Tag Archives: amphibians

If you want ‘shredded pecs’, train like a burrowing frog

Caption: Forward burrowers use pointed snouts and powerful forelimbs bolstered by strong pectoral muscles to scrabble into the earth. They’re often orb-shaped to improve their ability to hold water. Credit: Rachel Keeffe

It’s always enjoyable to see the scientific community indulge in a little fun and I’m using that as an excuse for including a frog story here.

From an August 31, 2020 Florida Museum of Natural History news release (also on EurekAlert but published on Sept. 1, 2020) by Halle Marchese announces some research into a little known frog,

You might think the buffest frogs would be high jumpers, but if you want shredded pecs, you should train like a burrowing frog. Though famously round, these diggers are the unsung bodybuilders of the frog world. We bring you tips from frog expert Rachel Keeffe, a doctoral student at the University of Florida, and physical therapist Penny Goldberg to help you get the burrowing body of your dreams.

But first, a caveat: According to Keeffe, no workout regimen can help you train your way into a highly specialized frog physique honed by 200 million years of evolution. To better understand burrowing frog anatomy, Keeffe and her adviser David Blackburn, Florida Museum of Natural History curator of herpetology, analyzed CT scans from all 54 frog families to show these frogs boast a robust and quirky skeleton that is more variable than previously thought.

“People think about frogs as being clean and smooth and slimy, or the classic ‘green frog on a lily pad,’ but a lot of them are dirty – they like to scoot around and be in the dirt,” Keeffe said. “Burrowing frogs are really diverse and can do a lot of cool things. And when you look at the skeletons of known burrowers, they’re very different from what you would call a ‘normal frog.'”

Burrowing frogs are found all over the world from deserts to swamps, but their underground lifestyle makes them difficult to study, Keeffe said. Most tunnel hind end-first with their back legs. But a few species are forward burrowers, using pointed snouts and powerful forelimbs bolstered by strong pectoral muscles to scrabble into the earth.

Keeffe’s sample of 89 frog species revealed radical differences in burrowing bone structure, from clavicles the size of eyelashes to other bones that are unusually thick.

“They’re so diverse that it’s challenging to think about even comparing them. It’s almost a black hole of work that we can do with forward burrowers because we tend to focus on the legs,” she said.

Some burrow to seek refuge, whether from arid temperatures or predators, and underground habitats can be hunting grounds or secluded hiding places. Other burrowing frogs can spend months at a time as deep as 3 feet belowground, surviving on a high-protein diet of termites and ants. The takeaway: If you want to compete for resources with the pros, don’t be afraid to put in the work.

Get the burly burrowing body

To train like a burrowing frog, Goldberg, assistant director of ReQuest Physical Therapy in Gainesville, recommended dedicating time to strengthening your upper back.

“In humans, the most important muscle group to focus on if you were to train like one of these frogs would be the scapular stabilizers,” she said. “These include 17 muscles, such as the lats and rotator cuff, with attachments all the way down to the pelvis that allow the upper back to generate power. To burrow like a forward burrower, you need to strengthen this entire region.”

One strengthening move Goldberg recommended is the “Prone W.” Lie facedown with elbows bent and palms on the floor. Squeeze your shoulder blades down and toward your spine as you lift your arms to the ceiling for a couple seconds at a time.

Like any elite athlete, burrowing frogs also maintain an optimal form. They’re often orb-shaped to improve their ability to hold water.

“Personally, if I were a sphere, I think it would be hard for me to dig, but it doesn’t seem to affect these frogs at all,” Keeffe said. “However, frogs with stumpy legs are definitely worse at jumping, and they tend to stagger when they walk.”

For these frogs, time away from the tunnels might be spent swimming instead, Keeffe said. To compete here, Goldberg recommends the breaststroke, adding that her top training tips for getting the upper back and pecs of a forward burrower would include pullups and pushups to develop the shoulder blade area.

“In my world, we would use resistance bands and pushing or pulling motions to train this area,” Goldberg said. “Anything focusing predominantly on building strength in the upper back region.”

If resistance bands are part of your workout routine, try grasping one with both hands and extending your arms while keeping your elbows straight. For best results, Goldberg recommended starting with three sets of 10.

