Tag Archives: Anne-Sophie Carret

Canada’s Nanorobotics Laboratory unveils its ‘medical interventional infrastructure’

Located at the Polytechnique Montréal (Canada), the Nanorobotics Laboratory has built a one-of-a-kind ‘medical interventional infrastructure’, the result of a $4.6M investment from various levels of government and from private enterprise.

Before getting to the news release, here’s a video featuring Prof. Sylvain Martel who discusses his work by referencing the movie, Fantastic Voyage. There are subtitles for those whose French fails them,

From an Aug. 24, 2016 Polytechnique Montréal news release (also on EurekAlert),

Fifty years to the day after the film Fantastic Voyage was first shown in theatres, the Polytechnique Montréal Nanorobotics Laboratory is unveiling a unique medical interventional infrastructure devoted to the fight against cancer. The outcome of 15 years of research conducted by Professor Sylvain Martel and his team, it enables microscopic nanorobotic agents to be guided through the vascular systems of living bodies, delivering drugs to targeted areas.

An action-packed 100,000-kilometre journey in the human body

Fantastic Voyage recounted the adventure of a team of researchers shrunk to microscopic size who, aboard a miniature submarine, travelled into a patient’s body to conduct a medical operation in a surgically inoperable area. This science fiction classic has now been eclipsed by procedures and protocols developed by Professor Martel’s multidisciplinary team comprising engineers, scientists and experts from several medical specialties working together on these projects that herald the future of medicine.

“Our work represents a new vision of cancer treatments, with our goal being to develop the most effective transportation systems for the delivery of therapeutic agents right to tumour cells, to areas unreachable by conventional treatments,” says Professor Martel, holder of the Canada Research Chair in Medical Nanorobotics and Director of the Polytechnique Montréal Nanorobotics Laboratory.

Conveying nanorobotic agents into the bloodstream to reach the targeted area right up to the tiniest capillaries without getting lost in this network stretching about 100,000 kilometres—two-and-a-half times the Earth’s circumference—is a scenario that has been turned into reality. This is an adventure-filled journey for these microscopic vehicles that must confront the powerful onslaught of arterial blood flow, the mazes of the vascular network and the narrowness of the capillaries—just like the film’s heroes!

“Doctors” invisible to the naked eye

To conduct this fantastic voyage, Professor Martel’s team is developing various procedures, often playing a pioneering role. These include navigating carriers just a fraction of the thickness of a hair through the arteries using a clinical magnetic resonance imaging (MRI) platform, the first in the world to achieve this in a living organism, in 2006. This exploit was followed in 2011 by the guidance of drug-loaded micro-transporters into the liver of a rabbit.

Limits to the miniaturization of artificial nanorobots prevent them from penetrating the smallest blood vessels, however. For this, Professor Martel plans to have them play the role of Trojan horses, enclosing an “army” of special bacteria loaded with drugs that they will release at the edges of these small vessels.

Able to follow paths smaller than a red blood cell, these self-propelled bacteria move at high speed (200 microns per second, or 200 times their size per second). Once they are inside a tumour, they are able to naturally detect hypoxic (oxygen-starved) zones, which are the most active zones and the hardest to treat by conventional means, including radiotherapy, and then deliver the drug.

Professor Martel’s team has succeeded in using this procedure to administer therapeutic agents in colorectal tumours in mice, guiding them through a magnetic field. This has just been the subject of an article in the renowned journal Nature Nanotechnology, titled Magneto-gerotactic Bacteria Deliver Drug-containing Nanoliposomes to Tumour Hypoxic Regions. “This advanced procedure, which provides optimal targeting of a tumour while preserving surrounding healthy organs and tissue, unlike current chemotherapy or radiotherapy, heralds a new era in cancer treatment,” says Dr. Gerald Batist, Director of the McGill Centre for Translational Research in Cancer, based at the Jewish General Hospital, which is collaborating on the project.

Professor Martel’s projects also focus on the inaccessibility of certain parts of the body, such as the brain, to transporting agents. In 2015, his team also stood out by successfully opening a rat’s blood-brain barrier, temporarily and without damage, providing access to targeted areas of the brain. This feat was achieved through a slight rise in temperature caused by exposing nanoparticles to a radiofrequency field.

“At present, 98% of drug molecules cross the blood-brain barrier only with great difficulty,” notes Dr. Anne-Sophie Carret, a specialist in hematology-oncology at Montréal’s Centre hospitalier universitaire Sainte-Justine and one of the doctors collaborating on the project. “This means surgery is often the only way to treat some patients who have serious brain diseases. But certain tumours are inoperable because of their location. Radiation therapy, for its part, is not without medium- and long-term risk for the brain. This work therefore offers real hope to patients suffering from a brain tumour.”

