Tag Archives: AquAdvantage salmon

Agriculture and gene editing … shades of the AquAdvantage salmon

Salmon are not the only food animals being genetically altered (more about that later in this post) we can now add cows, pigs, and more.

This November 15, 2018 article by Candice Choi on the Huffington Post website illustrates some of the excitement and terror associated with gene editing farm animals,

A company wants to alter farm animals by adding and subtracting genetic traits in a lab. It sounds like science fiction, but Recombinetics sees opportunity for its technology in the livestock industry.

But first, it needs to convince regulators that gene-edited animals are no different than conventionally bred ones. To make the technology appealing and to ease any fears that it may be creating Franken-animals, [emphasis mine] Recombinetics isn’t starting with productivity. Instead, it’s introducing gene-edited traits as a way to ease animal suffering.

“It’s a better story to tell,” said Tammy Lee, CEO of the St. Paul, Minnesota-based company.

For instance, animal welfare advocates have long criticized the way farmers use caustic paste or hot irons to dehorn dairy cows so the animals don’t harm each other. Recombinetics snips out the gene for growing horns so the procedure is unnecessary. [emphases mine]

Last year, a bull gene-edited by Recombinetics to have the dominant hornless trait sired several offspring. All were born hornless as expected, and are being raised at the University of California, Davis. Once the female offspring starts lactating, its milk will be tested for any abnormalities.

Another Recombinetics project: castration-free pigs.

When male piglets go through puberty, their meat can take on an unpleasant odour, something known as “boar taint.” To combat it, farmers castrate pigs, a procedure animal welfare advocates say is commonly performed without painkillers. Editing genes so that pigs never go through puberty would make castration unnecessary.

Also in development are dairy cows that could withstand higher temperatures, so the animals don’t suffer in hotter climates. [emphasis mine]

..

Before food from gene-edited animals can land on dinner tables, however, Recombinetics has to overcome any public unease about the technology.

Beyond worries about “playing God,” it may be an uncomfortable reminder of how modern food production already treats animals, said Paul Thompson, a professor of agriculture at Michigan State University.

“There’s an ethical question that’s been debated for at least the last 20 years, of whether you need to change the animal or change the system,” Thompson said.

Support for gene editing will also likely depend on how the technology is used: whether it’s for animal welfare, productivity or disease resistance. In August, a Pew study found 43 per cent of Americans supported genetically engineered animals for more nutritious meat.

Choi has written an interesting article, which includes a picture of the hornless cows embedded in the piece. One note: Choi makes reference to a milk glut. As far as I’m aware that’s not the case in Canada (at this time) but it is a problem in the US where in 2015 (?) farmers dumped some 43  million gallons of milk (October 12, 2016 article by Martha C. White for Money magazine).

As for the salmon, I’ve covered that story a few times during its journey to being approved for human consumption i Canada (my May 20, 2016 posting) to the discovery in 2017 that the genetically modified product, AquAdvantage salmon, had been introduced into the market, (from my Sept. 13, 2017 posting; scroll down about 40R of the way),

“Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post …”

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I. [Prince Edward Island; a province in Canada], which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

….

There was a bit of a kerfuffle about the whole affair but it seems Canadians have gone on to embrace the genetically modified product. At least that’s Christine Blank’s perspective in her Sept. 13, 2018 article (Canada, US embrace AquAdvantage GMO salmon, Brazil and China may be next) for the Genetic Literacy Project website,

Genetically modified salmon firm AquaBounty has found “very enthusiastic” buyers in Canada, according to president and CEO Ronald Stotish.

The first sale of the Maynard, Massachusetts, U.S.A.-based firm’s AquAdvantage salmon was made last June [2017], when unnamed buyers in Canada bought five metric tons at the going rate of traditional farmed Atlantic salmon, according to the company. Since then, AquaBounty has sold 10 additional metric tons of its AquAdvantage salmon to buyers in Canada

Meanwhile, Stotish revealed that AquAdvantage will be sold in the U.S. through established distributors.