Burrowing frogs might also hold key answers to gaps in scientists’ understanding of amphibian evolution at large. Keeffe’s analysis also found that forward-burrowing behavior evolved independently at least eight times in about one-fifth of frog families, and the trait’s persistence in the frog family tree suggests it’s a beneficial adaptation. Keeffe also found that forward burrowers tended to have a highly contoured humerus, the bone that connects the shoulder to the elbow in humans.

Understanding how bone shape relates to musculature can help scientists identify which frogs, both modern and extinct, are forward burrowers, a helpful tool given their covert behavior.

“Even though it can be frustrating, I like them because they’re secretive,” Keeffe said. “But the whole thing underlying this study is that frogs can do a lot of cool things – they don’t just jump and they’re not just green.”

CT scans were generated from the National Science Foundation-funded oVert project.

Do take a look at the August 31, 2020 Florida Museum of Natural History news release as the researchers have provided pictures of real ‘forward burrowing frogs’ along with more cartoons and other other images that have been embedded in Marchese’s release.

Here’s a link to and a citation for the paper,

Comparative morphology of the humerus in forward-burrowing frogs by Rachel Keeffe, David C Blackburn. Biological Journal of the Linnean Society, blaa092, DOI: https://doi.org/10.1093/biolinnean/blaa092 Published: 28 August 2020

This paper is behind a paywall.

Nanoparticles and the gut health of major living species of animals

A July 27, 2020 news item on Nanowerk announces research into gut health described as seminal (Note: A link has been removed),

An international team of scientists has completed the first ever study into the potential impact of naturally occurring and man-made nanoparticles on the health of all types of the major living species of animals.

Conceived by researchers at the University of Plymouth, as part of the EU [European Union] Nanofase project, the study assessed how the guts of species from honey bees to humans could protect against the bioaccumulation and toxicological effects of engineered nanomaterials (ENMs) found within the environment.

A July 27, 2020 University of Plymouth press release, which originated the news item, provides more detail,

It showed that the digestive systems of many species have evolved to act as a barrier guarding against the absorption of potentially damaging particles.

However, invertebrates such as earthworms also have roving cells within their guts, which can take up ENMs and transfer them to the gut wall.

This represents an additional risk for many invertebrate species where the particles can be absorbed via these roving cells, with consequent effects on internal organs having the potential to cause lasting damage.

Fortunately, this process is not replicated in humans and other vertebrate animals, however there is still the potential for nanomaterials to have a negative impact through the food chain.

The study, published in the July [2020] edition of Environmental Science: Nano, involved scientists from the UK, the Netherlands, Slovenia and Portugal and focused on particles measuring up to 100 nanometres (around 1/10 millionth of a metre).

It combined existing and new research into species including insects and other invertebrates, fish, birds, and mammals, as well as identifying knowledge gaps on reptiles and amphibians. The study provides the first comprehensive overview of how differences in gut structure can affect the impact of ENMs across the animal kingdom.

Richard Handy, Professor of Environmental Toxicology at the University of Plymouth and the study’s senior author, said:

“This is a seminal piece work that combines nearly 100 years of zoology research with our current understanding of nanotechnology.

“The threats posed by engineered nanomaterials are becoming better known, but this study provides the first comprehensive and species-level assessment of how they might pose current and future threats. It should set the foundations for understanding the dietary hazard in the animal kingdom.”

Nanomaterials come in three forms – naturally occurring, incidentally occurring from human activities, and deliberately manufactured – and their use has increased exponentially in the last decade.

They have consistently found new applications in a wide variety of industrial sectors, including electrical appliances, medicines, cleaning products and textiles.

Professor Handy, who has advised organisations including the Organisation for Economic Co-operation and Development and the United States National Nanotechnology Initiative, added:

“Nanoparticles are far too small for the human eye to see but that doesn’t mean they cannot cause harm to living species. The review element of this study has shown they have actually been written about for many decades, but it is only recently that we have begun to understand the various ways they occur and now the extent to which they can be taken up. Our new EU project, NanoHarmony, looks to build on that knowledge and we are currently working with Public Health England and others to expand our method for detecting nanomaterials in tissues for food safety and other public health matters.”