Here’s who invested, how much they invested, and what the Nanorobotics Laboratory got for its money,

This new investment in the Nanorobotics Laboratory represents $4.6 million in infrastructure, with contributions of $1.85 million each from the Canada Foundation for Innovation (CFI), and the Government of Québec. Companies including Siemens Canada and Mécanik have also made strategic contributions to the project. This laboratory now combines platforms to help develop medical protocols for transferring the procedures developed by Professor Martel to a
clinical setting.

The laboratory contains the following equipment:

  • a clinical MRI platform to navigate microscopic carriers directly into specific areas in the vascular system and for 3D visualization of these carriers in the body;
  • a specially-developed platform that generates the required magnetic field sequences to guide special bacteria loaded with therapeutic agents into tumours;
  • a robotic station (consisting of a robotized bed) for moving a patient from one platform to another;
  • a hyperthermia platform for temporary opening of the blood-brain barrier;
  • a mobile X-ray system;
  • a facility to increase the production of these cancer-fighting bacteria.

Sylvain Martel’s most recent work with nanorobotic agents (as cited in the news release) was featured here in an Aug. 16, 2016 post.

Université de Montréal (Canada) and nanobots breech blood-brain barrier to deliver drugs to the brain

In the spirit of full disclosure, the March 25, 2014 news item on ScienceDaily describing the research about breeching the blood-brain barrier uses the term nanorobotic agents rather than nanobots, a term which makes my headline a lot catchier although less accurate. Getting back to the research,

Magnetic nanoparticles can open the blood-brain barrier and deliver molecules directly to the brain, say researchers from the University of Montreal, Polytechnique Montréal, and CHU Sainte-Justine. This barrier runs inside almost all vessels in the brain and protects it from elements circulating in the blood that may be toxic to the brain. The research is important as currently 98% of therapeutic molecules are also unable to cross the blood-brain barrier.

“The barrier is temporary [sic] opened at a desired location for approximately 2 hours by a small elevation of the temperature generated by the nanoparticles when exposed to a radio-frequency field,” explained first author and co-inventor Seyed Nasrollah Tabatabaei. “Our tests revealed that this technique is not associated with any inflammation of the brain. This new result could lead to a breakthrough in the way nanoparticles are used in the treatment and diagnosis of brain diseases,” explained the co-investigator, Hélène Girouard. “At the present time, surgery is the only way to treat patients with brain disorders. Moreover, while surgeons are able to operate to remove certain kinds of tumors, some disorders are located in the brain stem, amongst nerves, making surgery impossible,” added collaborator and senior author Anne-Sophie Carret.

A March 25, 2015 University of Montreal news release (also on EurekAlert), which originated the news item, notes that the technique was tested or rats or mice (murine model) and explains how the technology breeches the blood-brain barrier,

Although the technology was developed using murine models and has not yet been tested in humans, the researchers are confident that future research will enable its use in people. “Building on earlier findings and drawing on the global effort of an interdisciplinary team of researchers, this technology proposes a modern version of the vision described almost 40 years ago in the movie Fantastic Voyage, where a miniature submarine navigated in the vascular network to reach a specific region of the brain,” said principal investigator Sylvain Martel. In earlier research, Martel and his team had managed to manipulate the movement of nanoparticles through the body using the magnetic forces generated by magnetic resonance imaging (MRI) machines.

To open the blood-brain barrier, the magnetic nanoparticles are sent to the surface of the blood-brain barrier at a desired location in the brain. Although it was not the technique used in this study, the placement could be achieved by using the MRI technology described above. Then, the researchers generated a radio-frequency field. The nanoparticles reacted to the radio-frequency field by dissipating heat thereby creating a mechanical stress on the barrier. This allows a temporary and localized opening of the barrier for diffusion of therapeutics into the brain.

The technique is unique in many ways. “The result is quite significant since we showed in previous experiments that the same nanoparticles can also be used to navigate therapeutic agents in the vascular network using a clinical MRI scanner,” Martel remarked. “Linking the navigation capability with these new results would allow therapeutics to be delivered directly to a specific site of the brain, potentially improving significantly the efficacy of the treatment while avoiding systemic circulation of toxic agents that affect healthy tissues and organs,” Carret added. “While other techniques have been developed for delivering drugs to the blood-brain barrier, they either open it too wide, exposing the brain to great risks, or they are not precise enough, leading to scattering of the drugs and possible unwanted side effect,” Martel said.

Although there are many hurdles to overcome before the technology can be used to treat humans, the research team is optimistic. “Although our current results are only proof of concept, we are on the way to achieving our goal of developing a local drug delivery mechanism that will be able to treat oncologic, psychiatric, neurological and neurodegenerative disorders, amongst others,” Carret concluded.

Here’s a link to and a citation for the paper,

Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery by Seyed Nasrollah Tabatabaei, Hélène Girouard, Anne-Sophie Carret, and Sylvain Martel.Journal of Controlled Release, Volume 206, 28 May 2015, Pages 49–57,  DOI: 10.1016/j.jconrel.2015.02.027  Available online 25 February 2015

This paper is behind a paywall.

For anyone unfamiliar with French, University of Montreal is Université de Montréal.