Tag Archives: aquatic environment

Fish DJ makes discoveries about fish hearing

A March 2, 2021 University of Queensland press release (also on EurekAlert) announces research into how fish brains develop and how baby fish hear,

A DJ-turned-researcher at The University of Queensland has used her knowledge of cool beats to understand brain networks and hearing in baby fish

The ‘Fish DJ’ used her acoustic experience to design a speaker system for zebrafish larvae and discovered that their hearing is considerably better than originally thought.

This video clip features zebrafish larvae listening to music, MC Hammer’s ‘U Can’t Touch This’ (1990),

Here’s the rest of the March 2, 2021 University of Queensland press release,

PhD candidate Rebecca Poulsen from the Queensland Brain Institute said that combining this new speaker system with whole-brain imaging showed how larvae can hear a range of different sounds they would encounter in the wild.

“For many years my music career has been in music production and DJ-ing — I’ve found underwater acoustics to be a lot more complicated than air frequencies,” Ms Poulsen said.

“It is very rewarding to be using the acoustic skills I learnt in my undergraduate degree, and in my music career, to overcome the challenge of delivering sounds to our zebrafish in the lab.

“I designed the speaker to adhere to the chamber the larvae are in, so all the sound I play is accurately received by the larvae, with no loss through the air.”

Ms Poulsen said people did not often think about underwater hearing, but it was crucial for fish survival – to escape predators, find food and communicate with each other.

Ms Poulsen worked with Associate Professor Ethan Scott, who specialises in the neural circuits and behaviour of sensory processing, to study the zebrafish and find out how their neurons work together to process sounds.

The tiny size of the zebrafish larvae allows researchers to study their entire brain under a microscope and see the activity of each brain cell individually.

“Using this new speaker system combined with whole brain imaging, we can see which brain cells and regions are active when the fish hear different types of sounds,” Dr Scott said.

The researchers are testing different sounds to see if the fish can discriminate between single frequencies, white noise, short sharp sounds and sound with a gradual crescendo of volume.

These sounds include components of what a fish would hear in the wild, like running water, other fish swimming past, objects hitting the surface of the water and predators approaching.

“Conventional thinking is that fish larvae have rudimentary hearing, and only hear low-frequency sounds, but we have shown they can hear relatively high-frequency sounds and that they respond to several specific properties of diverse sounds,” Dr Scott said.

“This raises a host of questions about how their brains interpret these sounds and how hearing contributes to their behaviour.”

Ms Poulsen has played many types of sounds to the larvae to see which parts of their brains light up, but also some music – including MC Hammer’s “U Can’t Touch This”– that even MC Hammer himself enjoyed.

The March 3, 3021 story by Graham Readfearn originally published by The Guardian (also found on MSN News), has more details about the work and the researcher,

As Australia’s first female dance music producer and DJ, Rebecca Poulsen – aka BeXta – is a pioneer, with scores of tracks, mixes and hundreds of gigs around the globe under her belt.

But between DJ gigs, the 46-year-old is now back at university studying neuroscience at Queensland Brain Institute at the University of Queensland in Brisbane.

And part of this involves gently securing baby zebrafish inside a chamber and then playing them sounds while scanning their brains with a laser and looking at what happens through a microscope.

The analysis for the study doesn’t look at how the fish larvae react during Hammer [MC Hammer] time, but how their brain cells react to simple single-frequency sounds.

“It told us their hearing range was broader than we thought it was before,” she says.

Poulsen also tried more complex sounds, like white noise and “frequency sweeps”, which she describes as “like the sound when Wile E Coyote falls off a cliff” in the Road Runner cartoons.

“When you look at the neurons that light up at each sound, they’re unique. The fish can tell the difference between complex and different sounds.”

This is, happily, where MC Hammer comes in.

Out of professional and scientific curiosity – and also presumably just because she could – Poulsen played music to the fish.

She composed her own piece of dance music and that did seem to light things up.

But what about U Can’t Touch This?

“You can see when the vocal goes ‘ohhh-oh’, specific neurons light up and you can see it pulses to the beat. To me it looks like neurons responding to different parts of the music.