Here’s a link to and a citation for the paper,

The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology by Meike van der Zande, Anita Jemec Kokalj, David J. Spurgeon, Susana Loureiro, Patrícia V. Silva, Zahra Khodaparast, Damjana Drobne, Nathaniel J. Clark, Nico W. van den Brink, Marta Baccaro, Cornelis A. M. van Gestel, Hans Bouwmeester and Richard D. Handy. Environmental Science: Nano, Issue 7 (July 2020) DOI: 10.1039/D0EN00174K First published 27 Apr 2020

This article is open access.

If you’re curious about Nanofase (Nanomaterial FAte and Speciation in the Environment), there’s more here and there’s more about NanoHarmony here.

The sound of frogs (and other amphibians) and climate change

At least once a year I highlight some work about frogs. It’s usually about a new species but this time, it’s all about frog sounds (as well as, sounds from other amphibians).

Caption: The calls of the midwife toad and other amphibians have served to test the sound classifier. Credit: Jaime Bosch (MNCN-CSIC)

In any event, here’s more from an April 30, 2018 Spanish Foundation for Science and Technology (FECYT) press release (also on EurekAlert but with a May 17, 2018 publication date),

The sounds of amphibians are altered by the increase in ambient temperature, a phenomenon that, in addition to interfering with reproductive behaviour, serves as an indicator of global warming. Researchers at the University of Seville have resorted to artificial intelligence to create an automatic classifier of the thousands of frog and toad sounds that can be recorded in a natural environment.

One of the consequences of climate change is its impact on the physiological functions of animals, such as frogs and toads with their calls. Their mating call, which plays a crucial role in the sexual selection and reproduction of these amphibians, is affected by the increase in ambient temperature.

When this exceeds a certain threshold, the physiological processes associated with the sound production are restricted, and some calls are even actually inhibited. In fact, the beginning, duration and intensity of calls from the male to the female are changed, which influences reproductive activity.

Taking into account this phenomenon, the analysis and classification of the sounds produced by certain species of amphibians and other animals have turned out to be a powerful indicator of temperature fluctuations and, therefore, of the existence and evolution of global warming.

To capture the sounds of frogs, networks of audio sensors are placed and connected wirelessly in areas that can reach several hundred square kilometres. The problem is that a huge amount of bio-acoustic information is collected in environments as noisy as a jungle, and this makes it difficult to identify the species and their calls.

To solve this, engineers from the University of Seville have resorted to artificial intelligence. “We’ve segmented the sound into temporary windows or audio frames and have classified them by means of decision trees, an automatic learning technique that is used in computing”, explains Amalia Luque Sendra, co-author of the work.

To perform the classification, the researchers have based it on MPEG-7 parameters and audio descriptors, a standard way of representing audiovisual information. The details are published in Expert Systems with Applications magazine.

This technique has been put to the test with real sounds of amphibians recorded in the middle of nature and provided by the National Museum of Natural Sciences. More specifically, 868 records with 369 mating calls sung by the male and 63 release calls issued by the female natterajck toad (Epidalea calamita), along with 419 mating calls and 17 distress calls of the common midwife toad (Alytesobstetricans).

“In this case we obtained a success rate close to 90% when classifying the sounds,” observes Luque Sendra, who recalls that, in addition to the types of calls, the number of individuals of certain amphibian species that are heard in a geographical region over time can also be used as an indicator of climate change.

“A temperature increase affects the calling patterns,” she says, “but since these in most cases have a sexual calling nature, they also affect the number of individuals. With our method, we still can’t directly determine the exact number of specimens in an area, but it is possible to get a first approximation.”

In addition to the image of the midwife toad, the researchers included this image to illustrate their work,

Caption: This is the architecture of a wireless sensor network. Credit: J. Luque et al./Sensors

Here’s a link to and a citation for the paper,

Non-sequential automatic classification of anuran sounds for the estimation of climate-change indicators by Amalia Luque, Javier Romero-Lemos, Alejandro Carrasco, Julio Barbancho. Expert Systems with Applications Volume 95, 1 April 2018, Pages 248-260 DOI: https://doi.org/10.1016/j.eswa.2017.11.016 Available online 10 November 2017

This paper is open access.

Emergency!!! Lonely heart looking for love: Female. Stocky build. Height of 2 – 3 inches.

(Matias Careaga) [downloaded from https://www.smithsonianmag.com/smart-news/scientists-made-matchcom-profile-bolivias-loneliest-frog-180968140/]

That is a very soulful look. How could any female Sehuencas water frog resist it? Sadly, that’s the problem. They havn’t found any female Sehuencas water frogs yet.