“Once [AquaBounty salmon] is established in the market, the option for branding as a ‘sustainably produced’ food item can be considered,” he told investors.

Alex Gillis’ June 5, 2018 article for Macleans magazine suggests that Canadians may be a bit more doubtful about GM (genetically modified) salmon than Stotish seems to be believe,

An Ipsos Reid poll conducted for the Canadian Biotechnology Action Network in 2015 suggested that Canadians are concerned about GM foods, in spite of government assurances that they’re safe. About 60 per cent of respondents opposed genetically modifying crops and animals for food; nearly half supported a ban on all GM food. More than 20 years of surveys indicate that the vast majority of Canadians want to know when they’re eating GMOs. Fully 88 per cent of those polled in the 2015 survey said they want mandatory labelling.

Their concern hasn’t escaped the notice of those who raise and sell much of the salmon consumed in this country. Five years ago, Marine Harvest, one of the world’s largest producers of farmed salmon, called for labelling of GMOs. Today, it says that it doesn’t grow, sell or research GM salmon, a policy it shares with major salmon producers in Canada. And most big grocery retailers have stated they don’t want GM salmon. When contacted by Maclean’s for this story, Metro, Sobeys, Wal-Mart and Loblaws—four of Canada’s five largest food retailers—declared that none of AquaBounty’s GM salmon from 2017 was sold in their stores, saying neither Sea Delight Canada nor Montreal Fish Co. supplied them with Atlantic salmon at the time.

“I’m happy to report that we don’t source salmon from these two companies,” says Geneviève Grégoire, communications adviser with Metro Richelieu Inc., which operates or supplies 948 food stores in Quebec and Ontario, including Metro, Super C, Food Basics, Adonis and Première Moisson. “As we said before, we didn’t and will not sell GM Atlantic salmon.”

If you’re looking for a more comprehensive and critical examination of the issue, read Lucy Sharratt’s Sept. 1, 2018 article for the Canadian Centre for Policy Alternatives (CCPA).

June 4, 2018 talk in Vancouver (Canada): Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is hosting a talk on the topic of genetically modified food. Here’s more from their May 20, 2018 announcement (received via email),

Our third speaking event of the year has been scheduled for Monday, June 4th, 2018 at the Italian Cultural Centre – Museum & Art Gallery. Marie-Claude Fortin’s talk will discuss food systems derived from biotechnology (often referred to as GMO) and their comparison with traditional farming processes, both technical and ethical. You can read a summary of Marie-Claude Fortin’s lecture as well as her short professional biography at the bottom of this message.

Ahead of the speaking event, ARPICO will be holding its 2018 Annual General Meeting in the same location. We encourage everyone to participate in the AGM, have their say on ARPICO’s matters and possibly volunteer for the Board of Directors.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

6:00pm to 6:45pm – Annual General Meeting
7:00 pm – Lecture by Marie-Claude Fortin
~8:00 pm – Q & A Period
Mingling & Refreshments until about 9:45 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.

Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

In this lecture we will explore a part of our food system, which has received much press, but which consumers still misunderstand: food derived from biotechnology often referred to as genetically modified organisms. We will be learning about the types of plants and animals which are genetically engineered and part of our everyday food system and the reasons for which they have been transformed genetically. We will be looking at the issue from several different angles. You are encouraged to approach the topic with an open mind, and learn how the technology is being used. We will start by understanding the differences between traditional plant breeding, conventional plant breeding, transgenic technology and genome editing. The latter two processes are considered genetic engineering technologies but all of them constitute a continuum of techniques employed to improve domestic plants and animals. We will then go over the ethical paradigms related to genetically engineered food represented by the European and North American points of view. Finally, we will discuss the strengths and weaknesses associated with genetic engineering as a tool to solve world hunger.

