinois (13 – 17 February 2014)

The 2014 annual meeting of the American Association for the Advancement of Science (AAAS) will take place Feb. 13 – 17, 2014 in Chicago (one of my favourite places), Illinois. It’s always interesting to take a look at the programme and here’s a few of the items I found interesting,

Thursday, Feb. 13, 2014  the AAAS has arranged a number of talks about ‘communicating science and, as usual, bloggers, etc. are confined to presenting under the rubric of social media:

9:00 AM-10:30 AM

Seminar: Communicating Science

11:00 AM-12:30 PM

Seminar: Communicating Science

Engaging with Social Media

To be more specific, here’s the list of presenters for the ‘Journalist’ talk (Note: I have removed links),

Moderator:
Cornelia Dean, The New York Times and Brown University
Speakers:
Carl Zimmer, Independent Science Journalist [Note: Zimmer writes for the NY Times and other prestigious print publications, as well as, being a blogger]

Robert Lee Hotz, The Wall Street Journal

David Baron, Public Radio International

Paula Apsell, NOVA [science program on the US PBS {Public Broadcasting Service} network)

[emphases mine]

Meanwhile, we have this for social media,

Moderator:
Dominique Brossard, University of Wisconsin
Speakers:
Kim Cobb, University of Georgia
Navigating the Science-Social Media Space: Pitfalls and Opportunities
Danielle N. Lee, Cornell University
Raising STEM Awareness Among Under-Served and Under-Represented Audiences
Maggie Koerth-Baker, BoingBoing.net
What’s the Point of Social Media?

It’s nice to see Danielle N. Lee as one of the presenters. Her blog, The Urban Scientist is on the Scientific American blog network (she also featured as a whistle blower and more in the 2013 science blogging scandals [my first post on the topic was Oct. 18, 2013 towards the end of the scandals and I mused on the scandals and discussed  gender in an end-of-year Dec. 31, 2013 posting ) and there’s of course, someone representing BoingBoing, an online publisher,which was conceptualized as a magazine and has now evolved into a group blog.

My basic thesis is that blogs and such are emerging as part of the science media landscape and the types of sessions which isolate bloggers, etc.  do not acknowledge that fact. Yes, it’s true that Zimmer blogs but I can guarantee that the discussion will revolve exclusively around his high profile publishers such as the NY Times and how the participants can get their stories in front of mainstream media journalists and as for the social media session that’s going to focus on how scientists can directly approach their publics.

Moving on, there’s a nanotechnology aspect to the following presentation, although you’d never guess it from the title,

 Preserving Our Cultural Heritage: Science in the Service of Art
Friday, 14 February 2014: 10:00 AM-11:30 AM
Acapulco (Hyatt Regency Chicago)
In 2009 a group of chemists and materials scientists from a wide range of institutions came together for a workshop on “Chemistry and Materials Research at the Interface Between Science and Art,” co-sponsored by the Andrew W. Mellon Foundation and the National Science Foundation. One of the workshop conclusions was that scientists in academia need to be encouraged to collaborate with their peers in cultural heritage institutions, to both increase scientist knowledge of this heritage and also to develop the necessary tools and apply the science to be able to preserve it. The session covers different collaborations that are ongoing in this area, relating to different mediums of art and different technologies that can be applied. The session will also include recent results and successes in this process, both in better understanding of materials as well as in developments for their conservation. The discussion will also address what is needed for collaborations like this to continue to flourish and grow.

One doesn’t get to the ‘nano’ part until looking at the speakers’ list (Note: Links have been removed),

Organizer:
Nicholas Bigelow, University of Rochester
Co-Organizer:
Leonor Sierra, University of Rochester
Speakers:
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology ‘[emphasis mine]
Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS
Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

The 19th Century nanotechnology referred to in the title of Biglow’s talk is the daggeureotype (a type of 19th century photographic process) which gained a lot of attention in the last few years when a display of irreplaceable pieces started showing signs of visible (25 pieces) and catastrophic (five pieces) deterioration. There’s more about this fascinating story in my Jan. 10, 2013 posting.

