Tag Archives: anatase titanium dioxide

Historic and other buildings get protection from pollution?

This Sept. 15, 2017 news item on Nanowerk announces a new product for protecting buildings from pollution,

The organic pollution decomposing properties of titanium dioxide (TiO2 ) have been known for about half a century. However, practical applications have been few and hard to develop, but now a Greek paint producer claims to have found a solution

A Sept. 11, 2017 Youris (European Research Media Center) press release by Koen Mortelmans which originated the news item expands on the theme,

The photocatalytic properties of anatase, one of the three naturally occurring forms of titanium dioxide, were discovered in Japan in the late 1960s. Under the influence of the UV-radiation in sunlight, it can decompose organic pollutants such as bacteria, fungi and nicotine, and some inorganic materials into carbon dioxide. The catalytic effect is caused by the nanostructure of its crystals.

Applied outdoors, this affordable and widely available material could represent an efficient self-cleaning solution for buildings. This is due to the chemical reaction, which leaves a residue on building façades, a residue then washed away when it rains. Applying it to monuments in urban areas may save our cultural heritage, which is threatened by pollutants.

However, “photocatalytic paints and additives have long been a challenge for the coating industry, because the catalytic action affects the durability of resin binders and oxidizes the paint components,” explains Ioannis Arabatzis, founder and managing director of NanoPhos, based in the Greek town of Lavrio, in one of the countries home to some of the most important monuments of human history. The Greek company is testing a paint called Kirei, inspired by a Japanese word meaning both clean and beautiful.

According to Arabatzis, it’s an innovative product because it combines the self-cleaning action of photocatalytic nanoparticles and the reflective properties of cool wall paints. “When applied on exterior surfaces this paint can reflect more than 94% of the incident InfraRed radiation (IR), saving energy and reducing costs for heating and cooling”, he says. “The reflection values are enhanced by the self-cleaning ability. Compared to conventional paints, they remain unchanged for longer.”

The development of Kirei has been included in the European project BRESAER (BREakthrough Solutions for Adaptable Envelopes in building Refurbishment) which is studying a sustainable and adaptable “envelope system” to renovate buildings. The new paint was tested and subjected to quality controls following ISO standard procedures at the company’s own facilities and in other independent laboratories. “The lab results from testing in artificial, accelerated weathering conditions are reliable,” Arabatzis claims. “There was no sign of discolouration, chalking, cracking or any other paint defect during 2,000 hours of exposure to the simulated environmental conditions. We expect the coating’s service lifetime to be at least ten years.”

Many studies are being conducted to exploit the properties of titanium dioxide. Jan Duyzer, researcher at the Netherlands Organisation for Applied Scientific Research (TNO) in Utrecht, focused on depollution: “There is no doubt about the ability of anatase to decrease the levels of nitrogen oxides in the air. But in real situations, there are many differences in pollution, wind, light, and temperature. We were commissioned by the Dutch government specifically to find a way to take nitrogen oxides out of the air on roads and in traffic tunnels. We used anatase coated panels. Our results were disappointing, so the government decided to discontinue the research. Furthermore, we still don’t know what caused the difference between lab and life. Our best current hypothesis is that the total surface of the coated panels is very small compared to the large volumes of polluted air passing over them,” he tells youris.com.

Experimental deployment of titanium dioxide panels on an acoustic wall along a Dutch highway – Courtesy of Netherlands Organisation for Applied Scientific Research (TNO)

“In laboratory conditions the air is blown over the photocatalytic surface with a certain degree of turbulence. This results in the NOx-particles and the photocatalytic material coming into full contact with one another,” says engineer Anne Beeldens, visiting professor at KU Leuven, Belgium. Her experience with photocatalytic TiO2 is also limited to nitrogen dioxide (NOx) pollution.

