Tag Archives: animals

New wound dressings with nanofibres for tissue regeneration

The Rotary Jet-Spinning manufacturing system was developed specifically as a therapeutic for the wounds of war. The dressings could be a good option for large wounds, such as burns, as well as smaller wounds on the face and hands, where preventing scarring is important. Illustration courtesy of Michael Rosnach/Harvard University

This image really gets the idea of regeneration across to the viewer while also informing you that this is medicine that comes from the military. A March 19,2018 news item on phys.org announces the work,

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed new wound dressings that dramatically accelerate healing and improve tissue regeneration. The two different types of nanofiber dressings, described in separate papers, use naturally-occurring proteins in plants and animals to promote healing and regrow tissue.

Our fiber manufacturing system was developed specifically for the purpose of developing therapeutics for the wounds of war,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the research. “As a soldier in Afghanistan, I witnessed horrible wounds and, at times, the healing process for those wounds was a horror unto itself. This research is a years-long effort by many people on my team to help with these problems.”

Parker is also a Core Faculty Member of the Wyss Institute.

The most recent paper, published in Biomaterials, describes a wound dressing inspired by fetal tissue.

A March 19, 2018 Harvard University John A. Paulson School of Engineering and Applied Science news release by Leah Burrows (also on EurekAlert), which originated the news item, provides some background information before launching into more detail about this latest work,

In the late 1970s, when scientists first started studying the wound-healing process early in development, they discovered something unexpected: Wounds incurred before the third trimester left no scars. This opened a range of possibilities for regenerative medicine. But for decades, researchers have struggled to replicate those unique properties of fetal skin.

Unlike adult skin, fetal skin has high levels of a protein called fibronectin, which assembles into the extracellular matrix and promotes cell binding and adhesion. Fibronectin has two structures: globular, which is found in blood, and fibrous, which is found in tissue. Even though fibrous fibronectin holds the most promise for wound healing, previous research focused on the globular structure, in part because manufacturing fibrous fibronectin was a major engineering challenge.

But Parker and his team are pioneers in the field of nanofiber engineering.

The researchers made fibrous fibronectin using a fiber-manufacturing platform called Rotary Jet-Spinning (RJS), developed by Parker’s Disease Biophysics Group. RJS works likes a cotton-candy machine — a liquid polymer solution, in this case globular fibronectin dissolved in a solvent, is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify. The centrifugal force unfolds the globular protein into small, thin fibers. These fibers — less than one micrometer in diameter — can be collected to form a large-scale wound dressing or bandage.

“The dressing integrates into the wound and acts like an instructive scaffold, recruiting different stem cells that are relevant for regeneration and assisting in the healing process before being absorbed into the body,” said Christophe Chantre, a graduate student in the Disease Biophysics Group and first author of the paper.

In in vivo testing, the researchers found that wounds treated with the fibronectin dressing showed 84 percent tissue restoration within 20 days, compared with 55.6 percent restoration in wounds treated with a standard dressing.

The researchers also demonstrated that wounds treated with the fibronectin dressing had almost normal epidermal thickness and dermal architecture, and even regrew hair follicles — often considered one of the biggest challenges in the field of wound healing.

“This is an important step forward,” said Chantre. “Most work done on skin regeneration to date involves complex treatments combining scaffolds, cells, and even growth factors. Here we were able to demonstrate tissue repair and hair follicle regeneration using an entirely material approach. This has clear advantages for clinical translation.”

In another paper published in Advanced Healthcare Materials, the Disease Biophysics Group demonstrated a soy-based nanofiber that also enhances and promotes wound healing.

Soy protein contains both estrogen-like molecules — which have been shown to accelerate wound healing — and bioactive molecules similar to those that build and support human cells.

“Both the soy- and fibronectin-fiber technologies owe their success to keen observations in reproductive medicine,” said Parker. “During a woman’s cycle, when her estrogen levels go high, a cut will heal faster. If you do a surgery on a baby still in the womb, they have scar-less wound healing. Both of these new technologies are rooted in the most fascinating of all the topics in human biology — how we reproduce.”

In a similar way to fibronectin fibers, the research team used RJS to spin ultrathin soy fibers into wound dressings. In experiments, the soy- and cellulose-based dressing demonstrated a 72 percent increase in healing over wounds with no dressing and a 21 percent increase in healing over wounds dressed without soy protein.

“These findings show the great promise of soy-based nanofibers for wound healing,” said Seungkuk Ahn, a graduate student in the Disease Biophysics Group and first author of the paper. “These one-step, cost-effective scaffolds could be the next generation of regenerative dressings and push the envelope of nanofiber technology and the wound-care market.”

