Tag Archives: Andrew Maynard

Breathing nanoparticles into your brain

Thanks to Dexter Johnson and his Sept. 8, 2016 posting (on the Nanoclast blog on the IEEE [Institute for Electrical and Electronics Engineers]) for bringing this news about nanoparticles in the brain to my attention (Note: Links have been removed),

An international team of researchers, led by Barbara Maher, a professor at Lancaster University, in England, has found evidence that suggests that the nanoparticles that were first detected in the human brain over 20 years ago may have an external rather an internal source.

These magnetite nanoparticles are an airborne particulate that are abundant in urban environments and formed by combustion or friction-derived heating. In other words, they have been part of the pollution in the air of our cities since the dawn of the Industrial Revolution.

However, according to Andrew Maynard, a professor at Arizona State University, and a noted expert on the risks associated with nanomaterials,  the research indicates that this finding extends beyond magnetite to any airborne nanoscale particles—including those deliberately manufactured.

“The findings further support the possibility of these particles entering the brain via the olfactory nerve if inhaled.  In this respect, they are certainly relevant to our understanding of the possible risks presented by engineered nanomaterials—especially those that are iron-based and have magnetic properties,” said Maynard in an e-mail interview with IEEE Spectrum. “However, ambient exposures to airborne nanoparticles will typically be much higher than those associated with engineered nanoparticles, simply because engineered nanoparticles will usually be manufactured and handled under conditions designed to avoid release and exposure.”

A Sept. 5, 2016 University of Lancaster press release made the research announcement,

Researchers at Lancaster University found abundant magnetite nanoparticles in the brain tissue from 37 individuals aged three to 92-years-old who lived in Mexico City and Manchester. This strongly magnetic mineral is toxic and has been implicated in the production of reactive oxygen species (free radicals) in the human brain, which are associated with neurodegenerative diseases including Alzheimer’s disease.

Professor Barbara Maher, from Lancaster Environment Centre, and colleagues (from Oxford, Glasgow, Manchester and Mexico City) used spectroscopic analysis to identify the particles as magnetite. Unlike angular magnetite particles that are believed to form naturally within the brain, most of the observed particles were spherical, with diameters up to 150 nm, some with fused surfaces, all characteristic of high-temperature formation – such as from vehicle (particularly diesel) engines or open fires.

The spherical particles are often accompanied by nanoparticles containing other metals, such as platinum, nickel, and cobalt.

Professor Maher said: “The particles we found are strikingly similar to the magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads, and which are formed by combustion or frictional heating from vehicle engines or brakes.”

Other sources of magnetite nanoparticles include open fires and poorly sealed stoves within homes. Particles smaller than 200 nm are small enough to enter the brain directly through the olfactory nerve after breathing air pollution through the nose.

“Our results indicate that magnetite nanoparticles in the atmosphere can enter the human brain, where they might pose a risk to human health, including conditions such as Alzheimer’s disease,” added Professor Maher.

Leading Alzheimer’s researcher Professor David Allsop, of Lancaster University’s Faculty of Health and Medicine, said: “This finding opens up a whole new avenue for research into a possible environmental risk factor for a range of different brain diseases.”

Damian Carrington’s Sept. 5, 2016 article for the Guardian provides a few more details,

“They [the troubling magnetite particles] are abundant,” she [Maher] said. “For every one of [the crystal shaped particles] we saw about 100 of the pollution particles. The thing about magnetite is it is everywhere.” An analysis of roadside air in Lancaster found 200m magnetite particles per cubic metre.

Other scientists told the Guardian the new work provided strong evidence that most of the magnetite in the brain samples come from air pollution but that the link to Alzheimer’s disease remained speculative.

For anyone who might be concerned about health risks, there’s this from Andrew Maynard’s comments in Dexter Johnson’s Sept. 8, 2016 posting,

“In most workplaces, exposure to intentionally made nanoparticles is likely be small compared to ambient nanoparticles, and so it’s reasonable to assume—at least without further data—that this isn’t a priority concern for engineered nanomaterial production,” said Maynard.

While deliberate nanoscale manufacturing may not carry much risk, Maynard does believe that the research raises serious questions about other manufacturing processes where exposure to high concentrations of airborne nanoscale iron particles is common—such as welding, gouging, or working with molten ore and steel.

It seems everyone is agreed that the findings are concerning but I think it might be good to remember that the percentage of people who develop Alzheimer’s Disease is much smaller than the population of people who have crystals in their brains. In other words, these crystals might (they don’t know) be a factor and likely there would have to be one or more factors to create the condition for developing Alzheimer’s.

Here’s a link to and a citation for the paper,

Magnetite pollution nanoparticles in the human brain by Barbara A. Maher, Imad A. M. Ahmed, Vassil Karloukovski, Donald A. MacLaren, Penelope G. Fouldsd, David Allsop, David M. A. Mann, Ricardo Torres-Jardón, and Lilian Calderon-Garciduenas. PNAS [Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1605941113

This paper is behind a paywall but Dexter’s posting offers more detail for those who are still curious.

June 2016: time for a post on nanosunscreens—risks and perceptions

In the years since this blog began (2006), there’ve been pretty regular postings about nanosunscreens. While there are always concerns about nanoparticles and health, there has been no evidence to support a ban (personal or governmental) on nanosunscreens. A June 2016 report  by Paul FA Wright (full reference information to follow) in an Australian medical journal provides the latest insights on safety and nanosunscreens. Wright first offers a general introduction to risks and nanomaterials (Note: Links have been removed),

In reality, a one-size-fits-all approach to evaluating the potential risks and benefits of nanotechnology for human health is not possible because it is both impractical and would be misguided. There are many types of engineered nanomaterials, and not all are alike or potential hazards. Many factors should be considered when evaluating the potential risks associated with an engineered nanomaterial: the likelihood of being exposed to nanoparticles (ranging in size from 1 to 100 nanometres, about one-thousandth of the width of a human hair) that may be shed by the nanomaterial; whether there are any hotspots of potential exposure to shed nanoparticles over the whole of the nanomaterial’s life cycle; identifying who or what may be exposed; the eventual fate of the shed nanoparticles; and whether there is a likelihood of adverse biological effects arising from these exposure scenarios.1

The intrinsic toxic properties of compounds contained in the nanoparticle are also important, as well as particle size, shape, surface charge and physico-chemical characteristics, as these greatly influence their uptake by cells and the potential for subsequent biological effects. In summary, nanoparticles are more likely to have higher toxicity than bulk material if they are insoluble, penetrate biological membranes, persist in the body, or (where exposure is by inhalation) are long and fibre-like.1 Ideally, nanomaterial development should incorporate a safety-by-design approach, as there is a marketing edge for nano-enabled products with a reduced potential impact on health and the environment.1

Wright also covers some of nanotechnology’s hoped for benefits but it’s the nanosunscreen which is the main focus of this paper (Note: Links have been removed),

Public perception of the potential risks posed by nanotechnology is very different in certain regions. In Asia, where there is a very positive perception of nanotechnology, some products have been marketed as being nano-enabled to justify charging a premium price. This has resulted in at least four Asian economies adopting state-operated, user-financed product testing schemes to verify nano-related marketing claims, such as the original “nanoMark” certification system in Taiwan.4

In contrast, the negative perception of nanotechnology in some other regions may result in questionable marketing decisions; for example, reducing the levels of zinc oxide nanoparticles included as the active ingredient in sunscreens. This is despite their use in sunscreens having been extensively and repeatedly assessed for safety by regulatory authorities around the world, leading to their being widely accepted as safe to use in sunscreens and lip products.5

Wright goes on to describe the situation in Australia (Note: Links have been removed),

Weighing the potential risks and benefits of using sunscreens with UV-filtering nanoparticles is an important issue for public health in Australia, which has the highest rate of skin cancer in the world as the result of excessive UV exposure. Some consumers are concerned about using these nano-sunscreens,6 despite their many advantages over conventional organic chemical UV filters, which can cause skin irritation and allergies, need to be re-applied more frequently, and are absorbed by the skin to a much greater extent (including some with potentially endocrine-disrupting activity). Zinc oxide nanoparticles are highly suitable for use in sunscreens as a physical broad spectrum UV filter because of their UV stability, non-irritating nature, hypo-allergenicity and visible transparency, while also having a greater UV-attenuating capacity than bulk material (particles larger than 100 nm in diameter) on a per weight basis.7