In real applications, the air stream at the contact surface becomes laminar. This results in a lower velocity of the air at the surface and a lower depollution rate. Additionally, not all the air will be in contact with the photocatalytic surfaces. To ensure a good working application, the photocatalytic material needs to be positioned so that all the air is in contact with the surface and flows over it in a turbulent manner. This would allow as much of the NOx as possible to be in contact with photocatalytic material. In view of this, a good working application could lead to a reduction of 5 to 10 percent of NOx in the air, which is significant compared to other measures to reduce pollutants.”

The depollution capacity of TiO2 is undisputed, but most applications and tests have only involved specific kinds of substances. More research and measurements are required if we are to benefit more from the precious features of this material.

I think the most recent piece here on protecting buildings, i.e., the historic type, from pollution is an Oct. 21, 2014 posting: Heart of stone.

Burning coal produces harmful titanium dioxide nanoparticles

It turns out that Canada has the fifth largest reserve of coal in the world, according to the Coal in Canada Wikipedia entry (Note: Links have been removed),

Coal reserves in Canada rank fifth largest in the world (following the former Soviet Union, the United States, the People’s Republic of China and Australia) at approximately 10 billion tons, 10% of the world total.[1] This represents more energy than all of the oil and gas in the country combined. The coal industry generates CDN$5 billion annually.[2] Most of Canada’s coal mining occurs in the West of the country.[3] British Columbia operates 10 coal mines, Alberta 9, Saskatchewan 3 and New Brunswick one. Nova Scotia operates several small-scale mines, Westray having closed following the 1992 disaster there.[4]

So, this news from Virginia holds more than the usual interest for me (I’m in British Columbia). From an Aug. 8, 2017 Virginia Tech news release (also on EurekAlert),

Environmental scientists led by the Virginia Tech College of Science have discovered that the burning of coal produces incredibly small particles of a highly unusual form of titanium oxide.

When inhaled, these nanoparticles can enter the lungs and potentially the bloodstream.

The particulates — known as titanium suboxide nanoparticles — are unintentionally produced as coal is burned, creating these tiniest of particles, as small as 100 millionths of a meter [emphasis mine], said the Virginia Tech-led team. When the particles are introduced into the air — unless captured by high-tech particle traps — they can float away from power plant stacks and travel on air currents locally, regionally, and even globally.

As an example of this, these nanoparticles were found on city streets, sidewalks, and in standing water in Shanghai, China.

The findings are published in the latest issue of Nature Communications under team leader Michael F. Hochella Jr., University Distinguished Professor of Geosciences with the College of Science, and Yi Yang, a professor at East China Normal University in Shanghai. Other study participants include Duke University, the University of Kentucky, and Laurentian University in Canada.

“The problem with these nanoparticles is that there is no easy or practical way to prevent their formation during coal burning,” Hochella said, adding that in nations with strong environmental regulations, such as the United States, most of the nanoparticles would be caught by particle traps. Not so in Africa [a continent not a nation], China, or India, where regulations are lax or nonexistent, with coal ash and smoke entering the open air.

“Due to advanced technology used at U.S.-based coal burning power plants, mandated by the Clean Air Act and the Environmental Protection Agency, most of these nanoparticles and other tiny particles are removed before the final emission of the plant’s exhaust gases,” Hochella said. “But in countries where the particles from the coal burning are not nearly so efficiently removed, or removed at all, these titanium suboxide nanoparticles and many other particle types are emitted into the atmosphere, in part resulting in hazy skies that plague many countries, especially in China and India.”

Hochella and his team found these previously unknown nanoparticles not only in coal ash from around the world and in the gaseous waste emissions of coal plants, but on city streets, in soils and storm water ponds, and at wastewater treatment plants.

“I could not believe what I have found at the beginning, because they had been reported so extremely rarely in the natural environment,” said Yang, who once worked as a visiting professor in Virginia Tech’s Department of Geosciences with Hochella. “It took me several months to confirm their occurrence in coal ash samples.”