It’s not for want of trying. Back in February 2018 worldwide interest was raised when scientists as the Cochabamba Natural History Museum (Bolivia) started a campaign to find a mate and raise funds for a search. ( I don’t know how I missed this story the first time. For long time readers, this is my frog story for this year.)  From a February 14, 2018 article by Anoop Menon for India.com,

Scientists are scouring for a mate for Romeo, who has been calling forth for mates for the last nine years now. But alas, a mate hasn’t been found in the rivers and streams of the Sehuencas water frog’s natural habitat so far. So scientists have decided to make a Match.com profile for the lovelorn frog, according to the BBC [British Broadcasting Corporation]. The effort hopes to raise awareness of the condition of the Sehuencas water frog and raise money to fund searches for the Sehuencas water frog in areas where they once thrived.

Romeo’s dating profile reads, “I’m a pretty simple guy. I tend to keep to myself and have the best nights just chilling at home, maybe binge-watching the waters around me. I do love food, though, and will throw a pair of pants on and get out of the house if there’s a worm or snail to be eaten!” His preference is for females between two to three inches tall and is okay with drinkers but not smokers. But honestly, at this point, he should be fine with just about anything.

All jokes aside, Romeo’s plight is an important one. The profile links to the campaign donation page that it is part of, with an aim of raising USD 15,000 to search for more Sehuencas water frogs. And Match.com is doing its part by matching all donations made from February 9 to today, Valentine’s Day.

Zoe Schlanger’s February 10, 2018 article for Quartz, in the context of Romeo’s (and the scientists’) quest, offers information about the ‘current state of amphibia’, Note: Links have been removed)

As the Earth faces what some experts call its “sixth mass extinction,” amphibians, like frogs, are among the most imperiled. Around half of amphibian species (which includes toads, salamanders, frogs, and newts) are reported to be in decline. A third are considered to be threatened with extinction.

Last year, 10,000 critically endangered “scrotum frogs” that lived in Lake Titicaca on the border between Bolivia and Peru died en masse. In the US, federal scientists say the overall amphibian population is shrinking in size by 3.8% every year. That trend has continued since the 1960s, due to a mix of climate change, pesticide applications, and diseases like infectious fungi which can quickly decimate populations.

Frogs seem to be especially vulnerable. Roughly 74% of frog species globally are in decline, and 80% of the frog species that live in India are threatened, a researcher recently told the Hindustan Times.

Hande ‘s February 12, 2018 article for CNN adds a few more details about Romeo and about the effort to save him,

Arturo Munoz [Arturo Muñoz Saravia] , founder of the Bolivian Amphibian Initiative and GWC [Global Wildlife Conservaation] associate conservation scientist, said, “When biologists collected Romeo 10 years ago, we knew the Sehuencas water frog, like other amphibians in Bolivia, was in trouble, but we had no idea we wouldn’t be able to find a single other individual in all this time.”

Romeo started to call for a mate about a year after he was brought into captivity and Munoz pointed out that those calls have slowed in the last few years.

“We don’t want him to lose hope, and we continue to remain hopeful that others are out there, so we can establish a conservation breeding program to save this species,” Munoz said.

Update

They raised almost $25,000 in funds to search for a female but there’s been no luck yet. Sehuencas water frogs live for about 15 years and Romeo has lived in the Cochabamba Natural History Museum for the last nine or 10 years. You do the arithmetic.

Apparently, Sehuencas water frogs were once found in both Ecuador and Bolivia. Today, there are only two regions of Bolivia (Cochabamba and Santa Cruz) where they are reputed to live. (There is more about the current search for a mate in a July 26, 2018 news item on phys.org.)The Sehuencas water frog Wikipedia entry has this to say (Note: Links have been removed),

While it is currently listed as vulnerable by the IUCN [International Union for Conservation of Nature], this is based on an assessment that has not been updated since 2004.[1] No individuals have been encountered in the wild since 2008.

You can find out more about Muñoz’s Bolivian Amphibian Initiative here. There don’t seem to be any Romeo updates on the website but they still seem to be gathering donations. Romeo’s dating profile is here.

Plea

One possibility occurred to me (and I imagine others), if there’s someone out there who has a female Sehuencas water frog in their aquarium at home, please consider saving the species. I’m certain a deal can be made.

