Tag Archives: Archimedes

Physics in James Joyce’s Ulysses and physics amongst the penguins

So James Joyce included some physics in his novel, Ulysses (serialized in The Little Review from March 1918 to December1920 and published as a novel in February 1922)?

That’s not the only surprise. Apparently, penguins perform some interesting feats from a physics perspective. I have two stories about penguin physics with the latest research being published in June 2023.

Let’s start with literature.

James Joyce, Ulysses, and 19th century physics

This article came to my attention in April 2023 but the material is from 2021/22. Thankfully, since it’s a literature topic, timing doesn’t matter quite as much as it does for other topics. From a December 22, 2021 American Institute of Physics news release highlights an intriguing article in The Physics Teacher,

James Joyce’s book “Ulysses” is widely considered a 20th-century literary masterpiece. It also contains a surprising amount of 19th-century classical physics, according to Harry Manos, faculty member at Los Angeles City College.

“Ulysses” chronicles the ordinary life of the protagonist Leopold Bloom over a single day in 1904. In The Physics Teacher, by AIP Publishing, Manos reveals several connections that have not been analyzed before in the Joycean literature between classic physics prevalent during that time and various passages of the book.

“‘Ulysses’ exemplifies what physics students and teachers should realize — namely, physics and literature are not mutually exclusive,” Manos said.

Manos shows how Joyce uses the optics of concave and convex mirrors to metaphorically parallel “Ulysses” with Homer’s “Odyssey,” and how Joyce uses physics to show Bloom’s strengths and weaknesses in science.

Here’s a link to and a citation for the paper,

Physics in James Joyce’s Ulysses by Harry Manos. The Physics Teacher 60, 6–10 (2022) DOI: https://doi.org/10.1119/5.0028832 Published online: January 1, 2022

This paper is behind a paywall but there is a freely available abstract

Ulysses by James Joyce (1882–1941) has a surprising amount of 19th-century, classical physics. The physics community is familiar with the name James Joyce mainly through the word “quark” (onomatopoeic for the sound of a duck or seagull), which Murray Gell-Mann (1929-2019 – Physics Nobel Prize 1969) sourced from Joyce’s Finnegan’s Wake. Ulysses, however, was ranked number one in 1998 on the Modern Library “100 Best Novels” list and is, in whole or in part, in the literature curriculum in university English departments worldwide. The fact that Ulysses contains so much classical physics should not be surprising. Joyce’s friend Eugene Jolas observed: “the range of subjects he [Joyce] enjoyed discussing was a wide one … [including] certain sciences, particularly physics, geometry, and mathematics.” Knowing physics can enhance everyone’s understanding of this novel and enrich its entertainment value. Ulysses exemplifies what physics students (science and non-science majors) and physics teachers should realize, namely, physics and literature are not mutually exclusive.

In addition to the December 22, 2021 American Institute of Physics news release which provides some detail about the physics in Ulysses, there’s Jennifer Ouellette’s April 2, 2023 article for Ars Technica where in addition to the material in the news release, she adds some intriguing information, Note: Links have been removed,

In Chapter 15 (“Circe”), one of the characters says, “You can call me up by sunphone any old time”—a phrase that also appears in Joyce’s handwritten notes for the chapter. While Manos was unable to trace a specific source for this term, there was a similar device that had been invented some 20 years earlier: Alexander Graham Bell’s photophone, co-invented with his assistant Charles Sumner Tainter.

Unlike the telephone, which relies on electricity, the photophone transmitted sound on a beam of light. Bell’s voice was projected through the instrument to a mirror, causing similar vibrations in the mirror. When he directed sunlight into the mirror, it captured and projected the mirror’s vibrations via reflection, which were then transformed back into sound at the receiving end of the projection. Bell’s device never found immediate application, but it’s arguably the progenitor to modern fiber-optic telecommunications.

There are several other instances of physics (both correct and incorrect/outdated) mentioned in Ulysses, per Manos, including Bloom misunderstanding the science of X-rays; his confusion over parallax; trying to figure out the source of buoyancy in the Dead Sea; ruminating on Archimedes’ “burning glass”; seeing rainbow colors in a water spray; and pondering why he hears the ocean when he places a seashell to his ear. Manos believes introducing literature like Ulysses into physics courses could be a boon for non-majors, as well as encouraging physics and engineering students to learn more about literature.

In fact, Manos notes that an earlier 1995 paper introduced a handy introductory physics problem involving distance, velocity, and time. Ulysses opens with Stephen Dedalus and his roommate, Buck Mulligan, standing at the Martello tower overlooking a bay at Sandy Cove. …

Now onto …

Penguin physics

Two stories, two research teams, and six months separate their papers.

A February 7, 2023 news item on phys.org features work from a team of Japanese scientists studying how penguins turn in the water, Note: A link has been removed,

Penguins constitute a fascinating family of flightless birds, that although somewhat clumsy on land, are extremely talented swimmers. Their incredible maneuverability in water has captivated biologists for decades, with the first hydrodynamic studies on their swimming dating back to the 1970s.