Marie-Claude Fortin is a former Research Scientist with Agriculture and Agri-Food Canada, Associate Editor with Crop Science Society of America, Board Member of the Soil and Water Conservation Society and Adjunct Professor at the University of British Columbia (UBC) and currently responsible for the shared research infrastructure portfolio at the UBC Vice-President Research & Innovation Office. Her main areas of research expertise are crop and soil sciences with special interests in measuring and modeling crop development and various processes on agricultural land: water and nitrogen fertilizer flow through the soil profile, emissions of greenhouse gases and soil physical properties. Her research shows that sustainable crop management practices result in soil environments, which are conducive to resilient crop production and organic matter buildup, which is the process of storing carbon in soils, a most important process in this era of climate change. For the past 18 years, Marie-Claude has been teaching food systems courses at UBC [University of British Columbia], emphasizing impacts of decisions made at the corporate, national and local levels on the economic, environmental and social sustainability of the food system, including impacts of organic and industrial agriculture and adoption of genetically engineered crops and animals, on farmers and consumers.

WHEN (AGM): Monday, June 4th, 2018 at 6:00pm (doors open at 5:50pm)

WHEN (EVENT): Monday, June 4th, 2018 at 7:00pm (doors open at 6:45pm)

WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4

RSVP: Please RSVP at EventBrite (https://gmofoods.eventbrite.ca/) or email info@arpico.ca

Tickets are Needed

Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

Where can I contact the organizer with any questions? info@arpico.ca

Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.

Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.

Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca

I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

We look forward to seeing you there.
www.arpico.ca

I wonder if they’re going to be discussing AquAdvantage salmon, which was first mentioned here in a Dec. 4, 2015 post (scroll down about 40% of the way), again, in a May 20, 2016 posting (AquAdvantage salmon (genetically modified) approved for consumption in Canada), and, most recently, in a Sept. 13, 2017 posting where I was critiquing a couple of books (scroll down to the ‘Fish’ subtitle). Allegedly the fish were allegedly sold in the Canadian market,

Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.

Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.

As for gene editing, I don’t follow everything in that area of endeavour but I have (more or less) kept track of CRISPR ((clustered regularly interspaced short palindromic repeat). Just use CRISPR as the search term for the blog search function to find what’s here.

This looks to be a very interesting talk and good for ARPICO for tackling a ‘difficult’ topic. I hope they have a lively, convivial, and open discussion.

“Innovation and its enemies” and “Science in Wonderland”: a commentary on two books and a few thoughts about fish (1 of 2)

There’s more than one way to approach the introduction of emerging technologies and sciences to ‘the public’. Calestous Juma in his 2016 book, ”Innovation and Its Enemies; Why People Resist New Technologies” takes a direct approach, as can be seen from the title while Melanie Keene’s 2015 book, “Science in Wonderland; The Scientific Fairy Tales of Victorian Britain” presents a more fantastical one. The fish in the headline tie together, thematically and tenuously, both books with a real life situation.

Innovation and Its Enemies

Calestous Juma, the author of “Innovation and Its Enemies” has impressive credentials,

  • Professor of the Practice of International Development,
  • Director of the Science, Technology, and Globalization Project at Harvard Kennedy School’s Better Science and International Affairs,
  • Founding Director of the African Centre for Technology Studies in Nairobi (Kenya),
  • Fellow of the Royal Society of London, and
  • Foreign Associate of the US National Academy of Sciences.

Even better, Juma is an excellent storyteller perhaps too much so for a book which presents a series of science and technology adoption case histories. (Given the range of historical time periods, geography, and the innovations themselves, he always has to stop short.)  The breadth is breathtaking and Juma manages with aplomb. For example, the innovations covered include: coffee, electricity, mechanical refrigeration, margarine, recorded sound, farm mechanization, and the printing press. He also covers two recently emerging technologies/innovations: transgenic crops and AquAdvantage salmon (more about the salmon later).

Juma provides an analysis of the various ways in which the public and institutions panic over innovation and goes on to offer solutions. He also injects a subtle note of humour from time to time. Here’s how Juma describes various countries’ response to risks and benefits,

In the United States products are safe until proven risky.

In France products are risky until proven safe.

In the United Kingdom products are risky even when proven safe.