Concerns about nano-sunscreens began in 2008 with a report that nanoparticles in some could bleach the painted surfaces of coated steel.8 This is a completely different exposure situation to the actual use of nano-sunscreen by people; here they are formulated to remain on the skin’s surface, which is constantly shedding its outer layer of dead cells (the stratum corneum). Many studies have shown that metal oxide nanoparticles do not readily penetrate the stratum corneum of human skin, including a hallmark Australian investigation by Gulson and co-workers of sunscreens containing only a less abundant stable isotope of zinc that allowed precise tracking of the fate of sunscreen zinc.9 The researchers found that there was little difference between nanoparticle and bulk zinc oxide sunscreens in the amount of zinc absorbed into the body after repeated skin application during beach trials. The amount absorbed was also extremely small when compared with the normal levels of zinc required as an essential mineral for human nutrition, and the rate of skin absorption was much lower than that of the more commonly used chemical UV filters.9 Animal studies generally find much higher skin absorption of zinc from dermal application of zinc oxide sunscreens than do human studies, including the meticulous studies in hairless mice conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) using both nanoparticle and bulk zinc oxide sunscreens that contained the less abundant stable zinc isotope.10 These researchers reported that the zinc absorbed from sunscreen was distributed throughout several major organs, but it did not alter their total zinc concentrations, and that overall zinc homeostasis was maintained.10

He then discusses titanium dioxide nanoparticles (also used in nanosunscreens, Note: Links have been removed),

The other metal oxide UV filter is titanium dioxide. Two distinct crystalline forms have been used: the photo-active anatase form and the much less photo-active rutile form,7 which is preferable for sunscreen formulations. While these insoluble nanoparticles may penetrate deeper into the stratum corneum than zinc oxide, they are also widely accepted as being safe to use in non-sprayable sunscreens.11

Investigation of their direct effects on human skin and immune cells have shown that sunscreen nanoparticles of zinc oxide and rutile titanium dioxide are as well tolerated as zinc ions and conventional organic chemical UV filters in human cell test systems.12 Synchrotron X-ray fluorescence imaging has also shown that human immune cells break down zinc oxide nanoparticles similar to those in nano-sunscreens, indicating that immune cells can handle such particles.13 Cytotoxicity occurred only at very high concentrations of zinc oxide nanoparticles, after cellular uptake and intracellular dissolution,14 and further modification of the nanoparticle surface can be used to reduce both uptake by cells and consequent cytotoxicity.15

The ongoing debate about the safety of nanoparticles in sunscreens raised concerns that they may potentially increase free radical levels in human skin during co-exposure to UV light.6 On the contrary, we have seen that zinc oxide and rutile titanium dioxide nanoparticles directly reduce the quantity of damaging free radicals in human immune cells in vitro when they are co-exposed to the more penetrating UV-A wavelengths of sunlight.16 We also identified zinc-containing nanoparticles that form immediately when dissolved zinc ions are added to cell culture media and pure serum, which suggests that they may even play a role in natural zinc transport.17

Here’s a link to and a citation for Wright’s paper,

Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens by Paul FA Wright. Med J Aust 2016; 204 (10): 369-370. doi:10.5694/mja15.01128 Published June 6, 2016

This paper appears to be open access.

The situation regarding perceptions of nanosunscreens in Australia was rather unfortunate as I noted in my Feb. 9, 2012 posting about a then recent government study which showed that some Australians were avoiding all sunscreens due to fears about nanoparticles. Since then Friends of the Earth seems to have moderated its stance on nanosunscreens but there is a July 20, 2010 posting (includes links to a back-and-forth exchange between Dr. Andrew Maynard and Friends of the Earth representatives) which provides insight into the ‘debate’ prior to the 2012 ‘debacle’. For a briefer overview of the situation you could check out my Oct. 4, 2012 posting.

Nanoparticles in baby formula

Needle-like particles of hydroxyapatite found in infant formula by ASU researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Needle-like particles of hydroxyapatite found in infant formula by ASU [Arizona State University] researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Nanowerk is featuring an essay about hydroxyapatite nanoparticles in baby formula written by Dr. Andrew Maynard in a May 17, 2016 news item (Note: A link has been removed),

There’s a lot of stuff you’d expect to find in baby formula: proteins, carbs, vitamins, essential minerals. But parents probably wouldn’t anticipate finding extremely small, needle-like particles. Yet this is exactly what a team of scientists here at Arizona State University [ASU] recently discovered.

The research, commissioned and published by Friends of the Earth (FoE) – an environmental advocacy group – analyzed six commonly available off-the-shelf baby formulas (liquid and powder) and found nanometer-scale needle-like particles in three of them. The particles were made of hydroxyapatite – a poorly soluble calcium-rich mineral. Manufacturers use it to regulate acidity in some foods, and it’s also available as a dietary supplement.

Andrew’s May 17, 2016 essay first appeared on The Conversation website,

Looking at these particles at super-high magnification, it’s hard not to feel a little anxious about feeding them to a baby. They appear sharp and dangerous – not the sort of thing that has any place around infants. …

… questions like “should infants be ingesting them?” make a lot of sense. However, as is so often the case, the answers are not quite so straightforward.

Andrew begins by explaining about calcium and hydroxyapatite (from The Conversation),

Calcium is an essential part of a growing infant’s diet, and is a legally required component in formula. But not necessarily in the form of hydroxyapatite nanoparticles.

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system.

He then discusses size and shape, which are important at the nanoscale,

Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.

These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.

Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Currently, hydroxyapatite is considered safe at the macroscale by the US Food and Drug Administration (FDA). However, the agency has indicated that nanoscale versions of safe materials such as hydroxyapatite may not be safe food additives. From Andrew’s May 17, 2016 essay,

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system. Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Putting particle size to one side for a moment, hydroxyapatite is classified by the US Food and Drug Administration (FDA) as “Generally Regarded As Safe.” That means it considers the material safe for use in food products – at least in a non-nano form. However, the agency has raised concerns that nanoscale versions of food ingredients may not be as safe as their larger counterparts.Some manufacturers may be interested in the potential benefits of “nanosizing” – such as increasing the uptake of vitamins and minerals, or altering the physical, textural and sensory properties of foods. But because decreasing particle size may also affect product safety, the FDA indicates that intentionally nanosizing already regulated food ingredients could require regulatory reevaluation.In other words, even though non-nanoscale hydroxyapatite is “Generally Regarded As Safe,” according to the FDA, the safety of any nanoscale form of the substance would need to be reevaluated before being added to food products.Despite this size-safety relationship, the FDA confirmed to me that the agency is unaware of any food substance intentionally engineered at the nanoscale that has enough generally available safety data to determine it should be “Generally Regarded As Safe.”Casting further uncertainty on the use of nanoscale hydroxyapatite in food, a 2015 report from the European Scientific Committee on Consumer Safety (SCCS) suggests there may be some cause for concern when it comes to this particular nanomaterial.Prompted by the use of nanoscale hydroxyapatite in dental products to strengthen teeth (which they consider “cosmetic products”), the SCCS reviewed published research on the material’s potential to cause harm. Their conclusion?

The available information indicates that nano-hydroxyapatite in needle-shaped form is of concern in relation to potential toxicity. Therefore, needle-shaped nano-hydroxyapatite should not be used in cosmetic products.

This recommendation was based on a handful of studies, none of which involved exposing people to the substance. Researchers injected hydroxyapatite needles directly into the bloodstream of rats. Others exposed cells outside the body to the material and observed the effects. In each case, there were tantalizing hints that the small particles interfered in some way with normal biological functions. But the results were insufficient to indicate whether the effects were meaningful in people.

As Andrew also notes in his essay, none of the studies examined by the SCCS OEuropean Scientific Committee on Consumer Safety) looked at what happens to nano-hydroxyapatite once it enters your gut and that is what the researchers at Arizona State University were considering (from the May 17, 2016 essay),

The good news is that, according to preliminary studies from ASU researchers, hydroxyapatite needles don’t last long in the digestive system.