Saturday, Feb.15, 2014, Alan Alda will be at the meeting as a plenary speaker,

Alan Alda: Getting Beyond a Blind Date with Science
Plenary Lecture
Saturday, 15 February 2014: 5:00 PM-6:00 PM
Imperial Ballroom (Fairmont Chicago)
Alan Alda is an actor, writer, director, and visiting professor at the Alan Alda Center for Communicating Science at Stony Brook University, where he helps current and future scientists learn to communicate more clearly and vividly with the public. In collaboration with theater arts faculty at Stony Brook, he is pioneering the use of improvisational theater exercises to help scientists connect more directly with people outside their field. Alda is best known for his award-winning work in movies, theater, and television, but he also has a distinguished record in the public communication of science. For 13 years he hosted the PBS series Scientific American Frontiers, which he has called “the best thing I ever did in front of a camera.” After interviewing hundreds of scientists around the world, he became convinced that many researchers have wonderful stories but need to learn how to tell them better. That realization inspired the creation of Stony Brook’s multidisciplinary Alan Alda Center for Communicating Science in 2009.

The last two sessions I’m highlighting are on standard nanotechnology topics. On Sunday, Feb. 16, 2014, there’s

Nanoelectronics for Renewable Energy: How Nanoscale Innovations Address Global Needs
Sunday, 16 February 2014: 1:30 PM-4:30 PM
Regency B (Hyatt Regency Chicago)
Sometimes it’s possible to get a handle on the world’s biggest problems by thinking creatively on a very small scale—and advances in the rapidly maturing field of nanoelectronics prove it. Innovations that hold promise for broader and faster adoption of renewable energy technologies loom large against a backdrop of population growth, rapid industrialization in developing countries, and initiatives to decrease reliance on both fossil fuels and nuclear power. In this symposium, researchers from the U.S. and Europe will review the latest progress in nanoelectronics for renewable energy across a series of interrelated programs. For instance, new manufacturing approaches such as nanoimprinting, nanotransfer, and spray-on fabrication of organic semiconductors not only point the way toward low-cost production of large-scale electronics such as solar panels, they also enable and inspire novel nanoelectronic device designs. These device-level innovations range from ultrasensitive molecular sensors to nanomagnet logic circuits, and they are of particular interest in solar energy applications. Many lines of research appear to be converging on nanostructure-based solar cells that will be vastly more efficient in capturing sunlight (or even heat) and converting it to electrical power. In addition to outlining these promising paths toward higher-efficiency, lower-cost photovoltaics, the symposium will highlight some of the remaining hurdles, including needed advances in fundamental science.
Organizer:
Patrick Regan, Technical University Munich
Co-organizers:
William Gilroy, University of Notre Dame
and Hillary Sanctuary, Swiss Federal Institute of Technology (EPFL)

On Monday, Feb. 17, 2014,  nanotechnology features in the final plenary session,

John A. Rogers: Stretchy Electronics That Dissolve in Your Body
Plenary Lecture
Monday, 17 February 2014: 8:30 AM-9:30 AM
Imperial Ballroom (Fairmont Chicago)
Dr. John Rogers’ research includes fundamental and applied aspects of nano- and molecular scale fabrication. He also studies materials and patterning techniques for unusual electronic and photonic devices, with an emphasis on bio-integrated and bio-inspired systems. He received a Ph.D. in physical chemistry from Massachusetts Institute of Technology in 2005. He has published more than 350 papers and is an inventor on over 80 patents and patent applications, many of which are licensed or in active use by large companies and startups that he co-founded. He previously worked for Bell Laboratories as director of its research program in condensed matter physics. He has received recognition including a MacArthur Fellowship from the John D. and Catherine T. MacArthur Foundation, the Lemelson-MIT Prize, the National Security Science and Engineering Faculty Fellowship from the U.S. Department of Defense, the George Smith Award from IEEE, the Robert Henry Thurston Award from American Society of Mechanical Engineers, the Mid-Career Researcher Award from Materials Research Society, the Leo Hendrick Baekeland Award from the American Chemical Society, and the Daniel Drucker Eminent Faculty Award from the University of Illinois.
Speaker:
John Rogers, Ph. D., University of Illinois, Urbana-Champaign

You can find out more about registration and public events for the AAAS 2014 annual meeting here.

Organizer:
Nicholas Bigelow, University of Rochester
Co-Organizer:
Leonor Sierra, University of Rochester
Speakers:
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology

Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS

Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

Final report on joint OECD/NNI report on assessing nanotechnology’s economic impact

In March 2012, the Organization for Economic Cooperation and Development (OECD) and the US National Nanotechnology Initiative (NNI) held a symposium on assessing the economic impacts of nanotechnology, which was hosted by American Association for the Advancement of Science (AAAS) in Washington, DC.  Lynn Bergeson announced the release of the symposium’s final report in her Sept. 16, 2013 posting on the Nanotechnology Now website.