Both kinds of dressing, according to researchers, have advantages in the wound-healing space. The soy-based nanofibers — consisting of cellulose acetate and soy protein hydrolysate — are inexpensive, making them a good option for large-scale use, such as on burns. The fibronectin dressings, on the other hand, could be used for smaller wounds on the face and hands, where preventing scarring is important.

Here’s are links and citations for both papers mentioned in the news release,

Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing by Seungkuk Ahn, Christophe O. Chantre, Alanna R. Gannon, Johan U. Lind, Patrick H. Campbell, Thomas Grevesse, Blakely B. O’Connor, Kevin Kit Parker. Advanced Healthcare Materials https://doi.org/10.1002/adhm.201701175 First published: 23 January 2018

Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model by Christophe O. Chantre, Patrick H. Campbell, Holly M. Golecki, Adrian T. Buganza, Andrew K. Capulli, Leila F. Deravi, Stephanie Dauth, Sean P. Sheehy, Jeffrey A.Paten. KarlGledhill, Yanne S. Doucet, Hasan E.Abaci, Seungkuk Ahn, Benjamin D.Pope, Jeffrey W.Ruberti, Simon P.Hoerstrup, Angela M.Christiano, Kevin Kit Parker. Biomaterials Volume 166, June 2018, Pages 96-108 https://doi.org/10.1016/j.biomaterials.2018.03.006 Available online 5 March 2018

Both papers are behind paywalls although you may want to check with ResearchGate where many researchers make their papers available for free.

One last comment, I noticed this at the end of Burrows’ news release,

The Harvard Office of Technology Development has protected the intellectual property relating to these projects and is exploring commercialization opportunities.

It reminded me of the patent battle between the Broad Institute (a Harvard University and Massachusetts Institute of Technology joint venture) and the University of California at Berkeley over CRISPR (clustered regularly interspaced short palindromic repeats) technology. (My March 15, 2017 posting describes the battle’s outcome.)

Lest we forget, there could be major financial rewards from this work.

June 4, 2018 talk in Vancouver (Canada): Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is hosting a talk on the topic of genetically modified food. Here’s more from their May 20, 2018 announcement (received via email),

Our third speaking event of the year has been scheduled for Monday, June 4th, 2018 at the Italian Cultural Centre – Museum & Art Gallery. Marie-Claude Fortin’s talk will discuss food systems derived from biotechnology (often referred to as GMO) and their comparison with traditional farming processes, both technical and ethical. You can read a summary of Marie-Claude Fortin’s lecture as well as her short professional biography at the bottom of this message.

Ahead of the speaking event, ARPICO will be holding its 2018 Annual General Meeting in the same location. We encourage everyone to participate in the AGM, have their say on ARPICO’s matters and possibly volunteer for the Board of Directors.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

6:00pm to 6:45pm – Annual General Meeting
7:00 pm – Lecture by Marie-Claude Fortin
~8:00 pm – Q & A Period
Mingling & Refreshments until about 9:45 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.

Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

In this lecture we will explore a part of our food system, which has received much press, but which consumers still misunderstand: food derived from biotechnology often referred to as genetically modified organisms. We will be learning about the types of plants and animals which are genetically engineered and part of our everyday food system and the reasons for which they have been transformed genetically. We will be looking at the issue from several different angles. You are encouraged to approach the topic with an open mind, and learn how the technology is being used. We will start by understanding the differences between traditional plant breeding, conventional plant breeding, transgenic technology and genome editing. The latter two processes are considered genetic engineering technologies but all of them constitute a continuum of techniques employed to improve domestic plants and animals. We will then go over the ethical paradigms related to genetically engineered food represented by the European and North American points of view. Finally, we will discuss the strengths and weaknesses associated with genetic engineering as a tool to solve world hunger.

Marie-Claude Fortin is a former Research Scientist with Agriculture and Agri-Food Canada, Associate Editor with Crop Science Society of America, Board Member of the Soil and Water Conservation Society and Adjunct Professor at the University of British Columbia (UBC) and currently responsible for the shared research infrastructure portfolio at the UBC Vice-President Research & Innovation Office. Her main areas of research expertise are crop and soil sciences with special interests in measuring and modeling crop development and various processes on agricultural land: water and nitrogen fertilizer flow through the soil profile, emissions of greenhouse gases and soil physical properties. Her research shows that sustainable crop management practices result in soil environments, which are conducive to resilient crop production and organic matter buildup, which is the process of storing carbon in soils, a most important process in this era of climate change. For the past 18 years, Marie-Claude has been teaching food systems courses at UBC [University of British Columbia], emphasizing impacts of decisions made at the corporate, national and local levels on the economic, environmental and social sustainability of the food system, including impacts of organic and industrial agriculture and adoption of genetically engineered crops and animals, on farmers and consumers.