This research is still being reviewed for publication. But early indications are that as soon as the needle-like nanoparticles hit the highly acidic fluid in the stomach, they begin to dissolve. So fast in fact, that by the time they leave the stomach – an exceedingly hostile environment – they are no longer the nanoparticles they started out as.

These findings make sense since we know hydroxyapatite dissolves in acids, and small particles typically dissolve faster than larger ones. So maybe nanoscale hydroxyapatite needles in food are safer than they sound.

This doesn’t mean that the nano-needles are completely off the hook, as some of them may get past the stomach intact and reach more vulnerable parts of the gut. But the findings do suggest these ultra-small needle-like particles could be an effective source of dietary calcium – possibly more so than larger or less needle-like particles that may not dissolve as quickly.

Intriguingly, recent research has indicated that calcium phosphate nanoparticles form naturally in our stomachs and go on to be an important part of our immune system. It’s possible that rapidly dissolving hydroxyapatite nano-needles are actually a boon, providing raw material for these natural and essential nanoparticles.

While it’s comforting to know that preliminary research suggests that the hydroxyapatite nanoparticles are likely safe for use in food products, Andrew points out that more needs to be done to insure safety (from the May 17, 2016 essay),

And yet, even if these needle-like hydroxyapatite nanoparticles in infant formula are ultimately a good thing, the FoE report raises a number of unresolved questions. Did the manufacturers knowingly add the nanoparticles to their products? How are they and the FDA ensuring the products’ safety? Do consumers have a right to know when they’re feeding their babies nanoparticles?

Whether the manufacturers knowingly added these particles to their formula is not clear. At this point, it’s not even clear why they might have been added, as hydroxyapatite does not appear to be a substantial source of calcium in most formula. …

And regardless of the benefits and risks of nanoparticles in infant formula, parents have a right to know what’s in the products they’re feeding their children. In Europe, food ingredients must be legally labeled if they are nanoscale. In the U.S., there is no such requirement, leaving American parents to feel somewhat left in the dark by producers, the FDA and policy makers.

As far as I’m aware, the Canadian situation is much the same as the US. If the material is considered safe at the macroscale, there is no requirement to indicate that a nanoscale version of the material is in the product.

I encourage you to read Andrew’s essay in its entirety. As for the FoE report (Nanoparticles in baby formula: Tiny new ingredients are a big concern), that is here.

Not enough talk about nano risks?

It’s not often that a controversy amongst visual artists intersects with a story about carbon nanotubes, risk, and the roles that  scientists play in public discourse.

Nano risks

Dr. Andrew Maynard, Director of the Risk Innovation Lab at Arizona State University, opens the discussion in a March 29, 2016 article for the appropriately named website, The Conversation (Note: Links have been removed),

Back in 2008, carbon nanotubes – exceptionally fine tubes made up of carbon atoms – were making headlines. A new study from the U.K. had just shown that, under some conditions, these long, slender fiber-like tubes could cause harm in mice in the same way that some asbestos fibers do.

As a collaborator in that study, I was at the time heavily involved in exploring the risks and benefits of novel nanoscale materials. Back then, there was intense interest in understanding how materials like this could be dangerous, and how they might be made safer.

Fast forward to a few weeks ago, when carbon nanotubes were in the news again, but for a very different reason. This time, there was outrage not over potential risks, but because the artist Anish Kapoor had been given exclusive rights to a carbon nanotube-based pigment – claimed to be one of the blackest pigments ever made.

The worries that even nanotech proponents had in the early 2000s about possible health and environmental risks – and their impact on investor and consumer confidence – seem to have evaporated.

I had covered the carbon nanotube-based coating in a March 14, 2016 posting here,

Surrey NanoSystems (UK) is billing their Vantablack as the world’s blackest coating and they now have a new product in that line according to a March 10, 2016 company press release (received via email),

A whole range of products can now take advantage of Vantablack’s astonishing characteristics, thanks to the development of a new spray version of the world’s blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack.

Oddly, the company news release notes Vantablack S-VIS could be used in consumer products while including the recommendation that it not be used in products where physical contact or abrasion is possible,

… Its ability to deceive the eye also opens up a range of design possibilities to enhance styling and appearance in luxury goods and jewellery [emphasis mine].

… “We are continuing to develop the technology, and the new sprayable version really does open up the possibility of applying super-black coatings in many more types of airborne or terrestrial applications. Possibilities include commercial products such as cameras, [emphasis mine] equipment requiring improved performance in a smaller form factor, as well as differentiating the look of products by means of the coating’s unique aesthetic appearance. It’s a major step forward compared with today’s commercial absorber coatings.”

The structured surface of Vantablack S-VIS means that it is not recommended for applications where it is subject to physical contact or abrasion. [emphasis mine] Ideally, it should be applied to surfaces that are protected, either within a packaged product, or behind a glass or other protective layer.

Presumably Surrey NanoSystems is looking at ways to make its Vantablack S-VIS capable of being used in products such as jewellery, cameras, and other consumers products where physical contact and abrasions are a strong possibility.

Andrew has pointed questions about using Vantablack S-VIS in new applications (from his March 29, 2016 article; Note: Links have been removed),

The original Vantablack was a specialty carbon nanotube coating designed for use in space, to reduce the amount of stray light entering space-based optical instruments. It was this far remove from any people that made Vantablack seem pretty safe. Whatever its toxicity, the chances of it getting into someone’s body were vanishingly small. It wasn’t nontoxic, but the risk of exposure was minuscule.

In contrast, Vantablack S-VIS is designed to be used where people might touch it, inhale it, or even (unintentionally) ingest it.

To be clear, Vantablack S-VIS is not comparable to asbestos – the carbon nanotubes it relies on are too short, and too tightly bound together to behave like needle-like asbestos fibers. Yet its combination of novelty, low density and high surface area, together with the possibility of human exposure, still raise serious risk questions.

For instance, as an expert in nanomaterial safety, I would want to know how readily the spray – or bits of material dislodged from surfaces – can be inhaled or otherwise get into the body; what these particles look like; what is known about how their size, shape, surface area, porosity and chemistry affect their ability to damage cells; whether they can act as “Trojan horses” and carry more toxic materials into the body; and what is known about what happens when they get out into the environment.

Risk and the roles that scientists play

Andrew makes his point and holds various groups to account (from his March 29, 2016 article; Note: Links have been removed),

… in the case of Vantablack S-VIS, there’s been a conspicuous absence of such nanotechnology safety experts in media coverage.

This lack of engagement isn’t too surprising – publicly commenting on emerging topics is something we rarely train, or even encourage, our scientists to do.

And yet, where technologies are being commercialized at the same time their safety is being researched, there’s a need for clear lines of communication between scientists, users, journalists and other influencers. Otherwise, how else are people to know what questions they should be asking, and where the answers might lie?

In 2008, initiatives existed such as those at the Center for Biological and Environmental Nanotechnology (CBEN) at Rice University and the Project on Emerging Nanotechnologies (PEN) at the Woodrow Wilson International Center for Scholars (where I served as science advisor) that took this role seriously. These and similar programs worked closely with journalists and others to ensure an informed public dialogue around the safe, responsible and beneficial uses of nanotechnology.

In 2016, there are no comparable programs, to my knowledge – both CBEN and PEN came to the end of their funding some years ago.

Some of the onus here lies with scientists themselves to make appropriate connections with developers, consumers and others. But to do this, they need the support of the institutions they work in, as well as the organizations who fund them. This is not a new idea – there is of course a long and ongoing debate about how to ensure academic research can benefit ordinary people.

Media and risk

As mainstream media such as newspapers and broadcast news continue to suffer losses in audience numbers, the situation vis à vis science journalism has changed considerably since 2008. Finding information is more of a challenge even for the interested.

As for those who might be interested, the chances of catching their attention are considerably more challenging. For example, some years ago scientists claimed to have achieved ‘cold fusion’ and there were television interviews (on the 60 minutes tv programme, amongst others) and cover stories in Time magazine and Newsweek magazine, which you could find in the grocery checkout line. You didn’t have to look for it. In fact, it was difficult to avoid the story. Sadly, the scientists had oversold and misrepresented their findings and that too was extensively covered in mainstream media. The news cycle went on for months. Something similar happened in 2010 with ‘arsenic life’. There was much excitement and then it became clear that scientists had overstated and misrepresented their findings. That news cycle was completed within three or fewer weeks and most members of the public were unaware. Media saturation is no longer what it used to be.