In India products are safe when proven risky.

In Canada products are neither safe nor risky.

In Japan products are either safe or risky.

In Brazil products are both safe and risky.

In sub-Saharan Africa products are risky even if they do not exist. (pp. 4-5)

To Calestous Juma, thank you for mentioning Canada and for so aptly describing the quintessentially Canadian approach to not just products and innovation but to life itself, ‘we just don’t know; it could be this or it could be that or it could be something entirely different; we just don’t know and probably will never know.’.

One of the aspects that I most appreciated in this book was the broadening of the geographical perspective on innovation and emerging technologies to include the Middle East, China, and other regions/countries. As I’ve  noted in past postings, much of the discussion here in Canada is Eurocentric and/or UScentric. For example, the Council of Canadian Academies which conducts assessments of various science questions at the request of Canadian and regional governments routinely fills the ‘international’ slot(s) for their expert panels with academics from Europe (mostly Great Britain) and/or the US (or sometimes from Australia and/or New Zealand).

A good example of Juma’s expanded perspective on emerging technology is offered in Art Carden’s July 7, 2017 book review for Forbes.com (Note: A link has been removed),

In the chapter on coffee, Juma discusses how Middle Eastern and European societies resisted the beverage and, in particular, worked to shut down coffeehouses. Islamic jurists debated whether the kick from coffee is the same as intoxication and therefore something to be prohibited. Appealing to “the principle of original permissibility — al-ibaha, al-asliya — under which products were considered acceptable until expressly outlawed,” the fifteenth-century jurist Muhamad al-Dhabani issued several fatwas in support of keeping coffee legal.

This wasn’t the last word on coffee, which was banned and permitted and banned and permitted and banned and permitted in various places over time. Some rulers were skeptical of coffee because it was brewed and consumed in public coffeehouses — places where people could indulge in vices like gambling and tobacco use or perhaps exchange unorthodox ideas that were a threat to their power. It seems absurd in retrospect, but political control of all things coffee is no laughing matter.

The bans extended to Europe, where coffee threatened beverages like tea, wine, and beer. Predictably, and all in the name of public safety (of course!), European governments with the counsel of experts like brewers, vintners, and the British East India Tea Company regulated coffee importation and consumption. The list of affected interest groups is long, as is the list of meddlesome governments. Charles II of England would issue A Proclamation for the Suppression of Coffee Houses in 1675. Sweden prohibited coffee imports on five separate occasions between 1756 and 1817. In the late seventeenth century, France required that all coffee be imported through Marseilles so that it could be more easily monopolized and taxed.

Carden who teaches economics at Stanford University (California, US) focuses on issues of individual liberty and the rule of law with regards to innovation. I can appreciate the need to focus tightly when you have a limited word count but Carden could have a spared a few words to do more justice to Juma’s comprehensive and focused work.

At the risk of being accused of the fault I’ve attributed to Carden, I must mention the printing press chapter. While it was good to see a history of the printing press and attendant social upheavals noting its impact and discovery in regions other than Europe; it was shocking to someone educated in Canada to find Marshall McLuhan entirely ignored. Even now, I believe it’s virtually impossible to discuss the printing press as a technology, in Canada anyway, without mentioning our ‘communications god’ Marshall McLuhan and his 1962 book, The Gutenberg Galaxy.

Getting back to Juma’s book, his breadth and depth of knowledge, history, and geography is packaged in a relatively succinct 316 pp. As a writer, I admire his ability to distill the salient points and to devote chapters on two emerging technologies. It’s notoriously difficult to write about a currently emerging technology and Juma even managed to include a reference published only months (in early 2016) before “Innovation and its enemires” was published in July 2016.

Irrespective of Marshall McLuhan, I feel there are a few flaws. The book is intended for policy makers and industry (lobbyists, anyone?), he reaffirms (in academia, industry, government) a tendency toward a top-down approach to eliminating resistance. From Juma’s perspective, there needs to be better science education because no one who is properly informed should have any objections to an emerging/new technology. Juma never considers the possibility that resistance to a new technology might be a reasonable response. As well, while there was some mention of corporate resistance to new technologies which might threaten profits and revenue, Juma didn’t spare any comments about how corporate sovereignty and/or intellectual property issues are used to stifle innovation and quite successfully, by the way.

