Tag Archives: American Chemical Society 245th meeting

‘Nano fest’ at the 245th meeting of the American Chemical Society

The American Chemical Society’s (ACS) 245th meeting (April 7 – 11, 2013) features a few items about nanotechnology: the funding of it and the toxicological testing of it, in two separate news items which bear a ‘political’ link.

An April 9, 2013 news item on Azonano tells of concerns regarding recent funding cuts resulting from the US budget sequestration,

Speaking at the 245th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society, A. Paul Alivisatos, Ph.D., expressed concern that the cuts come when nanotechnology is poised to deliver on those promises. He told the meeting, which continues through Thursday, that ill-conceived cuts could set back America’s progress in nanotechnology by decades.

“The National Science Foundation announced that they will issue a thousand fewer new grants this year because of sequestration,” said Alivisatos, referring to the across-the-board mandatory federal budget cuts that took effect on March 1. “What it means in practice is that an entire generation of early career scientists, some of our brightest and most promising scientists, will not have the funding to launch their careers and begin research properly, in the pathway that has established the United States as leader in nanotechnology research. It will be a setback, perhaps quite serious, for our international competitiveness in this key field.”

Alivisatos described applications of nanotechnology that can help reduce fossil fuel consumption and the accompanying emissions of carbon dioxide, the main greenhouse gas. He is professor of chemistry and materials science and the Larry and Diane Bock Professor of Nanotechnology at the University of California at Berkeley, director of the Lawrence Berkeley National Laboratory and co-editor of the ACS journal Nano Letters. …

Alivisatos expressed concern, however, that cuts in federal funding will take a heavy toll on the still-emerging field. He explained that the reductions stand to affect scientists at almost every stage of making contributions to society. Young scientists, for instance, will find it more difficult to launch research programs in new and promising fields.[emphases mine]  Established scientists will have to trim research programs, and may not have the money to explore promising new leads.

“We haven’t been able to communicate adequately with the public and policymakers, and explain the impact of what may sound like small and unimportant cuts in funding.” Alivisatos said. “A 5 percent reduction in funding — well, to the public, it seems like nothing. In reality, these cuts will be applied in ways that do maximal damage to our ability to be globally competitive in the future.”

Coincidentally or not,  the ACS had placed an Apr. 8, 2013 news release on EurekAlert highlighting some work in the field of nanotoxicology led by a ‘young’ scientist (I imagine she received her funding prior to sequestration) doing some exciting work,

Earlier efforts to determine the health and environmental effects of the nanoparticles that are finding use in hundreds of consumer products may have produced misleading results by embracing traditional toxicology tests that do not take into account the unique properties of bits of material so small that 100,000 could fit in the period at the end of this sentence.

That was among the observations presented here today at the 245th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, by one of the emerging leaders in nanoscience research. The talk by Christy Haynes, Ph.D., was among almost 12,000 presentations at the gathering, which organizers expect to attract more than 14,000 scientists and others.

Haynes delivered the inaugural Kavli Foundation Emerging Leader in Chemistry Lecture at the meeting, … Sponsored by the Kavli Foundation, the Emerging Leaders Lectures recognize the work of outstanding young chemical scientists. [emphasis mine] …

“Christy Haynes is the perfect scientist to launch this prestigious lecture series,” said Marinda Li Wu, Ph.D., president of the ACS. “Haynes’ research is making an impact in the scientific community in efforts to use nanoparticles and nanotechnology in medicine and other fields. And that research has sparked the popular imagination, as well. Haynes was included in Popular Science‘s ‘Brilliant 10’ list, a group of ‘geniuses shaking up science today.’ [emphasis mine] We are delighted to collaborate with the Kavli Foundation in highlighting the contributions of such individuals.”

Moving on from politics to science, the EurekAlert Apr. 8, 2013 news release offers a standard discussion regarding gold and nanoparticle gold before highlighting the aspect that marks Haynes’ fresh approach to toxicity at the nanoscale,

A 1-ounce nugget of pure gold, for instance, has the same chemical and physical properties as a 2-ounce nugget or a 27-pound gold bar. For nanoparticles, however, size often dictates the physical and chemical properties, and those properties change as the size decreases.

Haynes said that some of the earlier nanotoxicology tests did not fully take those and other factors into account when evaluating the effects of nanoparticles. In some cases, for instance, the bottom line in those tests was whether cells growing in laboratory cultures lived or died after exposure to a nanoparticle.

“While these results can be useful, there are two important limitations,” Haynes explained. “A cell can be alive but unable to function properly, and it would not be apparent in those tests. In addition, the nature of nanoparticles — they’re more highly reactive — can cause ‘false positives’ in these assays.”

Haynes described a new approach used in her team’s work in evaluating the toxicity of nanoparticles. It focuses on monitoring how exposure to nanoparticles affects a cell’s ability to function normally, rather than just its ability to survive the exposure. In addition, they have implemented measures to reduce “false-positive” test results, which overestimate nanoparticle toxicity. One of the team’s safety tests, for instance, determines whether key cells in the immune system can still work normally after exposure to nanoparticles. In another, the scientists determine whether bacteria exposed to nanoparticles can still communicate with each other, engaging in the critical biochemical chatter that enables bacteria to form biofilms, communities essential for them to multiply in ways that lead to infections.