WHEN (AGM): Monday, June 4th, 2018 at 6:00pm (doors open at 5:50pm)

WHEN (EVENT): Monday, June 4th, 2018 at 7:00pm (doors open at 6:45pm)

WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4

RSVP: Please RSVP at EventBrite (https://gmofoods.eventbrite.ca/) or email info@arpico.ca

Tickets are Needed

Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

Where can I contact the organizer with any questions? info@arpico.ca

Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.

Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.

Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca

I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

We look forward to seeing you there.
www.arpico.ca

I wonder if they’re going to be discussing AquAdvantage salmon, which was first mentioned here in a Dec. 4, 2015 post (scroll down about 40% of the way), again, in a May 20, 2016 posting (AquAdvantage salmon (genetically modified) approved for consumption in Canada), and, most recently, in a Sept. 13, 2017 posting where I was critiquing a couple of books (scroll down to the ‘Fish’ subtitle). Allegedly the fish were allegedly sold in the Canadian market,

Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.

Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.

As for gene editing, I don’t follow everything in that area of endeavour but I have (more or less) kept track of CRISPR ((clustered regularly interspaced short palindromic repeat). Just use CRISPR as the search term for the blog search function to find what’s here.

This looks to be a very interesting talk and good for ARPICO for tackling a ‘difficult’ topic. I hope they have a lively, convivial, and open discussion.

Patent Politics: a June 23, 2017 book launch at the Wilson Center (Washington, DC)

I received a June 12, 2017 notice (via email) from the Wilson Center (also know as the Woodrow Wilson Center for International Scholars) about a book examining patents and policies in the United States and in Europe and its upcoming launch,

Patent Politics: Life Forms, Markets, and the Public Interest in the United States and Europe

Over the past thirty years, the world’s patent systems have experienced pressure from civil society like never before. From farmers to patient advocates, new voices are arguing that patents impact public health, economic inequality, morality—and democracy. These challenges, to domains that we usually consider technical and legal, may seem surprising. But in Patent Politics, Shobita Parthasarathy argues that patent systems have always been deeply political and social.

To demonstrate this, Parthasarathy takes readers through a particularly fierce and prolonged set of controversies over patents on life forms linked to important advances in biology and agriculture and potentially life-saving medicines. Comparing battles over patents on animals, human embryonic stem cells, human genes, and plants in the United States and Europe, she shows how political culture, ideology, and history shape patent system politics. Clashes over whose voices and which values matter in the patent system, as well as what counts as knowledge and whose expertise is important, look quite different in these two places. And through these debates, the United States and Europe are developing very different approaches to patent and innovation governance. Not just the first comprehensive look at the controversies swirling around biotechnology patents, Patent Politics is also the first in-depth analysis of the political underpinnings and implications of modern patent systems, and provides a timely analysis of how we can reform these systems around the world to maximize the public interest.

Join us on June 23 [2017] from 4-6 pm [elsewhere the time is listed at 4-7 pm] for a discussion on the role of the patent system in governing emerging technologies, on the launch of Shobita Parthasarathy’s Patent Politics: Life Forms, Markets, and the Public Interest in the United States and Europe (University of Chicago Press, 2017).

You can find more information such as this on the Patent Politics event page,

Speakers

Keynote


  • Shobita Parthasarathy

    Fellow
    Associate Professor of Public Policy and Women’s Studies, and Director of the Science, Technology, and Public Policy Program, at University of Michigan

Moderator


  • Eleonore Pauwels

    Senior Program Associate and Director of Biology Collectives, Science and Technology Innovation Program
    Formerly European Commission, Directorate-General for Research and Technological Development, Directorate on Science, Economy and Society

Panelists


  • Daniel Sarewitz

    Co-Director, Consortium for Science, Policy & Outcomes Professor of Science and Society, School for the Future of Innovation in Society

  • Richard Harris

    Award-Winning Journalist National Public Radio Author of “Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Billions”

For those who cannot attend in person, there will be a live webcast. If you can be there in person, you can RSVP here (Note: The time frame for the event is listed in some places as 4-7 pm.) I cannot find any reason for the time frame disparity. My best guess is that the discussion is scheduled for two hours with a one hour reception afterwards for those who can attend in person.