Tag Archives: Arava Leela Mohana Reddy

Mad about Madder in lithium-ion batteries

It hasn’t happened yet but it looks like the future might hold greener lithium-ion (Li-ion) batteries. According to the Dec. 11, 2012 news release on EurekAlert,

Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.

The goal, according to lead author Arava Leela Mohana Reddy, a research scientist in the Rice lab of materials scientist Pulickel Ajayan, is to create environmentally friendly batteries that solve many of the problems with lithium-ion batteries in use today.

Purpurin, left, extracted from madder root, center, is chemically lithiated, right, for use as an organic cathode in batteries. The material was developed as a less expensive, easier-to-recycle alternative to cobalt oxide cathodes now used in lithium-ion batteries. Credit: Ajayan Lab/Rice University

The Dec. 11, 2012 Rice University news release by Mike Williams, the origin for the one on EurekAlert, describes why the researchers are so interested in a more environmentally-friendly cathode,

While lithium-ion batteries have become standard in conventional electronics since their commercial introduction in 1991, the rechargeable units remain costly to manufacture, Reddy said. “They’re not environmentally friendly. They use cathodes of lithium cobalt oxide, which are very expensive. You have to mine the cobalt metal and manufacture the cathodes in a high-temperature environment. There are a lot of costs.

“And then, recycling is a big issue,” he said. “In 2010, almost 10 billion lithium-ion batteries had to be recycled, which uses a lot of energy. Extracting cobalt from the batteries is an expensive process.”

Reddy and his colleagues came across purpurin while testing a number of organic molecules for their ability to electrochemically interact with lithium and found purpurin most amenable to binding lithium ions. With the addition of 20 percent carbon to add conductivity, the team built a half-battery cell with a capacity of 90 milliamp hours per gram after 50 charge/discharge cycles. The cathodes can be made at room temperature, he said.

“It’s a new mechanism we are proposing with this paper, and the chemistry is really simple,” Reddy said. He suggested agricultural waste may be a source of purpurin, as may other suitable molecules, which makes the process even more economical.

Innovation in the battery space is needed to satisfy future demands and counter environmental issues like waste management, “and hence we are quite fascinated by the ability to develop alternative electrode technologies to replace conventional inorganic materials in lithium-ion batteries,” said Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

“We’re interested in developing value-added chemicals, products and materials from renewable feedstocks as a sustainable technology platform,” said co-lead author George John, a professor of chemistry at the City College of New York-CUNY and an expert on bio-based materials and green chemistry. “The point has been to understand the chemistry between lithium ions and the organic molecules. Now that we have that proper understanding, we can tap other molecules and improve capacity.”

For anyone who’s interested, you can read the researchers’ article (open access),

Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes by Arava Leela Mohana Reddy,  Subbiah Nagarajan, Porramate Chumyim, Sanketh R. Gowda, Padmanava Pradhan, Swapnil R. Jadhav, Madan Dubey,  George John & Pulickel M. Ajayan in Scientific Reports 2 Article number: 960 doi:10.1038/srep00960

You might also want to check out Dexter Johnson’s Nov. 26, 2012 posting (on Nanoclast, an IEEE [Institute of Electrical and Electronics Engineers] blog)where he mentions a technical deficiency (recharging becomes increasingly difficult) with the current Li-ion batteries in the context of his description of a new imaging technique.

Paint your own battery

Reserchers at Pulickel Ajayan’s laboratory at Rice University have developed a paintable battery (here’s the video),

The June 28, 2012 Rice University news release offers more details about how the paintable battery was achieved,

Lead author [research paper appeared in Nature’s online, open-access journal Scientific Reports] Neelam Singh, a Rice graduate student, and her team spent painstaking hours formulating, mixing and testing paints for each of the five layered components – two current collectors, a cathode, an anode and a polymer separator in the middle.

The materials were airbrushed onto ceramic bathroom tiles, flexible polymers, glass, stainless steel and even a beer stein to see how well they would bond with each substrate.

In the first experiment, nine bathroom tile-based batteries were connected in parallel. One was topped with a solar cell that converted power from a white laboratory light. When fully charged by both the solar panel and house current, the batteries alone powered a set of light-emitting diodes that spelled out “RICE” for six hours; the batteries provided a steady 2.4 volts.

The researchers reported that the hand-painted batteries were remarkably consistent in their capacities, within plus or minus 10 percent of the target. They were also put through 60 charge-discharge cycles with only a very small drop in capacity, Singh said.

You can also find the details and more images at the June 28, 2012 news item on physorg.com,

Each layer is an optimized stew. The first, the positive current collector, is a mixture of purified single-wall carbon nanotubes with carbon black particles dispersed in N-methylpyrrolidone. The second is the cathode, which contains lithium cobalt oxide, carbon and ultrafine graphite (UFG) powder in a binder solution. The third is the polymer separator paint of Kynar Flex resin, PMMA and silicon dioxide dispersed in a solvent mixture. The fourth, the anode, is a mixture of lithium titanium oxide and UFG in a binder, and the final layer is the negative current collector, a commercially available conductive copper paint, diluted with ethanol.

“The hardest part was achieving mechanical stability, and the separator played a critical role,” Singh said. “We found that the nanotube and the cathode layers were sticking very well, but if the separator was not mechanically stable, they would peel off the substrate. Adding PMMA gave the right adhesion to the separator.” Once painted, the tiles and other items were infused with the electrolyte and then heat-sealed and charged.

Singh said the batteries were easily charged with a small solar cell. She foresees the possibility of integrating paintable batteries with recently reported paintable solar cells to create an energy-harvesting combination that would be hard to beat. As good as the hand-painted batteries are, she said, scaling up with modern methods will improve them by leaps and bounds. “Spray painting is already an industrial process, so it would be very easy to incorporate this into industry,” Singh said.

Ajayan’s lab must be a very exciting place to work given the research that has been published in 2012 so far (my Serendipity and coaxial cables post; my Nanosponges clean up spilled oil and release the oil for future use post; my Good heat, bad heat, and cooling oils post).

And to give credit to everyone: co-authors of the paper are graduate students Charudatta Galande and Akshay Mathkar, alumna Wei Gao, now a postdoctoral researcher at Los Alamos National Laboratory, and research scientist Arava Leela Mohana Reddy, all of Rice; Rice Quantum Institute intern Andrea Miranda; and Alexandru Vlad, a former research associate at Rice, now a postdoctoral researcher at the Université Catholique de Louvain, Belgium.