Finally,. Good luck, Romeo!

Call for art (and possible donation) featuring amphibians for Precious Frogs Art Exhibit and fundraising effort

Thanks to the August 24, 2017 Opus Art Supplies newsletter (received via email), I got notice about this call for art (from the Opus Call for Submissions webpage),

Submission Deadline:

September 6, 2017

Date:  September 29, 2017December 15, 2017 [for Amphibian Art Exhibit at Science World in Vancouver, Canada]

Paint, draw, print, sculpt, design, photograph the province’s [British Columbia] frogs, toads and salamanders, and consider how art can combat threats to amphibian survival including habitat loss, pollution, invasive species, and disease. Because this is a fundraising event, we are hoping to engage artists to donate artwork for sale at the exhibition, with proceeds towards the long-term conservation of our native amphibians. However, you can choose to exhibit only. To submit, please download the call for artists for full details and instructions.

We encourage small pieces (for example: 5×7, 6×4, 8×8, 8×10 inches or other small size you enjoy working in) or small sculptures to ensure accessibility for all artists. We realize that artists are often asked to donate artwork for charity, and we respect and value the fact that artists have been very generous in supporting the causes they believe in. We hope you will consider ours.For more information and questions, contact us: info@preciousfrog.ca

Precious Frog, the organization (the exhibition is Precious Frogs) requesting the art has more detail in its (On the spot webpage) June 12, 2017 initial call for submissions,

Are you an artist? Are you passionate about art and conservation? Are you interested in creatively exploring how to celebrate British Columbia’s amphibians through art?

This is your opportunity to submit a piece of art for a three-month long art exhibition to be launched at Science World in Vancouver on September 29, 2017.

We are very excited to announce that we are partnering with TELUS World of Science to bring you the first art exhibition in Vancouver entirely dedicated to the amphibians of the province. The Precious Frogs Art Exhibition will integrate art and conservation by showcasing a variety of visual and media art pieces combined with scientific and educational information on the challenges faced by amphibians in our province.

Elsewhere in North America, artists have already demonstrated their creativity to raise awareness about the global decline of amphibians. In North Carolina, artist Terry Thirion has initiated the Disappearing Frogs Project, in 2013.

But this is a first in Vancouver, and with the Precious Frogs art exhibition, we hope to inspire artists to be a bridge between scientists and the broader public and to promote awareness and action for the long-term conservation of all of our precious amphibians. Additional film screenings, educational events, and art workshops will be presented at Science World in the fall as part of the art exhibition.

To us, amphibians are intriguing, beautiful, complex, inspiring, unusual, and more. What do you see?

Paint, draw, print, sculpt, design, photograph the province’s  frogs, toads and salamanders, and consider how art can combat threats to amphibian survival including habitat loss, pollution, invasive species, and disease. Submit your most convincing art piece. Your work will support the Oregon Spotted Frog Recovery Team’s efforts to conserve amphibians in British Columbia.

To submit, please download the call for artists for full details and instructions. The submission deadline is September 6, 2017. For more information and questions, contact us: info@preciousfrog.ca

And mark your calendar: the opening reception for the art exhibition will be on Tuesday, October 3 from 6 to 8 pm at Science World.

Frequently Asked Questions

Why are you organizing this event?

Amphibians serve an important role in ecosystems and are particularly sensitive to changes in the environment that ultimately affect us all. This volunteer-run project aims to promote awareness and raise funds for the long-term conservation of our native amphibians.

Why are you asking artists to donate artwork?

Because this is a fundraising event, we are hoping to engage artists to donate artwork for sale at the exhibition, with proceeds towards the long-term conservation of our native amphibians.  We encourage small pieces (for example: 5×7, 6×4, 8×8, 8×10 inches or other small size you enjoy working in) or small sculptures to ensure accessibility for all artists. We realize that artists are often asked to donate artwork for charity, and we respect and value the fact that artists have been very generous in supporting the causes they believe in. We hope you will consider ours.

I don’t want to donate my artwork. Can I still participate?

Yes absolutely! You can choose to have your artwork on display at the exhibition and marked “Not For Sale.” The artwork will be returned to you at the end of the exhibition, and you are then free to sell your piece as you wish. We encourage artists to consider a donation to the Precious Frogs Project on subsequent sales of amphibian-related artwork. The gesture will always be appreciated.