The newly found titanium suboxide — called Magnéli phases — was once thought rare, found only sparingly on Earth in some meteorites, from a small area of rock formations in western Greenland, and occasionally in moon rocks. The findings by Hochella and his team indicate that these nanoparticles are in fact widespread globally. They are only now being studied for the first time in natural environments using powerful electron microscopes.

Why did the discovery occur now? According to the report, nearly all coal contains traces of the minerals rutile and/or anatase, both “normal,” naturally occurring, and relatively inert titanium oxides, especially in the absence of light. When those minerals are burned in the presence of coal, research found they easily and quickly converted to these unusual titanium suboxide nanoparticles. The nanoparticles then become entrained in the gases that leave the power plant.

When inhaled, the nanoparticles enter deep into the lungs, potentially all the way into the air sacs that move oxygen into our bloodstream during the normal breathing process. While human lung toxicity of these particles is not yet known, a preliminary biotoxicity test by Hochella and Richard Di Giulio, professor of environmental toxicology, and Jessica Brandt, a doctoral candidate, both at Duke University, indicates that the particles do indeed have toxicity potential.

According to the team, further study is clearly needed, especially biotoxicity testing directly relevant to the human lung. Partnering with coal-power plants either in the United States or China would be ideal, said Yang.

More troubling, the study shows that titanium suboxide nanoparticles are biologically active in the dark, making the particles highly suspect. Exact human health effects are yet unknown.

“Future studies will need to very carefully investigate and access the toxicity of titanium suboxide nanoparticles in the human lung, and this could take years, a sobering thought considering its potential danger,” Hochella said.

As the titanium suboxide nanoparticle itself is produced incidentally, Hochella and his team came across the nanoparticle by accident while studying a 2014 coal ash spill in the Dan River, North Carolina. During the study of the downstream movement of toxic metals in the ash in the Dan River, the team discovered and recognized the presence of small amounts of the highly unusual titanium suboxide.

The group later produced the titanium suboxide nanoparticles when burning coal in a lab simulation.

This new potential air pollution health hazard builds on already established findings from the World Health Organization. It estimates that 3.3 million premature deaths occur worldwide per year due to polluted air, Hochella said. In China, 1.6 million premature deaths are estimated annually due to cardiovascular and respiratory injury from air pollution. Most Chinese megacities top 100 severely hazy days each year with particle concentrations two to four times higher than WHO guidelines, Yang said.

Direct health effects on humans is only one factor. Findings of thousands of scientists have determined that the biggest driver of warming of the planet and the resulting climate change is industrial-scale coal burning. The impact of titanium suboxide nanoparticles found in the atmosphere, in addition to greenhouse gases, on animals, water, and plants is not yet known.

They’ve used an unusual unit of measurement, “100 millionths of a meter,” nanoparticles are usually described in nanometers.

Here’s a link to and a citation for the paper,

Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning by Yi Yang, Bo Chen, James Hower, Michael Schindler, Christopher Winkler, Jessica Brandt, Richard Di Giulio, Jianping Ge, Min Liu, Yuhao Fu, Lijun Zhang, Yuru Chen, Shashank Priya, & Michael F. Hochella Jr. Nature Communications 8, Article number: 194 (2017) doi:10.1038/s41467-017-00276-2 Published online: 08 August 2017

This paper is behind a paywall.

This put me in mind of the famous London smog, which one doesn’t hear about much anymore. For anyone not familiar with that phenomenon, here’s more from the Great Smog of London Wikipedia entry (Note: Links have been removed),

The Great Smog of London, or Great Smog of 1952 sometimes called the Big Smoke,[1] was a severe air-pollution event [emphasis mine] that affected the British capital of London in December 1952. A period of cold weather, combined with an anticyclone and windless conditions, collected airborne pollutants – mostly arising from the use of coal [emphasis mine]– to form a thick layer of smog over the city. It lasted from Friday, 5 December to Tuesday, 9 December 1952 and then dispersed quickly when the weather changed.