The title of the final report published by the OECD is Symposium on Assessing the Economic  Impact of Nanotechnology: Synthesis Report. I have excerpted some information including this introductory paragraph from the executive summary of this 81 pp report,

Governments have a fiscal and social responsibility to ensure that limited research and development resources are used wisely and cost-effectively in support of social, economic, and scientific aspirations. As a result of significant public and private investments in nanotechnology during the past decade and an expanding array of commercial applications, the field of nanotechnology has matured to the point of showing significant potential to help societies achieve the shared goal of improving efficiencies and accelerating progress in a range of economic sectors, including medicine, manufacturing, and energy. Countries that wish to promote the continued responsible development of nanotechnology will, however, need quantitative data on the economic impact of nanotechnology to guide further investment and policy decisions. Few widely accepted economic impact assessments have been conducted, however, and there are many questions regarding the best methodologies to be used. (p. 4)

The attendees considered the challenges associated with evaluating the impact of nanotechnology, some of which are common to emerging technologies in general and some or which are specific to nanotechnology (from the report),

The attendees also considered the question of a definition for nanotechnology. While operational definitions are developed at national or regional levels, e.g. for statistical or regulatory purposes, there are relatively few internationally agreed upon definitions or classifications for nanotechnology or its products and processes. Such definitions are essential for developing a methodology for an economic impact assessment and/or to facilitate data collection. Participants mentioned that definitions should be flexible so that they facilitate the development and valuation of the technology; they also noted that definitions might vary in different contexts or sectors.

Additional issues were raised:

 Its multipurpose, enabling nature makes measuring the impact of nanotechnology difficult. It can be fundamental to a product’s key functionality (e.g. battery charge time or capacity) but ancillary to the value chain (E.g. represent a small portion of the final product or process). Nanotechnology is also likely to have a range of incremental impacts on goods and services as well as existing manufacturing techniques. This requires understanding the value added at different stages of the production chain.

 Nanotechnology’s impact is often intermingled with that of many other interventions and technologies so that determining its precise role can be difficult.

 The large and varied amount of data linked to nanotechnology development may lead to difficulties in cleaning and manipulating the data meaningfully.

 Confidential business information and the proprietary nature of products and services may make it difficult to obtain information from industry. Moreover, it is not clear how a nanotechnology company or a company using nanotechnology is defined or defines itself or to what extent companies, universities and associate institutions are involved in exploiting and developing nanotechnology.

 For now, data are mainly collected through surveys. It is important to weigh the benefits against the additional workload that surveys place on administrations, research institutes and industries. Information should be obtained efficiently, focusing on the data of greatest interest for assessing the value of the technology.

 The nanotechnology policy landscape is evolving. It is important to consider non-specific, rather than nanotechnology-specific, funding strategies and policies when assessing economic impacts such as return on investment.

While certain issues may be resolved through improvements and over time, some restrict the ability to conduct valid nanotechnology impact assessments, such as the complex relationship between science, innovation and the economy; the interaction between public and private actors; the role of other factors in technology development and innovation; and the time lag between investments and their returns. (p. 8)

Of course the main issue being addressed was the development of tools/instruments to assess nanotechnology’s economic impact (from the report),

Some steps have been taken towards assessing the impact of nanotechnology. Examples mentioned during the symposium include the U.S. STAR METRICS database, which uses an input/output approach to determine the outputs of federal funding of science and technology, and Brazil’s Lattes system, in which researchers, students and institutions share information about their interests and backgrounds to facilitate information sharing and collaboration. The Lattes system is also intended to aid in the design of science, technology and innovation policies and to help understand the social and economic impacts of previous investments. DEFRA (Department for Environment, Food and Rural Affairs, United Kingdom) values a given nanotechnology product in monetary terms against an incumbent and thus calculates additional value added over current technology.