Innovative outreach needs to be part of the discussion and perhaps the Vantablack S-VIS controversy amongst artists can be viewed through that lens.

Anish Kapoor and his exclusive rights to Vantablack

According to a Feb. 29, 2016 article by Henri Neuendorf for artnet news, there is some consternation regarding internationally known artist, Anish Kapoor and a deal he has made with Surrey Nanosystems, the makers of Vantablack in all its iterations (Note: Links have been removed),

Anish Kapoor provoked the fury of fellow artists by acquiring the exclusive rights to the blackest black in the world.

The Indian-born British artist has been working and experimenting with the “super black” paint since 2014 and has recently acquired exclusive rights to the pigment according to reports by the Daily Mail.

The artist clearly knows the value of this innovation for his work. “I’ve been working in this area for the last 30 years or so with all kinds of materials but conventional materials, and here’s one that does something completely different,” he said, adding “I’ve always been drawn to rather exotic materials.”

This description from his Wikipedia entry gives some idea of Kapoor’s stature (Note: Links have been removed),

Sir Anish Kapoor, CBE RA (Hindi: अनीश कपूर, Punjabi: ਅਨੀਸ਼ ਕਪੂਰ), (born 12 March 1954) is a British-Indian sculptor. Born in Bombay,[1][2] Kapoor has lived and worked in London since the early 1970s when he moved to study art, first at the Hornsey College of Art and later at the Chelsea School of Art and Design.

He represented Britain in the XLIV Venice Biennale in 1990, when he was awarded the Premio Duemila Prize. In 1991 he received the Turner Prize and in 2002 received the Unilever Commission for the Turbine Hall at Tate Modern. Notable public sculptures include Cloud Gate (colloquially known as “the Bean”) in Chicago’s Millennium Park; Sky Mirror, exhibited at the Rockefeller Center in New York City in 2006 and Kensington Gardens in London in 2010;[3] Temenos, at Middlehaven, Middlesbrough; Leviathan,[4] at the Grand Palais in Paris in 2011; and ArcelorMittal Orbit, commissioned as a permanent artwork for London’s Olympic Park and completed in 2012.[5]

Kapoor received a Knighthood in the 2013 Birthday Honours for services to visual arts. He was awarded an honorary doctorate degree from the University of Oxford in 2014.[6] [7] In 2012 he was awarded Padma Bhushan by Congress led Indian government which is India’s 3rd highest civilian award.[8]

Artists can be cutthroat but they can also be prankish. Take a look at this image of Kapoor and note the blue background,

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

I don’t know why or when this image (used to illustrate Andrew’s essay) was taken so it may be coincidental but the background for the image brings to mind, Yves Klein and his International Klein Blue (IKB) pigment. From the IKB Wikipedia entry,

L'accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) - Foundation Stedelijk Museum Amsterdam Collection

L’accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) – Foundation Stedelijk Museum Amsterdam Collection

Here’s more from the IKB Wikipedia entry (Note: Links have been removed),

International Klein Blue (IKB) was developed by Yves Klein in collaboration with Edouard Adam, a Parisian art paint supplier whose shop is still in business on the Boulevard Edgar-Quinet in Montparnasse.[1] The uniqueness of IKB does not derive from the ultramarine pigment, but rather from the matte, synthetic resin binder in which the color is suspended, and which allows the pigment to maintain as much of its original qualities and intensity of color as possible.[citation needed] The synthetic resin used in the binder is a polyvinyl acetate developed and marketed at the time under the name Rhodopas M or M60A by the French pharmaceutical company Rhône-Poulenc.[2] Adam still sells the binder under the name “Médium Adam 25.”[1]

In May 1960, Klein deposited a Soleau envelope, registering the paint formula under the name International Klein Blue (IKB) at the Institut national de la propriété industrielle (INPI),[3] but he never patented IKB. Only valid under French law, a soleau enveloppe registers the date of invention, according to the depositor, prior to any legal patent application. The copy held by the INPI was destroyed in 1965. Klein’s own copy, which the INPI returned to him duly stamped is still extant.[4]

In short, it’s not the first time an artist has ‘owned’ a colour. Kapoor is not a performance artist as was Klein but his sculptural work lends itself to spectacle and to stimulating public discourse. As to whether or not, this is a prank, I cannot say but it has stimulated a discourse which ranges from intellectual property and artists to the risks of carbon nanotubes and the role scientists could play in the discourse about the risks associated with emerging technologies.

Regardless of how is was intended, bravo to Kapoor.

More reading

Andrew’s March 29, 2016 article has also been reproduced on Nanowerk and Slate.

Johathan Jones has written about Kapoor and the Vantablack  controversy in a Feb. 29, 2016 article for The Guardian titled: Can an artist ever really own a colour?

Swinging from 2015 to 2016 with FrogHeart

On Thursday, Dec. 31, 2015, the bear ate me (borrowed from Joan Armatrading’s song “Eating the bear”) or, if you prefer this phrase, I had a meltdown when I lost more than 1/2 of a post that I’d worked on for hours.

There’s been a problem dogging me for some months. I will write up something and save it as a draft only to find that most of the text has been replaced by a single URL repeated several times. I have not been able to source the problem which is intermittent. (sigh)

Moving on to happier thoughts, it’s a new year. Happy 2016!

As a way of swinging into the new year, here’s a brief wrap up for 2015.

International colleagues

As always, I thank my international colleagues David Bruggeman (Pasco Phronesis blog), Dexter Johnson (Nanoclast blog on the IEEE [International Electrical and Electronics Engineers website]), and Dr. Andrew Maynard (2020 science blog and Risk Innovation Laboratory at Arizona State University), all of whom have been blogging as long or longer than I have (FYI, FrogHeart began in April/May 2008). More importantly, they have been wonderful sources of information and inspiration.

In particular, David, thank you for keeping me up to date on the Canadian and international science policy situations. Also, darn you for scooping me on the Canadian science policy scene, on more than one occasion.

Dexter, thank you for all those tidbits about the science and the business of nanotechnology that you tuck into your curated blog. There’s always a revelation or two to be found in your writings.

Andrew, congratulations on your move to Arizona State University (from the University of Michigan Risk Science Center) where you are founding their Risk Innovation Lab.

While Andrew’s blog has become more focused on the topic of risk, Andrew continues to write about nanotechnology by extending the topic to emerging technologies.

In fact, I have a Dec. 3, 2015 post featuring a recent Nature article by Andrew on the occasion of the upcoming 2016 World Economic Forum in Davos. In it he discusses new approaches to risk as occasioned by the rise of emerging technologies such synthetic biology, nanotechnology, and more.

While Tim Harper, serial entrepreneur and scientist, is not actively blogging about nanotechnology these days, his writings do pop up in various places, notably on the Azonano website where he is listed as an expert, which he most assuredly is. His focus these days is in establishing graphene-based startups.

Moving on to another somewhat related topic. While no one else seems to be writing about nanotechnology as extensively as I do, there are many, many Canadian science bloggers.

Canadian colleagues

Thank you to Gregor Wolbring, ur Canadian science blogger and professor at the University of Calgary. His writing about human enhancement has become increasingly timely as we continue to introduce electronics onto and into our bodies. While he writes regularly, I don’t believe he’s blogging regularly. However, you can find out more about Gregor and his work  at  http://www.crds.org/research/faculty/Gregor_Wolbring2.shtml
or on his facebook page
https://www.facebook.com/GregorWolbring

Science Borealis (scroll down to get to the feeds), a Canadian science blog aggregator, is my main source of information on the Canadian scene. Thank you for my second Editors Pick award. In 2014 the award was in the Science in Society category and in 2015 it’s in the Engineering & Tech category (last item on the list).