“I do like the track. I was pretty little when it came out and I loved it. I didn’t have the harem pants, though, but I did used to do the dance.”

How do you stop the fish from swimming away while you play them sounds? And how do you get a speaker small enough to deliver different volumes and frequencies without startling the fish?

For the first problem, the baby zebrafish – just 3mm long – are contained in a jelly-like substance that lets them breathe “but stops them from swimming away and keeps them nice and still so we can image them”.

For the second problem, Poulsen and colleagues used a speaker just 1cm wide and stuck it to the glass of the 2cm-cubed chamber the fish was contained in.

Using fish larvae has its advantages. “They’re so tiny we can see their whole brain … we can see the whole brain live in real time.”

If you have the time, I recommend reading Readfearn’s March 3, 3021 story in its entirety.

Poulsen as Bexta has a Wikipedia entry and I gather from Readfearn’s story that she is still active professionally.

Here’s a link to and a citation for the published paper,

Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system by Rebecca E. Poulsen, Leandro A. Scholz, Lena Constantin, Itia Favre-Bulle, Gilles C. Vanwalleghem, Ethan K. Scott. Current Biology DOI:https://doi.org/10.1016/j.cub.2021.01.103 Published: March 02, 2021

This paper appears to be open access.

There is an earlier version of the paper on bioRxiv made available for open peer review. Oddly, I don’t see any comments but perhaps I need to login.

Related research but not the same

I was surprised when a friend of mine in early January 2021 needed to be persuaded that noise in aquatic environments is a problem. If you should have any questions or doubts, perhaps this March 4, 2021 article by Amy Noise (that is her name) on the Research2Reality website can answer them,

Ever had builders working next door? Or a neighbour leaf blowing while you’re trying to make a phone call? Unwanted background noise isn’t just stressful, it also has tangible health impacts – for both humans and our marine cousins.

Sound travels faster and farther in water than in air. For marine creatures who rely heavily on sound, crowded ocean soundscapes could be more harmful than previously thought.

Marine animals use sound to navigate, communicate, find food and mates, spot predators, and socialize. But since the Industrial Revolution, humans have made the planet, and the oceans in particular, exponentially noisier.

From shipping and fishing, to mining and sonar, underwater anthropogenic noise is becoming louder and more prevalent. While parts of the ocean’s chorus are being drowned out, others are being permanently muted through hunting and habitat loss.

[An] international team, including University of Victoria biologist Francis Juanes, reviewed over 10,000 papers from the past 40 years. They found overwhelming evidence that anthropogenic noise is negatively impacting marine animals.

Getting back to Poulsen and Queensland, her focus is on brain development not noise although I imagine some of her work may be of use to researchers investigating anthropogenic noise and its impact on aquatic life.

‘Hunting’ pharmaceuticals and removing them from water

Pharmaceuticals are not the first pollutants people think of when discussing water pollution but, for those who don’t know, it’s a big issue and scientists at the University of Surrey (UK) have developed a technology they believe will help to relieve the contamination. From an April 10, 2017 University of Surrey press release (also on EurekAlert),

The research involves the detection and removal of pharmaceuticals in or from water, as contamination from pharmaceuticals can enter the aquatic environment as a result of their use for the treatment of humans and animals. This contamination can be excreted unchanged, as metabolites, as unused discharge or by drug manufacturers.

The research has found that a new type of ‘supermolecule’, calix[4], actively seeks certain pharmaceuticals and removes them from water.

Contamination of water is a serious concern for environmental scientists around the world, as substances include hormones from the contraceptive pill, and pesticides and herbicides from allotments. Contamination can also include toxic metals such as mercury, arsenic, or cadmium, which was previously used in paint, or substances that endanger vital species such as bees.

Professor Danil de Namor, University of Surrey Emeritus Professor and leader of the research, said: “Preliminary extraction data are encouraging as far as the use of this receptor for the selective removal of these drugs from water and the possibility of constructing a calix[4]-based sensing devices.