Other valuation methods mentioned included the “traditional” cost/ benefit analysis (often accompanied by scenario development for immature technologies such as nanotechnology) and life cycle assessment (LCA). LCA addresses the impact of nanotechnology along the entire product value chain. It is important to conduct LCAs as early as possible in product development to define the full value of a product using nanotechnology. Value chain assessments can also help address the challenge of determining the role of nanotechnology in a final product, where economic value is most commonly assessed. (p. 9)

Participants recognised the difficulty of developing a “one size fits all” methodology. The data collected and the indicators and the methodologies chosen need to fit the situation. Precisely defining the objectives of the impact assessment is critical: “What do we want to measure?” (e.g. the impact of a specific nanotechnology investment or the impact of a nano-enabled replacement product on environmental performance). “What outcomes do we want from the analysis?” (e.g. monetary value and GDP growth or qualitative measures of environmental and social benefits).

Input indicators (e.g. R&D investment, infrastructure) are the easiest to collect; they provide information on the development of a technology in a given region, country or globally. Output indicators, such as patents and publications, provide information on the trajectories of a technology and on key areas of innovation. The most useful for policy makers are indicators of impact, but high-quality data, especially quantitative data, are difficult to collect. Indicators of impact provide a basis for assessing direct (market share, growth of companies, new products, wealth creation) and indirect impacts (welfare gains, consumer surplus). The economic and social impact of nanotechnology goes beyond what can be measured with existing statistics and traditional surveys. A pilot survey by the Russian Federation plans to examine nanotechnology issues that are not necessarily covered by traditional statistical surveys, such as technology transfer and linkages between different segments of the national innovation system. The OECD Working Party of National Experts on Science and Technology Indicators is also working on the development of a statistical framework for the measurement of emerging, enabling and general purpose technologies, which includes the notion of impact.
While quantitative measures may be preferable, impact assessments based on qualitative indicators using methods such as technology assessment scenarios and mapping of value chains can also provide valuable information.

I haven’t read the entire report yet but the material after the executive summary bears a similarity to field notes. Generally in reports like this everything is stated in an impersonal third person with the speaker being mentioned only in the header for the section  so the contents have an  authority associated with holy books. While I haven’t seen any quotes, the speakers here are noted as having said such and such, e.g., “Mr. Tassey suggested a “technology-element” model as an alternative means of driving policy and managing the R&D cycle.” (p. 15) It’s not unheard of, just unusual.

For anyone interested in the earlier reports and/or in the Canadian participation in this 2012 symposium, there’s an interview with Vanessa Clive, Industry Canada, Nanotechnology Policy Advisor in my July 23, 2012 posting where she discusses the symposium and offers links to documents used as background material for the symposium.

Study tracks evolution of world’s first 500 bio-nano firms

Elicia Maine, a professor at Simon Fraser University’s Beedie School of Business, is presenting right now (9:45 am – 12:45 pm EST, Feb. 18, 2013) at the AAAS (American Association for the Advancement of Science) 2013 meeting in Boston, Massachusetts in a session titled, Confluence of Streams of Knowledge: Biotechnology and Nanotechnology, about her study on bio-nano firms. Here’s more about her and her work in a Feb. 15, 2013 news release from Simon Fraser University (SFU), Note: I have removed a link,

Elicia Maine, an SFU associate professor of technology management and strategy at the Beedie School of Business, has co-authored a study that puts bio-nano firms under the microscope.

They are a new breed of business at the intersection of biotechnology and nanotechnology.

Maine will unveil a groundbreaking study on bio-nano firms in a seminar she has co-organized (with James Utterback, a Massachusetts Institute of Technology professor) at the world’s largest science research meeting.

Maine’s presentation, followed by a panel discussion, will take place at the annual American Association for the Advancement of Science (AAAS) convention in Boston, Massachusetts on Monday, Feb. 18, 9:45 a.m.-12:45 p.m. (Pacific time) Location: Room 300, Hynes Convention Centre.

The study, the first of its kind, tracks the evolution of the world’s first 500 bio-nano firms from their inception until now. “We are interested in seeing when these firms developed or acquired nanotechnology and biotechnology capabilities, and what they have done with those capabilities in terms of integrating the knowledge into new products and processes,” says Maine.

“We’ve classified the pioneers of this new breed of firms at the confluence of biotechnology and nanotechnology based on their primary role in innovation. They cover the areas of biopharma, drug delivery, diagnostics, biomaterials, medical devices, suppliers and instrumentation, and bioinformatics.”