It caused major disruption by reducing visibility and even penetrating indoor areas, far more severe than previous smog events experienced in the past, called “pea-soupers”. Government medical reports in the following weeks, however, estimated that up until 8 December, 4,000 people had died as a direct result of the smog and 100,000 more were made ill by the smog’s effects on the human respiratory tract. More recent research suggests that the total number of fatalities was considerably greater, about 12,000.[2]

London had suffered since the 1200s from poor air quality,[3] which worsened in the 1600s,[4][5] but the Great Smog is known to be the worst air-pollution event in the history of the United Kingdom,[6] and the most significant in terms of its effect on environmental research, government regulation, and public awareness of the relationship between air quality and health.[2][4] It led to several changes in practices and regulations, including the Clean Air Act 1956. …

June 2016: time for a post on nanosunscreens—risks and perceptions

In the years since this blog began (2006), there’ve been pretty regular postings about nanosunscreens. While there are always concerns about nanoparticles and health, there has been no evidence to support a ban (personal or governmental) on nanosunscreens. A June 2016 report  by Paul FA Wright (full reference information to follow) in an Australian medical journal provides the latest insights on safety and nanosunscreens. Wright first offers a general introduction to risks and nanomaterials (Note: Links have been removed),

In reality, a one-size-fits-all approach to evaluating the potential risks and benefits of nanotechnology for human health is not possible because it is both impractical and would be misguided. There are many types of engineered nanomaterials, and not all are alike or potential hazards. Many factors should be considered when evaluating the potential risks associated with an engineered nanomaterial: the likelihood of being exposed to nanoparticles (ranging in size from 1 to 100 nanometres, about one-thousandth of the width of a human hair) that may be shed by the nanomaterial; whether there are any hotspots of potential exposure to shed nanoparticles over the whole of the nanomaterial’s life cycle; identifying who or what may be exposed; the eventual fate of the shed nanoparticles; and whether there is a likelihood of adverse biological effects arising from these exposure scenarios.1

The intrinsic toxic properties of compounds contained in the nanoparticle are also important, as well as particle size, shape, surface charge and physico-chemical characteristics, as these greatly influence their uptake by cells and the potential for subsequent biological effects. In summary, nanoparticles are more likely to have higher toxicity than bulk material if they are insoluble, penetrate biological membranes, persist in the body, or (where exposure is by inhalation) are long and fibre-like.1 Ideally, nanomaterial development should incorporate a safety-by-design approach, as there is a marketing edge for nano-enabled products with a reduced potential impact on health and the environment.1

Wright also covers some of nanotechnology’s hoped for benefits but it’s the nanosunscreen which is the main focus of this paper (Note: Links have been removed),

Public perception of the potential risks posed by nanotechnology is very different in certain regions. In Asia, where there is a very positive perception of nanotechnology, some products have been marketed as being nano-enabled to justify charging a premium price. This has resulted in at least four Asian economies adopting state-operated, user-financed product testing schemes to verify nano-related marketing claims, such as the original “nanoMark” certification system in Taiwan.4

In contrast, the negative perception of nanotechnology in some other regions may result in questionable marketing decisions; for example, reducing the levels of zinc oxide nanoparticles included as the active ingredient in sunscreens. This is despite their use in sunscreens having been extensively and repeatedly assessed for safety by regulatory authorities around the world, leading to their being widely accepted as safe to use in sunscreens and lip products.5

Wright goes on to describe the situation in Australia (Note: Links have been removed),