While I haven’t yet heard about the results of Paige Jarreau’s and Science Borealis’ joint survey on the Canadian science blog readers (the reader doesn’t have to be Canadian but the science blog has to be), I was delighted to be asked and to participate. My Dec. 14, 2015 posting listed preliminary results,

They have compiled some preliminary results:

  • 21 bloggers + Science Borealis hosted the survey.
  • 523 respondents began the survey.
  • 338 respondents entered their email addresses to win a prize
  • 63% of 400 Respondents are not science bloggers
  • 56% of 402 Respondents describe themselves as scientists
  • 76% of 431 Respondents were not familiar with Science Borealis before taking the survey
  • 85% of 403 Respondents often, very often or always seek out science information online.
  • 59% of 402 Respondents rarely or never seek science content that is specifically Canadian
  • Of 400 Respondents, locations were: 35% Canada, 35% US, 30% Other.

And most of all, a heartfelt thank you to all who read this blog.

FrogHeart and 2015

There won’t be any statistics from the software packaged with my  hosting service (AWSTATS and Webalizer). Google and its efforts to minimize spam (or so it claims) had a devastating effect on my visit numbers. As I used those numbers as motivation, fantasizing that my readership was increasing, I had to find other means for motivation and am not quite sure how I did it but I upped publication to three posts per day (five-day week) throughout most of the year.

With 260 working days (roughly) in a year that would have meant a total of 780 posts. I’ve rounded that down to 700 posts to allow for days off and days where I didn’t manage three.

In 2015 I logged my 4000th post and substantially contributed to the Science Borealis 2015 output. In the editors’ Dec. 20, 2015 post,

… Science Borealis now boasts a membership of 122 blogs  — about a dozen up from last year. Together, this year, our members have posted over 4,400 posts, with two weeks still to go….

At a rough guess, I’d estimate that FrogHeart was responsible for 15% of the Science Borealis output and 121 bloggers were responsible for the other 85%.

That’s enough for 2015.

FrogHeart and 2016

Bluntly, I do not know anything other than a change of some sort is likely.

Hopefully, I will be doing more art/science projects (my last one was ‘A digital poetry of gold nanoparticles’). I was awarded a small grant ($400 CAD) from the Canadian Academy of Independent Scholars (thank you!) for a spoken word project to be accomplished later this year.

As for this blog, I hope to continue.

In closing, I think it’s only fair to share Joan Armatrading’s song, ‘Eating the bear’. May we all do so in 2016,

Bonne Année!

Managing risks in a world of converging technology (the fourth industrial revolution)

Finally there’s an answer to the question: What (!!!) is the fourth industrial revolution? (I took a guess [wrongish] in my Nov. 20, 2015 post about a special presentation at the 2016 World Economic Forum’s IdeasLab.)

Andrew Maynard in a Dec. 3, 2015 think piece (also called a ‘thesis’) for Nature Nanotechnology answers the question,

… an approach that focuses on combining technologies such as additive manufacturing, automation, digital services and the Internet of Things, and … is part of a growing movement towards exploiting the convergence between emerging technologies. This technological convergence is increasingly being referred to as the ‘fourth industrial revolution’, and like its predecessors, it promises to transform the ways we live and the environments we live in. (While there is no universal agreement on what constitutes an ‘industrial revolution’, proponents of the fourth industrial revolution suggest that the first involved harnessing steam power to mechanize production; the second, the use of electricity in mass production; and the third, the use of electronics and information technology to automate production.)

In anticipation of the the 2016 World Economic Forum (WEF), which has the fourth industrial revolution as its theme, Andrew  explains how he sees the situation we are sliding into (from Andrew Maynard’s think piece),

As more people get closer to gaining access to increasingly powerful converging technologies, a complex risk landscape is emerging that lies dangerously far beyond the ken of current regulations and governance frameworks. As a result, we are in danger of creating a global ‘wild west’ of technology innovation, where our good intentions may be among the first casualties.

There are many other examples where converging technologies are increasing the gap between what we can do and our understanding of how to do it responsibly. The convergence between robotics, nanotechnology and cognitive augmentation, for instance, and that between artificial intelligence, gene editing and maker communities both push us into uncertain territory. Yet despite the vulnerabilities inherent with fast-evolving technological capabilities that are tightly coupled, complex and poorly regulated, we lack even the beginnings of national or international conceptual frameworks to think about responsible decision-making and responsive governance.

He also lists some recommendations,

Fostering effective multi-stakeholder dialogues.

Encouraging actionable empathy.

Providing educational opportunities for current and future stakeholders.

Developing next-generation foresight capabilities.

Transforming approaches to risk.

Investing in public–private partnerships.

Andrew concludes with this,

… The good news is that, in fields such as nanotechnology and synthetic biology, we have already begun to develop the skills to do this — albeit in a small way. We now need to learn how to scale up our efforts, so that our convergence in working together to build a better future mirrors the convergence of the technologies that will help achieve this.

It’s always a pleasure to read Andrew’s work as it’s thoughtful. I was surprised (since Andrew is a physicist by training) and happy to see the recommendation for “actionable empathy.”

Although, I don’t always agree with him on this occasion I don’t have any particular disagreements but I think that including a recommendation or two to cover the certainty we will get something wrong and have to work quickly to right things would be a good idea.  I’m thinking primarily of governments which are notoriously slow to respond with legislation for new developments and equally slow to change that legislation when the situation changes.

The technological environment Andrew is describing is dynamic, that is fast-moving and changing at a pace we have yet to properly conceptualize. Governments will need to change so they can respond in an agile fashion. My suggestion is:

Develop policy task forces that can be convened in hours and given the authority to respond to an immediate situation with oversight after the fact

Getting back to Andrew Maynard, you can find his think piece in its entirety via this link and citation,

Navigating the fourth industrial revolution by Andrew D. Maynard. Nature Nanotechnology 10, 1005–1006 (2015) doi:10.1038/nnano.2015.286 Published online 03 December 2015

This paper is behind a paywall.

A couple of lawyers talk wrote about managing nanotechnology risks

Because they are lawyers, I was intrigued by a Nov. 4, 2015 article on managing nanotechnology risks by Michael Lisak and James Mizgala of Sidley Austin LLP for Industry Week. I was also intrigued by the language (Note: A link has been removed),

The inclusion of nanotechnologies within manufacturing processes and products has increased exponentially over the past decade. Fortune recently noted that nanotechnology touches almost all Fortune 500 companies and that the industry’s $20 billion worldwide size is expected to double over the next decade. [emphasis mine]

Yet, potential safety issues have been raised and regulatory uncertainties persist. As such, proactive manufacturers seeking to protect their employees, consumers, the environment and their businesses – while continuing to develop, manufacture and market their products – may face difficult choices in how to best navigate this challenging and fluid landscape, while avoiding potential “nanotort,”  [emphasis mine] whistleblower, consumer fraud and regulatory enforcement lawsuits. Doing so requires forward-thinking advice based upon detailed analyses of each manufacturer’s products and conduct in the context of rapidly evolving scientific, regulatory and legal developments.

I wonder how many terms lawyers are going to coin in addition to “nanotort”?

The lawyers focus largely on two types of nanoparticles, carbon nanotubes, with a special emphasis on multi-walled carbon nantubes (MWCNT) and nano titanium dioxide,

Despite this scientific uncertainty, international organizations, such as the International Agency for Research on Cancer [a World Health Organization agency], have already concluded that nano titanium dioxide in its powder form and multi-walled carbon nanotube-7 (“MWCNT-7”) [emphasis mine] are “possibly carcinogenic to humans.” As such, California’s Department of Public Health lists titanium dioxide and MWCNT-7 as “ingredients known or suspected to cause cancer, birth defects, or other reproductive toxicity as determined by the authoritative scientific bodies.”  Considering that processed (i.e., non-powdered) titanium dioxide is found in products like toothpaste, shampoo, chewing gum and candies, it is not surprising that some have focused upon such statements.

There’s a lot of poison in the world, for example, apples contain seeds which have arsenic in them and, for another, peanuts can be carcinogenic and they can also kill you, as they are poison to people who are allergic to them.