My concerns aside, testimony to the book’s worth is Carden’s review almost a year after publication. As well, Sir Peter Gluckman, Chief Science Advisor to the federal government of New Zealand, mentions Juma’s book in his January 16, 2017 talk, Science Advice in a Troubled World, for the Canadian Science Policy Centre.

Science in Wonderland

Melanie Keene’s 2015 book, “Science in Wonderland; The scientific fairy tales of Victorian Britain” provides an overview of the fashion for writing and reading scientific and mathematical fairy tales and, inadvertently, provides an overview of a public education programme,

A fairy queen (Victoria) sat on the throne of Victoria’s Britain, and she presided over a fairy tale age. The nineteenth century witnessed an unprecedented interest in fairies and in their tales, as they were used as an enchanted mirror in which to reflection question, and distort contemporary society.30  …  Fairies could be found disporting themselves thought the century on stage and page, in picture and print, from local haunts to global transports. There were myriad ways in which authors, painters, illustrators, advertisers, pantomime performers, singers, and more, capture this contemporary enthusiasm and engaged with fairyland and folklore; books, exhibitions, and images for children were one of the most significant. (p. 13)

… Anthropologists even made fairies the subject of scientific analysis, as ‘fairyology’ determined whether fairies should be part of natural history or part of supernatural lore; just on aspect of the revival of interest in folklore. Was there a tribe of fairy creatures somewhere out thee waiting to be discovered, across the globe of in the fossil record? Were fairies some kind of folks memory of any extinct race? (p. 14)

Scientific engagements with fairyland was widespread, and not just as an attractive means of packaging new facts for Victorian children.42 … The fairy tales of science had an important role to play in conceiving of new scientific disciplines; in celebrating new discoveries; in criticizing lofty ambitions; in inculcating habits of mind and body; in inspiring wonder; in positing future directions; and in the consideration of what the sciences were, and should be. A close reading of these tales provides a more sophisticated understanding of the content and status of the Victorian sciences; they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants. (p. 18)

Segue: Should you be inclined to believe that society has moved on from fairies; it is possible to become a certified fairyologist (check out the fairyologist.com website).

“Science in Wonderland,” the title being a reference to Lewis Carroll’s Alice, was marketed quite differently than “innovation and its enemies”. There is no description of the author, as is the protocol in academic tomes, so here’s more from her webpage on the University of Cambridge (Homerton College) website,

Role:
Fellow, Graduate Tutor, Director of Studies for History and Philosophy of Science

Getting back to Keene’s book, she makes the point that the fairy tales were based on science and integrated scientific terminology in imaginative ways although some books with more success than other others. Topics ranged from paleontology, botany, and astronomy to microscopy and more.

This book provides a contrast to Juma’s direct focus on policy makers with its overview of the fairy narratives. Keene is primarily interested in children but her book casts a wider net  “… they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants.”

In a sense both authors are describing how technologies are introduced and integrated into society. Keene provides a view that must seem almost halcyon for many contemporary innovation enthusiasts. As her topic area is children’s literature any resistance she notes is primarily literary invoking a debate about whether or not science was killing imagination and whimsy.

It would probably help if you’d taken a course in children’s literature of the 19th century before reading Keene’s book is written . Even if you haven’t taken a course, it’s still quite accessible, although I was left wondering about ‘Alice in Wonderland’ and its relationship to mathematics (see Melanie Bayley’s December 16, 2009 story for the New Scientist for a detailed rundown).

As an added bonus, fairy tale illustrations are included throughout the book along with a section of higher quality reproductions.