Weighing the potential risks and benefits of using sunscreens with UV-filtering nanoparticles is an important issue for public health in Australia, which has the highest rate of skin cancer in the world as the result of excessive UV exposure. Some consumers are concerned about using these nano-sunscreens,6 despite their many advantages over conventional organic chemical UV filters, which can cause skin irritation and allergies, need to be re-applied more frequently, and are absorbed by the skin to a much greater extent (including some with potentially endocrine-disrupting activity). Zinc oxide nanoparticles are highly suitable for use in sunscreens as a physical broad spectrum UV filter because of their UV stability, non-irritating nature, hypo-allergenicity and visible transparency, while also having a greater UV-attenuating capacity than bulk material (particles larger than 100 nm in diameter) on a per weight basis.7

Concerns about nano-sunscreens began in 2008 with a report that nanoparticles in some could bleach the painted surfaces of coated steel.8 This is a completely different exposure situation to the actual use of nano-sunscreen by people; here they are formulated to remain on the skin’s surface, which is constantly shedding its outer layer of dead cells (the stratum corneum). Many studies have shown that metal oxide nanoparticles do not readily penetrate the stratum corneum of human skin, including a hallmark Australian investigation by Gulson and co-workers of sunscreens containing only a less abundant stable isotope of zinc that allowed precise tracking of the fate of sunscreen zinc.9 The researchers found that there was little difference between nanoparticle and bulk zinc oxide sunscreens in the amount of zinc absorbed into the body after repeated skin application during beach trials. The amount absorbed was also extremely small when compared with the normal levels of zinc required as an essential mineral for human nutrition, and the rate of skin absorption was much lower than that of the more commonly used chemical UV filters.9 Animal studies generally find much higher skin absorption of zinc from dermal application of zinc oxide sunscreens than do human studies, including the meticulous studies in hairless mice conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) using both nanoparticle and bulk zinc oxide sunscreens that contained the less abundant stable zinc isotope.10 These researchers reported that the zinc absorbed from sunscreen was distributed throughout several major organs, but it did not alter their total zinc concentrations, and that overall zinc homeostasis was maintained.10

He then discusses titanium dioxide nanoparticles (also used in nanosunscreens, Note: Links have been removed),

The other metal oxide UV filter is titanium dioxide. Two distinct crystalline forms have been used: the photo-active anatase form and the much less photo-active rutile form,7 which is preferable for sunscreen formulations. While these insoluble nanoparticles may penetrate deeper into the stratum corneum than zinc oxide, they are also widely accepted as being safe to use in non-sprayable sunscreens.11

Investigation of their direct effects on human skin and immune cells have shown that sunscreen nanoparticles of zinc oxide and rutile titanium dioxide are as well tolerated as zinc ions and conventional organic chemical UV filters in human cell test systems.12 Synchrotron X-ray fluorescence imaging has also shown that human immune cells break down zinc oxide nanoparticles similar to those in nano-sunscreens, indicating that immune cells can handle such particles.13 Cytotoxicity occurred only at very high concentrations of zinc oxide nanoparticles, after cellular uptake and intracellular dissolution,14 and further modification of the nanoparticle surface can be used to reduce both uptake by cells and consequent cytotoxicity.15

The ongoing debate about the safety of nanoparticles in sunscreens raised concerns that they may potentially increase free radical levels in human skin during co-exposure to UV light.6 On the contrary, we have seen that zinc oxide and rutile titanium dioxide nanoparticles directly reduce the quantity of damaging free radicals in human immune cells in vitro when they are co-exposed to the more penetrating UV-A wavelengths of sunlight.16 We also identified zinc-containing nanoparticles that form immediately when dissolved zinc ions are added to cell culture media and pure serum, which suggests that they may even play a role in natural zinc transport.17

Here’s a link to and a citation for Wright’s paper,

Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens by Paul FA Wright. Med J Aust 2016; 204 (10): 369-370. doi:10.5694/mja15.01128 Published June 6, 2016

This paper appears to be open access.