On the occasion of Dunkin’ Donuts removing nano titanium dioxide as an ingredient in the powdered sugar used to coat donuts, I wrote a March 13, 2015 posting, where I quote extensively from Dr. Andrew Maynard’s (then director of the University of Michigan Risk Science Center now director of the Risk Innovation Lab at Arizona State University) 2020 science blog posting about nano titanium dioxide and Dunkin’ Donuts,

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

You can find Andrew’s entire discussion in his March 12, 2015 post on the 2020 Science blog. Andrew had written earlier in a July 12, 2014 posting about something he terms ‘nano donut math’ as reported by As You Sow, the activist group that made a Dunkin’ Donuts shareholder proposal which resulted in the company’s decision to stop using nano titanium dioxide in the powdered sugar found on their donuts. In any event, Andrew made this point,

In other words, if a Dunkin’ Donut Powdered Cake Donut contained 8.9 mg of TiO2 particles smaller than 10 nm, it would have to have been doused with over 1 million tons of sugar coating! (Note update at the end of this piece)

Clearly something’s wrong here – either Dunkin’ Donuts are not using food grade TiO2 but a nanopowder with particle so small they would be no use whatsoever in the sugar coating (as well as being incredibly expensive, and not FDA approved).  Or there’s something rather wrong with the analysis!

If it’s the latter – and it’s hard to imagine any other plausible reason for the data – it looks like As You Sow ended up using rather dubious figures to back up their stakeholder resolution.  I’d certainly be interested in more information on the procedures Analytical Sciences used and the checks and balances they had in place, especially as there are a number of things that can mess up a particle analysis like this.

Update July 14: My bad, I made a slight error in the size distribution calculation first time round.  This has been corrected in the article above.  Originally, I cited the estimated Mass Median Diameter (MMD) of the TiO2 particles as 167 nm, and the Geometric Standard Deviation (GSD) as 1.6.  Correcting an error in the Excel spreadsheet used to calculate the distribution (these things happen!) led to a revised estimate of MMD = 168 nm and a GSD of 1.44.  These may look like subtle differences, but when calculating the estimated particle mass below 10 nm, they make a massive difference.  With the revised figures, you’d expect less than one trillionth of  a percent of the mass of the TiO2 powder to be below 10 nm!! (the original estimate was a tenth of a millionth of a percent).  In other words – pretty much nothing!  The full analysis can be found here.

Update November 16 2014.  Based on this post, As You Sow checked the data from Analytical Sciences LLC and revised the report accordingly.  This is noted above.

It would seem that if there are concerns over nano titanium dioxide in food, the biggest would not be the amounts ingested by consumers but inhalation by workers should they breathe in large quantities when they are handling the material.

As for the MWCNTs, they have long raised alarms but most especially the long MWCNTs and for people handling them during the course of their work day. Any MWCNTs found in sports equipment and other consumer products are bound in the material and don’t pose any danger of being inhaled into the lungs, unless they should be released from their bound state (e.g. fire might release them).

After some searching for MWCNT-7, I found something which seems also to be known as Mitsui MWCNT-7 or Mitsui 7-MWCNT (here’s one of my sources). As best I understand it, Mitsui is a company that produces an MWCNT which they have coined an MWCNT-7 and which has been used in nanotoxicity testing. As best I can tell, MWCNT is MWCNT-7.

The lawyers (Lisak and Mizgala) note things have changed for manufacturers since the early days and they make some suggestions,

One thing is certain – gone are the days when “sophisticated” manufacturers incorporating nanotechnologies within their products can reasonably expect to shield themselves by pointing to scientific and regulatory uncertainties, especially given the amount of money they are spending on research and development, as well as sales and marketing efforts.

Accordingly, manufacturers should consider undertaking meaningful risk management analyses specific to their applicable products. …

First, manufacturers should fully understand the life-cycle of nanomaterials within their organization. For some, nanomaterials may be an explicit focus of innovation and production, making it easier to pinpoint where nanotechnology fits into their processes and products. For others, nanomaterials may exist either higher-up or in the back-end of their products’ supply chain. …

Second, manufacturers should understand and stay current with the scientific state-of-the-art as well as regulatory requirements and developments potentially applicable to their employees, consumers and the environment. An important consideration related to efforts to understand the state-of-the-art is whether or not manufacturers should themselves expend resources to advance “the science” in seeking to help find answers to some of the aforementioned uncertainties. …

The lawyers go on to suggest that manufacturers should consider proactively researching nanotoxicity so as to better defend themselves against any future legal suits.

Encouraging companies to proactive with toxicity issues is in line with what seems to be an international (Europe & US) regulatory movement putting more onus on producers and manufacturers to take responsibility for safety testing. (This was communicated to me in a conversation I had with an official at the European Union Joint Research Centre where he mentioned REACH regulations and the new emphasis in response to my mention of similar FDA (US Food and Drug Administration) regulations. (We were at the 2014 9th World Congress on Alternatives to Animal Testing in Prague, Czech republic.)

For anyone interested in the International Agency for Research on Cancer you can find it here.

Inadvertent carbon nanotube production from your car

It’s disconcerting to find out that cars inadvertently produce carbon nanotubes which are then spilled into the air we breathe. Researchers at Rice University (US) and Paris-Saclay University (France) have examined matter from car exhausts and dust in various parts of Paris finding carbon nanotubes (CNTs). Further, they also studied the lungs of Parisian children who have asthma and found CNTs there too.

The scientists have carefully stated that CNTs have been observed in lung cells but they are not claiming causality (i.e., they don’t claim the children’s asthma was caused by CNTs).

An Oct. 20, 2015 news item on Nanotechnology Now introduces the research,

Cars appear to produce carbon nanotubes, and some of the evidence has been found in human lungs.

Rice University scientists working with colleagues in France have detected the presence of man-made carbon nanotubes in cells extracted from the airways of Parisian children under routine treatment for asthma. Further investigation found similar nanotubes in samples from the exhaust pipes of Paris vehicles and in dust gathered from various places around the city.

The researchers reported in the journal EBioMedicine this month that these samples align with what has been found elsewhere, including Rice’s home city of Houston, in spider webs in India and in ice cores.

An Oct. 19, 2015 Rice University news release (also on EurekAlert), which originated the news item, painstakingly describes the work and initial conclusions,

The research in no way ascribes the children’s conditions to the nanotubes, said Rice chemist Lon Wilson, a corresponding author of the new paper. But the nanotubes’ apparent ubiquity should be the focus of further investigation, he said.

“We know that carbon nanoparticles are found in nature,” Wilson said, noting that round fullerene molecules like those discovered at Rice are commonly produced by volcanoes, forest fires and other combustion of carbon materials. “All you need is a little catalysis to make carbon nanotubes instead of fullerenes.”

A car’s catalytic converter, which turns toxic carbon monoxide into safer emissions, bears at least a passing resemblance to the Rice-invented high-pressure carbon monoxide, or HiPco, process to make carbon nanotubes, he said. “So it is not a big surprise, when you think about it,” Wilson said.

The team led by Wilson, Fathi Moussa of Paris-Saclay University and lead author Jelena Kolosnjaj-Tabi, a graduate student at Paris-Saclay, analyzed particulate matter found in the alveolar macrophage cells (also known as dust cells) that help stop foreign materials like particles and bacteria from entering the lungs.

The researchers wrote that their results “suggest humans are routinely exposed” to carbon nanotubes. They also suggested previous studies that link the carbon content of airway macrophages and the decline of lung function should be reconsidered in light of the new findings. Moussa confirmed his lab will continue to study the impact of man-made nanotubes on health.

The cells were taken from 69 randomly selected asthma patients aged 2 to 17 who underwent routine fiber-optic bronchoscopies as part of their treatment. For ethical reasons, no cells from healthy patients were analyzed, but because nanotubes were found in all of the samples, the study led the researchers to conclude that carbon nanotubes are likely to be found in everybody.

The study notes but does not make definitive conclusions about the controversial proposition that carbon nanotube fibers may act like asbestos, a proven carcinogen. But the authors reminded that “long carbon nanotubes and large aggregates of short ones can induce a granulomatous (inflammation) reaction.”

The study partially answers the question of what makes up the black material inside alveolar macrophages, the original focus of the study. The researchers found single-walled and multiwalled carbon nanotubes and amorphous carbon among the cells, as well as in samples swabbed from the tailpipes of cars in Paris and dust from various buildings in and around the city.