“So far, we have found that nanoparticles made of silver or titanium may be the most problematic, though I would say that neither is as bad as some of the alarmist media speculations, especially when they are stabilized appropriately,” said Haynes. “I think that it will be possible to create safe, stable coatings on nanoparticles that will make them stable and allow them to leave the body appropriately. We need more research, of course, in order to make informed decisions.”

Hopefully, you find this mixture of science and politics as interesting as I do.

ETA Apr. 10, 2013: Dexter Johnson has commented on and provided some contextual information about nanotechnology research funding in the US in response to the Alivisatos talk about sequestration and its possible impact on nanotechnology research in Apr. 9, 2013 posting (Note: A link has been removed),

There is always room for the argument that reassessing and reallocating resources can help make nanotechnology more efficient and productive, something observers have pointed out in NASA taking on less of its own nanotechnology research and outsourcing it to other government organizations. But it’s not always easy to tell which fundamental research projects will turn out to have been the most productive, and worse, the timing of these cuts could be extremely painful as they occur at a critical moment for U.S. nanotechnology.

Dexter’s piece is well worth reading.

Algae factories could produce nanocellulose for biofuels and more

The American Chemical Society (ACS) is holding its 245th meeting April 7 – 11, 2013 and its first International Symposium on Bacterial Nanocellulose simultaneously. I have written about nanocellulose previously but it’s always been concerned with the type derived from plant matter; bacterial nanocellulose is new to me but not the scientific community as the Apr. 8, 2013 news item on Azonano notes,

In the 1800s, French scientist Louis Pasteur first discovered that vinegar-making [and Kombucha tea and nata de coco] bacteria make “a sort of moist skin, swollen, gelatinous and slippery” — a “skin” now known as bacterial nanocellulose. Nanocellulose made by bacteria has advantages, including ease of production and high purity that fostered the kind of scientific excitement reflected in the first international symposium on the topic, Brown [R. Malcolm Brown, Jr., Ph.D.] pointed out.

Before going on to this latest research, here’s a description of cellulose and nanocellulose as per its presence in plant material (from the news item),

Cellulose is the most abundant organic polymer on Earth, a material, like plastics, consisting of molecules linked together into long chains. Cellulose makes up tree trunks and branches, corn stalks and cotton fibers, and it is the main component of paper and cardboard. People eat cellulose in “dietary fiber,” the indigestible material in fruits and vegetables. Cows, horses and termites can digest the cellulose in grass, hay and wood.

Most cellulose consists of wood fibers and cell wall remains. Very few living organisms can actually synthesize and secrete cellulose in its native nanostructure form of microfibrils. At this level, nanometer-scale fibrils are very hydrophilic and look like jelly. A nanometer is one-millionth the thickness of a U.S. dime. Nevertheless, cellulose shares the unique properties of other nanometer-sized materials — properties much different from large quantities of the same material. Nanocellulose-based materials can be stronger than steel and stiffer than Kevlar. Great strength, light weight and other advantages has fostered interest in using it in everything from lightweight armor and ballistic glass to wound dressings and scaffolds for growing replacement organs for transplantation.

A new kind of bacteria actively entered the nanocellulose picture in 2001 (from the news item) allowing Brown to exploit research he had been pursuing since the 1970s (from the news item),

Brown recalled that in 2001, a discovery by David Nobles, Ph.D., a member of the research team at the University of Texas at Austin, refocused their research on nanocellulose, but with a different microbe. Nobles established that several kinds of blue-green algae, which are mainly photosynthetic bacteria much like the vinegar-making bacteria in basic structure; however, these blue-green algae, or cyanobacteria, as they are called, can produce nanocellulose. One of the largest problems with cyanobacterial nanocellulose is that it is not made in abundant amounts in nature. If it could be scaled up, Brown describes this as “one of the most important discoveries in plant biology.”

While I find the science interesting, it’s Brown’s comments about the policy and politics of commercializing nanocellulose-based fuels that intrigue me (from the news item),

In his report at the ACS meeting, Brown described how his team already has genetically engineered the cyanobacteria to produce one form of nanocellulose, the long-chain, or polymer, form of the material. And they are moving ahead with the next step, engineering the cyanobacteria to synthesize a more complete form of nanocellulose, one that is a polymer with a crystalline architecture. He also said that operations are being scaled up, with research moving from laboratory-sized tests to larger outdoor facilities.

Brown expressly pointed out that one of the major barriers to commercializing nanocellulose fuels involves national policy and politics, rather than science. Biofuels, he said, will face a difficult time for decades into the future in competing with the less-expensive natural gas now available with hydraulic fracturing, or “fracking.”  [emphasis mine] In the long run, the United States will need sustainable biofuels, he said, citing the importance of national energy policies that foster parallel development and commercialization of biofuels.