One of the unexpected delights of Keene’s book was the section on L. Frank Baum and his electricity fairy tale, “The Master Key.” She stretches to include “The Wizard of Oz,” which doesn’t really fit but I can’t see how she could avoid mentioning Baum’s most famous creation. There’s also a surprising (to me) focus on water, which when it’s paired with the interest in microscopy makes sense. Keene isn’t the only one who has to stretch to make things fit into her narrative and so from water I move onto fish bringing me back to one of Juma’s emerging technologies

Part 2: Fish and final comments

AquAdvantage salmon (genetically modified) approved for consumption in Canada

This is an update of the AquAdvantage salmon story covered in my Dec. 4, 2015 post (scroll down about 40% of the way). At the time, the US Food and Drug Administration (FDA) had just given approval for consumption of the fish. There was speculation there would be a long hard fight over approval in Canada. This does not seem to have been the case, according to a May 10, 2016 news item announcing Health Canada’s on phys.org,

Canada’s health ministry on Thursday [May 19, 2016] approved a type of genetically modified salmon as safe to eat, making it the first transgenic animal destined for Canadian dinner tables.

This comes six months after US authorities gave the green light to sell the fish in American grocery stores.

The decisions by Health Canada and the US Food and Drug Administration follow two decades of controversy over the fish, which is an Atlantic salmon injected with genes from Pacific Chinook salmon and a fish known as the ocean pout to make it grow faster.

The resulting fish, called AquAdvantage Salmon, is made by AquaBounty Technologies in Massachusetts, and can reach adult size in 16 to 18 months instead of 30 months for normal Atlantic salmon.

A May 19, 2016 BIOTECanada news release on businesswire provides more detail about one of the salmon’s Canadian connections,

Canadian technology emanating from Memorial University developed the AquAdvantage salmon by introducing a growth hormone gene from Chinook salmon into the genome of Atlantic salmon. This results in a salmon which grows faster and reaches market size quicker and AquAdvantage salmon is identical to other farmed salmon. The AquAdvantage salmon also received US FDA approval in November 2015. With the growing world population, AquaBounty is one of many biotechnology companies offering safe and sustainable means to enhance the security and supply of food in the world. AquaBounty has improved the productivity of aquaculture through its use of biotechnology and modern breeding technics that have led to the development of AquAdvantage salmon.

“Importantly, today’s approval is a result of a four year science-based regulatory approval process which involved four federal government departments including Agriculture and AgriFood, Canada Food Inspection Agency, Environment and Climate Change, Fisheries and Oceans and Health which demonstrates the rigour and scope of science based regulatory approvals in Canada. Coupled with the report from the [US] National Academy of Sciences today’s [May 19, 2016] approval clearly demonstrates that genetic engineering of food is not only necessary but also extremely safe,” concluded Casey [Andrew Casey, President and CEO BIOTECanada].

There’s another connection, the salmon hatcheries are based in Prince Edward Island.

While BIOTECanada’s Andrew Casey is crowing about this approval, it should be noted that there was a losing court battle with British Columbia’s Living Oceans Society and Nova Scotia’s Ecology Action Centre both challenging the federal government’s approval. They may have lost *the* battle but, as the cliché goes, ‘the war is not over yet’. There’s an Issue about the lack of labeling and there’s always the  possibility that retailers and/or consumers may decide to boycott the fish.

As for BIOTECanada, there’s this description from the news release,

BIOTECanada is the national industry association with more than 230 members reflecting the diverse nature of Canada’s health, industrial and agricultural biotechnology sectors. In addition to providing significant health benefits for Canadians, the biotechnology industry has quickly become an essential part of the transformation of many traditional cornerstones of the Canadian economy including manufacturing, automotive, energy, aerospace and forestry industries. Biotechnology in all of its applications from health, agriculture and industrial is offering solutions for the collective population.

You can find the BIOTECanada website here.

Personally, I’m a bit ambivalent about it all. I understand the necessity for changing our food production processes but I do think more attention should be paid to consumers’ concerns and that organizations such as BIOTECanada could do a better job of communicating.

*’the’ added on Aug. 4, 2016.