Unfortunately, this is an unpublished study (I haven’t been able to find any reference to it online) but there is a video of Maine talking about her research on bio-nano firms,

ETA Feb. 21, 2012, There was a second news release from SFU dated Feb. 18, 2012, which provided some additional information and quotes about Maine’s research,

The study’s authors have identified, classified and analysed more than 500 of the world’s first companies in the emerging bio-nano sector. Their data shows these companies are taking hold not just in technology hotbeds such as California’s Silicon Valley and the northeastern United States but also across the country, and in Europe.

“We have watched the ecosystem emerge in terms of the number and type of firms entering,” says Maine.  “This confluence of technology silos in the emerging bio-nano sector is enabling radical innovation, new products and connections that didn’t exist before. Some of the things we’re talking about are targeted drug delivery, tissue engineering, enhanced medical diagnostics and new therapeutics.”

Between 2005 and 2011, the number of bio-nano firms nearly doubled to 507, with more than 100 of them emerging in North America alone.

Unintended consequences of reading science news online

University of Wisconsin-Madison researchers Dominique Brossard and  Dietram Scheufele have written a cautionary piece for the AAAS’s (American Association for the Advancement of Science) magazine, Science, according to a Jan. 3, 2013 news item on ScienceDaily,

A science-inclined audience and wide array of communications tools make the Internet an excellent opportunity for scientists hoping to share their research with the world. But that opportunity is fraught with unintended consequences, according to a pair of University of Wisconsin-Madison life sciences communication professors.

Dominique Brossard and Dietram Scheufele, writing in a Perspectives piece for the journal Science, encourage scientists to join an effort to make sure the public receives full, accurate and unbiased information on science and technology.

“This is an opportunity to promote interest in science — especially basic research, fundamental science — but, on the other hand, we could be missing the boat,” Brossard says. “Even our most well-intended effort could backfire, because we don’t understand the ways these same tools can work against us.”

The Jan. 3, 2012 University of Wisconsin-Madison news release by Chris Barncard (which originated the news item) notes,

Recent research by Brossard and Scheufele has described the way the Internet may be narrowing public discourse, and new work shows that a staple of online news presentation — the comments section — and other ubiquitous means to provide endorsement or feedback can color the opinions of readers of even the most neutral science stories.

Online news sources pare down discussion or limit visibility of some information in several ways, according to Brossard and Scheufele.

Many news sites use the popularity of stories or subjects (measured by the numbers of clicks they receive, or the rate at which users share that content with others, or other metrics) to guide the presentation of material.

The search engine Google offers users suggested search terms as they make requests, offering up “nanotechnology in medicine,” for example, to those who begin typing “nanotechnology” in a search box. Users often avail themselves of the list of suggestions, making certain searches more popular, which in turn makes those search terms even more likely to appear as suggestions.

Brossard and Scheufele have published an earlier study about the ‘narrowing’ effects of search engines such as Google, using the example of the topic ‘nanotechnology’, as per my May 19, 2010 posting. The researchers appear to be building on this earlier work,

The consequences become more daunting for the researchers as Brossard and Scheufele uncover more surprising effects of Web 2.0.

In their newest study, they show that independent of the content of an article about a new technological development, the tone of comments posted by other readers can make a significant difference in the way new readers feel about the article’s subject. The less civil the accompanying comments, the more risk readers attributed to the research described in the news story.

“The day of reading a story and then turning the page to read another is over,” Scheufele says. “Now each story is surrounded by numbers of Facebook likes and tweets and comments that color the way readers interpret even truly unbiased information. This will produce more and more unintended effects on readers, and unless we understand what those are and even capitalize on them, they will just cause more and more problems.”

If even some of the for-profit media world and advocacy organizations are approaching the digital landscape from a marketing perspective, Brossard and Scheufele argue, scientists need to turn to more empirical communications research and engage in active discussions across disciplines of how to most effectively reach large audiences.

“It’s not because there is not decent science writing out there. We know all kinds of excellent writers and sources,” Brossard says. “But can people be certain that those are the sites they will find when they search for information? That is not clear.”

It’s not about preparing for the future. It’s about catching up to the present. And the present, Scheufele says, includes scientific subjects — think fracking, or synthetic biology — that need debate and input from the public.

Here’s a citation and link for the Science article,

Science, New Media, and the Public by Dominique Brossard and Dietram A. Scheufele in Science 4 January 2013: Vol. 339 no. 6115 pp. 40-41 DOI: 10.1126/science.1232329

This article is behind a paywall.