The situation regarding perceptions of nanosunscreens in Australia was rather unfortunate as I noted in my Feb. 9, 2012 posting about a then recent government study which showed that some Australians were avoiding all sunscreens due to fears about nanoparticles. Since then Friends of the Earth seems to have moderated its stance on nanosunscreens but there is a July 20, 2010 posting (includes links to a back-and-forth exchange between Dr. Andrew Maynard and Friends of the Earth representatives) which provides insight into the ‘debate’ prior to the 2012 ‘debacle’. For a briefer overview of the situation you could check out my Oct. 4, 2012 posting.

Characterizing anatase titanium dixoide at the nanoscale

An international collaboration of researchers combined atomic force microscopy (AFM) and scanning tunneling microscopy (STM) to characterize anatase titanium dixoxide. From a Sept. 14, 2015 news item on Azonano,

A [Japan National Institute for Materials Science] NIMS research team successfully identified the atoms and common defects existing at the most stable surface of the anatase form of titanium dioxide by characterizing this material at the atomic scale with scanning probe microscopy. This work was published under open access policy in the online version of Nature Communications on June 29, 2015.

A June 29, 2015 NIMS press release, which originated the news item, includes the paper’s abstract in numbered point form,

  1. The research team consisting of Oscar Custance and Tomoko Shimizu, group leader and senior scientist, respectively, at the Atomic Force Probe Group, NIMS, Daisuke Fujita and Keisuke Sagisaka, group leader and senior researcher, respectively, at the Surface Characterization Group, NIMS, and scientists at Charles University in the Czech Republic, Autonomous University of Madrid in Spain, and other organizations combined simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) measurements with first-principles calculations for the unambiguous identification of the atomic species at the most stable surface of the anatase form of titanium dioxide (hereinafter referred to as anatase) and its most common defects.
  2. In recent years, anatase has attracted considerable attention, because it has become a pivotal material in devices for photo-catalysis and for the conversion of solar energy to electricity. It is extremely challenging to grow large single crystals of anatase, and most of the applications of this material are in the form of nano crystals. To enhance the catalytic reactivity of anatase and the efficiency of devices for solar energy conversion based on anatase, it is critical to gain in-depth understanding and control of the reactions taking place at the surface of this material down to the atomic level. Only a few research groups worldwide possess the technology to create proper test samples and to make in-situ atomic-level observations of anatase surfaces.
  3. In this study, the research team used samples obtained from anatase natural single crystals extracted from naturally occurring anatase rocks. The team characterized the (101) surface of anatase at atomic level by means of simultaneous AFM and STM. Using single water molecules as atomic markers, the team successfully identified the atomic species of this surface; result that was additionally confirmed by the comparison of simultaneous AFM and STM measurements with the outcomes of first-principles calculations.
  4. In regular STM, in which an atomically sharp probe is scanned over the surface by keeping constant an electrical current flowing between them, it is difficult to stably image anatase surfaces as this material presents poor electrical conductivity over some of the atomic positions of the surface. However, simultaneous operation of AFM and STM allowed imaging the surface with atomic resolution even within the materials band gap (a region where the flow of current between the probe and the surface is, in principle, prohibited). Here, the detection of inter-atomic forces between the last atom of the atomically sharp probe and the atoms of the surface by AFM was of crucial importance. By regulating the probe-surface distance using AFM, it was possible to image the surface at atomic-scale while collecting STM data over both conductive and not conductive areas of the surface. By comparing simultaneous AFM and STM measurements with theoretical simulations, the team was not only able to discern which atomic species were contributing to the AFM and the STM images but also to identify the most common defects found at the surface.
  5. In the future, based on the information gained from this study, the NIMS research team will conduct research on molecules of technologically relevance that adsorb on anatase and characterize these hybrid systems by using simultaneous AFM and STM. Their ultimate goal is to formulate novel approaches for the development of photo-catalysts and solar cell materials and devices.