How much will the artwork be sold for?

Artwork will be sold at accessible, standardized prices ($20 – $50) for small works. Larger pieces will be sold at prices recommended by the artist.

Why should I participate?

We feel passionate about the conservation of amphibians, and we hope you will too. This project is part of a series of exhibits such as the Disappearing Frogs Project in the United States. If you participate in our project, you will become part of a larger context. Ultimately, this project is about opening people’s eyes on amphibian extinction, and artists have the capacity to express themselves and help change the views of people on these very important issues. Additionally, the publicity about the event and the public exposure artists will receive during the three-month long exhibition are factors that we hope artists will value, in addition to becoming active contributors to the long-term conservation of amphibians.

How do I find out more information about amphibians at risk in BC?

A good starting point is our Frog guide on our website, which lists all BC’s native amphibians — frogs, toads, and salamanders. If you would like to learn more or have specific questions, please do not hesitate to contact us at: info@preciousfrog.ca

Do you accept volunteers?

Yes! Volunteers are welcome to help us with the different dimensions of this project and the events that we are planning during the three-month exhibition. Please check out our current volunteer position posting and contact us for additional opportunities.

Text: Isabelle Groc

Here’s a sample of what’s on preciousfrog.ca’s call for submission webpage,

Artwork: Lord Byng Secondary School, Grade 10 Honours art class

I wish Precious Frog good luck with its fundraising efforts and greater exposure for any artists who participate.

Saving the frogs (and other amphibians)

Given this blog’s name, I couldn’t pass up this May 1, 2014 news release from Simon Fraser University (located in Vancouver, Canada),

An ecological strategy developed by four researchers, including two from Simon Fraser University, aims to abate the grim future that the combination of two factors could inflict on many amphibians, including frogs and salamanders.

A warming climate and the introduction of non-native fish in the American West’s mountainous areas are combining to threaten the habitat that this ecologically critical group of species needs to thrive.

Previous studies predict the combined effect of climate change and non-native fish could cause amphibian populations to decline and even become locally extinct.

In their newly published study in the journal Frontiers in Ecology and the Environment, researchers examine this challenge and propose several new climate adaptation tools to reduce threats to amphibians.

The researchers say the novel suite of tools could help prioritize the restoration of amphibian habitats in Western North America’s mountainous regions.

Wendy Palen, an SFU ecologist, Maureen Ryan, a postdoctoral fellow at SFU and the University of Washington (UW), Michael Adams, a research ecologist at the U.S. Geological Survey and Regina Rochefort, a science advisor at Washington State’s North Cascades National Park, co-authored the paper.

Many amphibians in the American West’s mountainous areas need predator-free wetlands and lakes during their aquatic life stages. “Amphibians predominantly use mountainous areas’ small, shallow ponds to breed and feed,” explains Ryan, the study’s lead author.

“These kinds of wetlands are at the highest risk of drying up under climate change due to reduced snowpack and longer summer droughts. Non-native fish, such as brook and rainbow trout, were introduced for recreational fishing almost a century ago. They remove amphibians from the biggest and most stable lakes in the environment. Fish eat most amphibians and even at low densities can devour a lake’s whole amphibian population.”

Mindful of an opportunity to help amphibians, the researchers collaborated with UW colleagues to develop new maps and hydrological models of climate impacts specific to mountainous regions.

They are using these tools along with biological survey data to identify regions where native species are most threatened by the combined effects of climate change and fish. They then hope to work with area managers who would implement fish removals.

“Our work suggests that removing fish from strategic sites may restore resilience to landscapes where inaction might lead to tipping points of species loss,” says Palen.

The SFU Earth to Ocean Research Group member has been collaborating with Adams since 1999 to evaluate threats to amphibians in mountainous regions.

“We hope newly developed wetland modeling tools can improve climate adaptation action plans so that intact ecosystems persist in the face of a changing climate,” says Palen.

Hydrologists and remote sensors helped the researchers develop models that project a substantial loss of wetlands in America’s western mountains over the next 40 to 80 years.

They note the combined threat of climate change and fish to amphibian survival also exists in B.C. but records of where fish have been introduced are scarce.

The researchers remind us that 95 per cent of the American West’s lakes are currently stocked with non-native fish, so removing them from a few sites doesn’t threaten recreational fishing opportunities.

Let’s save some frogs