The news release goes on to detail how the research was conducted,

“The concentrations of nanotubes are so low in these samples that it’s hard to believe they would cause asthma, but you never know,” Wilson said. “What surprised me the most was that carbon nanotubes were the major component of the carbonaceous pollution we found in the samples.”

The nanotube aggregates in the cells ranged in size from 10 to 60 nanometers in diameter and up to several hundred nanometers in length, small enough that optical microscopes would not have been able to identify them in samples from former patients. The new study used more sophisticated tools, including high-resolution transmission electron microscopy, X-ray spectroscopy, Raman spectroscopy and near-infrared fluorescence microscopy to definitively identify them in the cells and in the environmental samples.

“We collected samples from the exhaust pipes of cars in Paris as well as from busy and non-busy intersections there and found the same type of structures as in the human samples,” Wilson said.

“It’s kind of ironic. In our laboratory, working with carbon nanotubes, we wear facemasks to prevent exactly what we’re seeing in these samples, yet everyone walking around out there in the world probably has at least a small concentration of carbon nanotubes in their lungs,” he said.

The researchers also suggested that the large surface areas of nanotubes and their ability to adhere to substances may make them effective carriers for other pollutants.

The study followed one released by Rice and Baylor College of Medicine earlier this month with the similar goal of analyzing the black substance found in the lungs of smokers who died of emphysema. That study found carbon black nanoparticles that were the product of the incomplete combustion of such organic material as tobacco.

Here’s an image of a sample,

 Caption: Carbon nanotubes (the long rods) and nanoparticles (the black clumps) appear in vehicle exhaust taken from the tailpipes of cars in Paris. The image is part of a study by scientists in Paris and at Rice University to analyze carbonaceous material in the lungs of asthma patients. They found that cars are a likely source of nanotubes found in the patients. Credit: Courtesy of Fathi Moussa/Paris-Saclay University

Caption: Carbon nanotubes (the long rods) and nanoparticles (the black clumps) appear in vehicle exhaust taken from the tailpipes of cars in Paris. The image is part of a study by scientists in Paris and at Rice University to analyze carbonaceous material in the lungs of asthma patients. They found that cars are a likely source of nanotubes found in the patients.
Credit: Courtesy of Fathi Moussa/Paris-Saclay University

Here’s a link to and a citation for the paper,

Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children by Jelena Kolosnjaj-Tabi, Jocelyne Just, Keith B. Hartman, Yacine Laoudi, Sabah Boudjemaa, Damien Alloyeau, Henri Szwarc, Lon J. Wilson, & Fathi Moussa. EBioMedicine doi:10.1016/j.ebiom.2015.10.012 Available online 9 October 2015

This paper is open access.

ETA Oct. 26, 2015: Dexter Johnson, along with Dr. Andrew Maynard, provides an object lesson on how to read science research in an Oct. 23, 2015 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]),

“From past studies, the conditions in combustion engines seem to favor the production of at least some CNTs (especially where there are trace metals in lubricants that can act as catalysts for CNT growth),” explained Andrew Maynard Director, Risk Innovation Lab and Professor, School for the Future of Innovation in Society at Arizona State University, in an e-mail interview. Says Maynard:

What, to my knowledge, is still not known, is the relative concentrations of CNT in ambient air that may be inhaled, the precise nature of these CNT in terms of physical and chemical structure, and the range of sources that may lead to ambient CNT. This is important, as the potential for fibrous particles to cause lung damage depends on characteristics such as their length—and many of the fibers shown in the paper appear too short to raise substantial concerns.”

Nonetheless, Maynard praises the research for establishing that these carbon nanotube-like fibers are part of the urban aerosol and therefore end up in the lungs of anyone who breathes it in. However, he cautions that the findings don’t provide information on the potential health risks associated with these exposures.

It’s a good read not only for the information but the mild snarkiness (assuming you find that kind of thing amusing) that spices up the piece.

Safer sunblock and bioadhesive nanoparticles from Yale University

The skin has a lot of protective barriers but it’s always possible to make something better so a sunblock that doesn’t penetrate the* skin at all seems like it might be a good thing. Interestingly, this new sunblock or sunscreen is enabled by nanoparticles but not the metallic nanoparticles found in what are sometimes called nanosunscreens. From a Sept. 29, 2015 news item on Nanowerk,

Researchers at Yale have developed a sunscreen that doesn’t penetrate the skin, eliminating serious health concerns associated with commercial sunscreens.

Most commercial sunblocks are good at preventing sunburn, but they can go below the skin’s surface and enter the bloodstream. As a result, they pose possible hormonal side effects and could even be promoting the kind of skin cancers they’re designed to prevent.

But researchers at Yale have developed a new sunblock, made with bioadhesive nanoparticles, that stays on the surface of the skin.

A Sept. 28, 2015 Yale University news release by William Weir, whch originated the news item, describes the research in more detail,

“We found that when we apply the sunblock to the skin, it doesn’t come off, and more importantly, it doesn’t penetrate any further into the skin,” said the paper’s senior author, Mark Saltzman, the Goizueta Foundation Professor of Biomedical Engineering. “Nanoparticles are large enough to keep from going through the skin’s surface, and our nanoparticles are so adhesive that they don’t even go into hair follicles, which are relatively open.”

Using mouse models, the researchers tested their sunblock against direct ultraviolet rays and their ability to cause sunburn. In this regard, even though it used a significantly smaller amount of the active ingredient than commercial sunscreens, the researchers’ formulation protected equally well against sunburn.

They also looked at an indirect — and much less studied — effect of UV light. When the active ingredients of sunscreen absorb UV light, a chemical change triggers the generation of oxygen-carrying molecules known as reactive oxygen species (ROS). If a sunscreen’s agents penetrate the skin, this chemical change could cause cellular damage, and potentially facilitate skin cancer.

“Commercial chemical sunblock is protective against the direct hazards of ultraviolet damage of DNA, but might not be against the indirect ones,” said co-author Michael Girardi, a professor of dermatology at Yale Medical School. “In fact, the indirect damage was worse when we used the commercial sunblock.”

Girardi, who specializes in skin cancer development and progression, said little research has been done on the ultimate effects of sunblock usage and the generation of ROS, “but obviously, there’s concern there.”

Previous studies have found traces of commercial sunscreen chemicals in users’ bloodstreams, urine, and breast milk. There is evidence that these chemicals cause disruptions with the endocrine system, such as blocking sex hormone receptors.

To test penetration levels, the researchers applied strips of adhesive tape to skin previously treated with sunscreen. The tape was then removed rapidly, along with a thin layer of skin. Repeating this procedure allowed the researchers to remove the majority of the outer skin layer, and measure how deep the chemicals had penetrated into the skin. Traces of the sunscreen chemical administered in a conventional way were found to have soaked deep within the skin. The Yale team’s sunblock came off entirely with the initial tape strips.

Tests also showed that a substantial amount of the Yale team’s sunscreen remained on the skin’s surface for days, even after exposure to water. When wiped repeatedly with a towel, the new sunblock was entirely removed. [emphasis mine]

To make the sunblock, the researchers developed a nanoparticle with a surface coating rich in aldehyde groups, which stick tenaciously to the outer skin layer. The nanoparticle’s hydrophilic layer essentially locks in the active ingredient, a hydrophobic chemical called padimate O.

Some sunscreen solutions that use larger particles of inorganic compounds, such as titanium dioxide or zinc oxide, also don’t penetrate the skin. For aesthetic reasons, though, these opaque sunscreen products aren’t very popular. By using a nanoparticle to encase padimate O, an organic chemical used in many commercial sunscreens, the Yale team’s sunblock is both transparent and stays out of the skin cells and bloodstream.