Here’s a link to and a citation for the paper,

Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy by Oleksandr Stetsovych, Milica Todorović, Tomoko K. Shimizu, César Moreno, James William Ryan, Carmen Pérez León, Keisuke Sagisaka, Emilio Palomares, Vladimír Matolín, Daisuke Fujita, Ruben Perez, & Oscar Custance. Nature Communications 6, Article number: 7265 doi:10.1038/ncomms8265 Published 29 June 2015

This is an open access paper.

Anatase and rutile titanium dioxide and nanosunscreens

The American Chemical Society (ACS) features some research into nanoscreens and the anatase form of titanium dioxide in a Sept. 25, 2013 news release,,

Using a particular type of titanium dioxide — a common ingredient in cosmetics, food products, toothpaste and sunscreen — could reduce the potential health risks associated with the widely used compound. The report on the substance, produced by the millions of tons every year for the global market, appears in the ACS journal Chemical Research in Toxicology.
Francesco Turci and colleagues explain that titanium dioxide (TiO2) is generally considered a safe ingredient in commercially available skin products because it doesn’t penetrate healthy skin. But there’s a catch. Research has shown that TiO2 can cause potentially toxic effects when exposed to ultraviolet light, which is in the sun’s rays and is the same kind of light that the compound is supposed to offer protection against. To design a safer TiO2 for human use, the researchers set out to test different forms of the compound, each with its own architecture.

They tested titanium dioxide powders on pig skin (which often substitutes for human skin in these kinds of tests) with indoor lighting, which has very little ultraviolet light in it. They discovered that one of the two most commonly used crystalline forms of TiO2, called rutile, easily washes off and has little effect on skin. Anatase, the other commonly used form, however, was difficult to wash off and damaged the outermost layer of skin — even in low ultraviolet light. It appears to do so via “free radicals,” which are associated with skin aging. “The present findings strongly encourage the use of the less reactive, negatively charged rutile to produce safer TiO2-based cosmetic and pharmaceutical products,” the researchers conclude.

It should be noted that the researchers used pig skin, i.e., the skin was not on a pig and, therefore, not part of a living organism with its various biological systems coming into play. As well, the testing was done indoors not under direct sunlight which is the condition under which most of us use sunscreen. This research points to problems  with using anatase nanoscale titanium dioxide in sunscreens but it doesn’t provide unequivocal proof.

The Danish Environmental Protection Agency report (this Oct. 3, 2013 posting of mine) on the state of the art of research into nanomateial dermal absorption does refer to research in this area, although it does not include Turci’s work (Note: The numbers n the excerpted text are reference numbers for the bibliography)),

When looking at bulk composition and the level of dermal penetration noted in studies using a specific material type, there appears to be very little pattern between bulk composition and penetration depth. Taking for example TiO2 as one of the most widely studied nanoparticles, we see reports of penetration no further than the SC [subcutaneous skin layer] 78, 86, 91 but also several studies suggesting deeper penetration (basal cell layer) and even penetration into the dermis 63, 84 although this is often reported as being a very small fraction/infrequent. Another compositional issue in relation to nanoparticles and in particular TiO2 is the crystalline structure. TiO2 is often used in either its anatase or rutile form or as mixture of both. Within the literature, there are studies using both the anatase form 86, 94, the rutile form 91, 114 or a mixture 84, 114 although we were unable to find any studies which appear to systematically evaluate the role of crystal form in TiO2 absorption into the skin. [emphasis mine] (p. 44 of this report: Dermal Absorption of Nanomaterials Part of the ”Better control of nano” initiative 2012 – 2015 Environmental Project No. 1504, 2013).

For those who would like to read Turci’s research for themselves,

Crystalline Phase Modulates the Potency of Nanometric TiO2 to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light by Francesco Turci, Elena Peira, Ingrid Corazzari, Ivana Fenoglio, Michele Trotta, and Bice Fubini. Chem. Res. Toxicol., Article ASAP DOI: 10.1021/tx400285j Publication Date (Web): September 12, 2013
Copyright © 2013 American Chemical Society

This research is behind a paywall.