“From here, we can design receptors so that they can bind selectively with pollutants in the water so the pollutants can be effectively removed. This research will allow us to know exactly what is in the water, and from here it will be tested in industrial water supplies, so there will be cleaner water for everyone.

“The research also creates the possibility of using these materials for on-site monitoring of water, without having to transport samples to the laboratory.”

Dr Brendan Howlin, University of Surrey co-investigator, said: “This study allows us to visualise the specific receptor-drug interactions leading to the selective behaviour of the receptor. As well as the health benefits of this research, molecular simulation is a powerful technique that is applicable to a wide range of materials.

“We were very proud that the work was carried out with PhD students and a final year project student, and research activities are already taking place with the Department of Chemical and Processing Engineering (CPI) and the Advanced Technology Institute (ATI).

“We are also very pleased to see that as soon as the paper was published online by the European Journal of Pharmaceutical Sciences, we received invitations to give keynote lectures at two international conferences on pharmaceuticals in Europe later this year.”

That last paragraph is intriguing and it marks the first time I’ve seen that claim in a press release announcing the publication of a piece of research.

Here’s a link to and a citation for the paper,

A calix[4]arene derivative and its selective interaction with drugs (clofibric acid, diclofenac and aspirin) by Angela F Danil de Namor, Maan Al Nuaim, Jose A Villanueva Salas, Sophie Bryant, Brendan Howlin. European Journal of Pharmaceutical Sciences Volume 100, 30 March 2017, Pages 1–8 https://doi.org/10.1016/j.ejps.2016.12.027

This paper is behind a paywall.

University of Missouri and the US Geological survey study carbon nanotubes in aquatic environments

The University of Missouri’s Aug. 22, 2012 news release (by Timothy Wall) announces the result of a carbon nanotube study in aquatic environments,

A joint study by the University of Missouri and United States Geological Survey found that they [carbon nanotubes or CNTs] can be toxic to aquatic animals. The researchers urge that care be taken to prevent the release of CNTs into the environment as the materials enter mass production.

“The great promise of carbon nanotubes must be balanced with caution and preparation,” said Baolin Deng, professor and chair of chemical engineering at the University of Missouri. “We don’t know enough about their effects on the environment and human health. The EPA and other regulatory groups need more studies like ours to provide information on the safety of CNTs.”

CNTs are microscopically thin cylinders of carbon atoms that can be hundreds of millions of times longer than they are wide, but they are not pure carbon. Nickel, chromium and other metals used in the manufacturing process can remain as impurities. Deng and his colleagues found that these metals and the CNTs themselves can reduce the growth rates or even kill some species of aquatic organisms. The four species used in the experiment were mussels (Villosa iris), small flies’ larvae (Chironomus dilutus), worms (Lumbriculus variegatus) and crustaceans (Hyalella azteca).

“One of the greatest possibilities of contamination of the environment by CNTs comes during the manufacture of composite materials,” said Hao Li, associate professor of mechanical and aerospace engineering at MU. “Good waste management and handling procedures can minimize this risk. Also, to control long-term risks, we need to understand what happens when these composite materials break down.”

I found the abstract for the team’s paper gave a good overview of how the research was conducted,

Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00 g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the “metal-free” CNTs contributed to the toxicity.

Here’s the full citation and a link to the paper,

Toxicity of carbon nanotubes to freshwater aquatic invertebrates by Joseph N. Mwangi, Ning Wang, Christopher G. Ingersoll, Doug K. Hardesty, Eric L. Brunson, Hao Li, and Baolin Deng in Environmental Toxicology and Chemistry, Volume 31, Issue 8, pages 1823–1830, August 2012

For anyone who’s curious about what carbon nanotubes look like, here’s an image provided by the University of MIssouri,

Carbon Nanotubes Credit: Shaddack, Wikimedia Commons
Multi-walled carbon nanotubes. 3-15 walls, mean inner diameter 4nm, mean outer diameter 13-16 nm, length 1-10+ micrometers. Black clumpy powder, grains shown, partially smeared on paper. Scale in centimeters.

I could have included a larger version of the image but, given that we’re talking about the nanoscale, the smaller image seems more appropriate.