This seems a little confusing to me and I think clarification may be helpful. My understanding is that the metallic nanoparticles (nano titanium dioxide and nano zinc oxide) engineered for use in commercial sunscreens are also (in addition to the macroscale titanium dioxide and zinc oxide referred to in the Yale news release) too large to pass through the skin. At least that was the understanding in 2010 and I haven’t stumbled across any information that is contradictory. Here’s an excerpt from a July 20, 2010 posting where I featured portions of a debate between Georgia Miller (at that time representing Friends of the Earth) and Dr. Andrew Maynard (at that time director of the University of Michigan Risk Science Center and a longtime participant in the nanotechnology risk discussions),

Three of the scientists whose work was cited by FoE as proof that nanosunscreens are dangerous either posted directly or asked Andrew to post comments which clarified the situation with exquisite care,

Despite FoE’s implications that nanoparticles in sunscreens might cause cancer because they are photoactive, Peter Dobson points out that there are nanomaterials used in sunscreens that are designed not to be photoactive. Brian Gulson, who’s work on zinc skin penetration was cited by FoE, points out that his studies only show conclusively that zinc atoms or ions can pass through the skin, not that nanoparticles can pass through. He also notes that the amount of zinc penetration from zinc-based sunscreens is very much lower than the level of zinc people have in their body in the first place. Tilman Butz, who led one of the largest projects on nanoparticle penetration through skin to date, points out that – based on current understanding – the nanoparticles used in sunscreens are too large to penetrate through the skin.

However, there may be other ingredients which do pass through into the bloodstream and are concerning.

One other thing I’d like to note. Not being able to remove the sunscreen easily ( “When wiped repeatedly with a towel, the new sunblock was entirely removed.”) may prove to be a problem as we need Vitamin D, which is for the most part obtainable by sun exposure.

In any event, here’s a link to and a citation for the paper,

A sunblock based on bioadhesive nanoparticles by Yang Deng, Asiri Ediriwickrema, Fan Yang, Julia Lewis, Michael Girardi, & W. Mark Saltzman. Nature Materials (2015) doi:10.1038/nmat4422 Published online 28 September 2015

This paper is behind a paywall.

*’teh’ changed to ‘the’ on June 6, 2016.

Risk assessments not the only path to nanotechnology regulation

Nanowerk has republished an essay about nanotechnology regulation from Australia’s The Conversation in an Aug. 25, 2015 news item (Note: A link has been removed),

When it comes to nanotechnology, Australians have shown strong support for regulation and safety testing.

One common way of deciding whether and how nanomaterials should be regulated is to conduct a risk assessment. This involves calculating the risk a substance or activity poses based on the associated hazards or dangers and the level of exposure to people or the environment.

However, our recent review (“Risk Analysis of Nanomaterials: Exposing Nanotechnology’s Naked Emperor”) found some serious shortcomings of the risk assessment process for determining the safety of nanomaterials.

We have argued that these shortcomings are so significant that risk assessment is effectively a naked emperor [reference to a children’s story “The Emperor’s New Clothes“].

The original Aug. 24, 2015 article written by Fern Wickson (Scientist/Program Coordinator at GenØk – Centre for Biosafety in Norway) and Georgia Miller (PhD candidate at UNSW [University of New South Wales], Australia) points out an oft ignored issue with regard to nanotechnology regulation,

Risk assessment has been the dominant decision-aiding tool used by regulators of new technologies for decades, despite it excluding key questions that the community cares about. [emphasis mine] For example: do we need this technology; what are the alternatives; how will it affect social relations, and; who should be involved in decision making?

Wickson and Miller also note more frequently discussed issues,

A fundamental problem is a lack of nano-specific regulation. Most sector-based regulation does not include a “trigger” for nanomaterials to face specific risk assessment. Where a substance has been approved for use in its macro form, it requires no new assessment.

Even if such a trigger were present, there is also currently no cross-sectoral or international agreement on the definition of what constitutes a nanomaterial.

Another barrier is the lack of measurement capability and validated methods for safety testing. We still do not have the means to conduct routine identification of nanomaterials in the complex “matrix” of finished products or the environment.

This makes supply chain tracking and safety testing under real-world conditions very difficult. Despite ongoing investment in safety research, the lack of validated test methods and different methods yielding diverse results allows scientific uncertainty to persist.

With regard to the first problem, the assumption that if a material at the macroscale is safe, then the same is true at the nanoscale informs regulation in Canada and, as far as I’m aware, every other constituency that has any type of nanomaterial regulation. I’ve had mixed feelings about this. On the one hand, we haven’t seen any serious problems associated with the use of nanomaterials but on the other hand, these problems can be slow to emerge.

The second issue mentioned, the lack of a consistent definition internationally, seems to be a relatively common problem in a lot of areas. As far as I’m aware, there aren’t that many international agreements for safety measures. Nuclear weapons and endangered animals and plants (CITES) being two of the few that come to mind.

The lack of protocols for safety testing of nanomaterials mentioned in the last paragraph of the excerpt is of rising concern. For example, there’s my July 7, 2015 posting featuring two efforts: Nanotechnology research protocols for Environment, Health and Safety Studies in US and a nanomedicine characterization laboratory in the European Union. Despite this and other efforts, I do think more can and should be done to standardize tests and protocols (without killing new types of research and results which don’t fit the models).

The authors do seem to be presenting a circular argument with this (from their Aug. 24, 2015 article; Note: A link has been removed),

Indeed, scientific uncertainty about nanomaterials’ risk profiles is a key barrier to their reliable assessment. A review funded by the European Commission concluded that:

[…] there is still insufficient data available to conduct the in depth risk assessments required to inform the regulatory decision making process on the safety of NMs [nanomaterials].

Reliable assessment of any chemical or drug is a major problem. We do have some good risk profiles but how many times have pharmaceutical companies developed a drug that passed successfully through human clinical trials only to present a serious risk when released to the general population? Assessing risk is a very complex problem. even with risk profiles and extensive testing.

Unmentioned throughout the article are naturally occurring nanoparticles (nanomaterials) and those created inadvertently through some manufacturing or other process. In fact, we have been ingesting nanomaterials throughout time. That said, I do agree we need to carefully consider the impact that engineered nanomaterials could have on us and the environment as ever more are being added.

To that end, the authors make some suggestions (Note: Links have been removed),

There are well-developed alternate decision-aiding tools available. One is multicriteria mapping, which seeks to evaluate various perspectives on an issue. Another is problem formulation and options assessment, which expands science-based risk assessment to engage a broader range of individuals and perspectives.

There is also pedigree assessment, which explores the framing and choices taking place at each step of an assessment process so as to better understand the ambiguity of scientific inputs into political processes.

Another, though less well developed, approach popular in Europe involves a shift from risk to innovation governance, with emphasis on developing “responsible research and innovation”.

I have some hesitation about recommending this read due to Georgia Miller’s involvement and the fact that I don’t have the time to check all the references. Miller was a spokesperson for Friends of the Earth (FoE) Australia, a group which led a substantive campaign against ‘nanosunscreens’. Here’s a July 20, 2010 posting where I featured some cherrypicking/misrepresentation of data by FoE in the persons of Georgia Miller and Ian Illuminato.

My Feb. 9, 2012 posting highlights the unintended consequences (avoidance of all sunscreens by some participants in a survey) of the FoE’s campaign in Australia (Note [1]: The percentage of people likely to avoid all sunscreens due to their concerns with nanoparticles in their sunscreens was originally reported to be 17%; Note [2]: Australia has the highest incidence of skin cancer in the world),

Feb.21.12 correction: According to the information in the Feb. 20, 2012 posting on 2020 Science, the percentage of Australians likely to avoid using sunscreens is 13%,

This has just landed in my email in box from Craig Cormick at the Department of Industry, Innovation, Science, Research and Tertiary Education in Australia, and I thought I would pass it on given the string of posts on nanoparticles in sunscreens on 2020 Science over the past few years:

“An online poll of 1,000 people, conducted in January this year, shows that one in three Australians had heard or read stories about the risks of using sunscreens with nanoparticles in them,” Dr Cormick said.

“Thirteen percent of this group were concerned or confused enough that they would be less likely to use any sunscreen, whether or not it contained nanoparticles, putting them selves at increased risk of developing potentially deadly skin cancers.

“The study also found that while one in five respondents stated they would go out of their way to avoid using sunscreens with nanoparticles in them, over three in five would need to know more information before deciding.”

This article with Fern Wickson (with whom I don’t always agree perfectly but hasn’t played any games with research that I’m know of) helps somewhat but it’s going to take more than this before I feel comfortable recommending Ms. Miller’s work for further reading.