Although a rare few studies have clarified some of the physics behind penguins’ dexterity, most of them have focused on forward swimming rather than turning. While one may argue that existing studies on the turning mechanisms of flying birds could shed some light on this topic, water is 800 hundred times denser than air, and thus the turning mechanisms employed are presumably very different between these media.

In an effort to bridge this knowledge gap, a pair of Japanese scientists from Tokyo Institute of Technology (Tokyo Tech), including Associate Professor Hiroto Tanaka, recently conducted a study. The main goal of this work, which was published in Journal of Experimental Biology, was to gain a better understanding of the three dimensional (3D) kinematics and hydrodynamic forces that enable penguins to turn underwater.

Penguin Physics: Understanding the Mechanisms of Underwater Turning Maneuvers in Penguins
Credit: Tokyo Institute of Technology

A February 8, 2023 Tokyo Institute of Technology (Tokyo Tech) press release, which originated the news item, describes the research in more technical detail,

The researchers recorded two sessions of gentoo penguins (Pygoscelis papua) free swimming in a large water tank at Nagasaki Penguin Aquarium, Japan, using a dozen or more underwater cameras. Then, thanks to a technique called 3D direct linear transformation, they were able to integrate data from all the footage and conduct detailed 3D motion analyses by tracking various points on the penguins’ bodies and wings.

Armed with these data, the researchers then established a mathematical 3D body model of the penguins. This model covered the orientation and angles of the body, the different positions and motions of the wings during each stroke, the associated kinematic parameters and hydrodynamic forces, and various turning metrics. Through statistical analyses and comparisons with the experimental data, the researchers validated the model and gained insight into the role of the wings and other body movements during turning.

The main findings of the study were related to how penguins generate centripetal force to assist their turns. They achieve this, in part, is by maintaining outward banking, which means that they tilt their bodies such that their belly faces inward. In powered turns—those in which the penguin flaps its wings—the majority of changes in direction occur during the upstroke, whereas the forward thrust occurs during the downstroke. In addition, it turns out that penguins flap their wings with a certain asymmetry during powered turns. “We found contralateral differences in wing motion; the wing on the inside of the turn becomes more elevated during the upstroke than the other,” explains Assoc. Prof. Tanaka, “Quasi-steady calculations of wing forces confirmed that this asymmetry in wing motion with the outward banking contributes to the generation of centripetal force during the upstroke. In the following downstroke, the inside wing generates thrust and counter yaw torque to brake the turning.”

Overall, these findings contribute to a greater understanding of how penguins turn when swimming, which is relevant from both biological and engineering standpoints. However, Assoc. Prof. Tanaka remarks that these findings bring but one piece to the puzzle: “The mechanisms of various other maneuvers in penguins, such as rapid acceleration, pitch up and down, and jumping out of the water, are still unknown. Our study serves as the basis for further understanding of more complex maneuvers.”

Let us hope future research helps fully clarify how penguins achieve their mesmerizing aquatic prowess!

Here’s a link to and a citation for the paper,

Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force by Natsuki Harada and Hiroto Tanaka. J Exp Biol (2022) 225 (24): jeb244124. DOI: https://doi.org/10.1242/jeb.244124 Published online December 22, 2022

This paper is open access.

Penguins are the fastest swimming birds and this team published a paper about their propulsion six months after the ‘turning’ team according to a June 20, 2023 news item on phys.org,

Penguins aren’t just cute: they’re also speedy. Gentoo penguins are the fastest swimming birds in the world, and that ability comes from their unique and sophisticated wings.

Researchers from the University of Chinese Academy of Sciences, Chinese Academy of Sciences, and King Mongkut’s Institute of Technology Ladkrabang [KMITL or KMIT Ladkrabang; Thailand] developed a model to explore the forces and flow structures created by penguin wings underwater. They determined that wing feathering is the main factor for generating thrust. Their findings have been published in the journal Physics of Fluids.

An American Institute of Physics June 20, 2022 news release (also on EurekAlert), which originated the news item, provides further explanation of how penguins are able to achieve their swimming speed,

Penguin wings, aka flippers, bear some resemblance to airplane wings covered with scaly feathers. To maximize efficiency underwater instead of in the air, penguin wings are shorter and flatter than those of flying birds.

The animals can adjust swimming posture by active wing feathering (changing the angle of their wings to reduce resistance), pitching, and flapping. Their dense, short feathers can also lock air between the skin and water to reduce friction and turbulence.

“Penguins’ superior swimming ability to start/brake, accelerate/decelerate, and turn swiftly is due to their freely waving wings. They allow penguins to propel and maneuver in the water and maintain balance on land,” said author Prasert Prapamonthon. “Our research team is always curious about sophisticated creatures in nature that would be beneficial to mankind.”

The hydrodynamic model takes in information about the flapping and feathering of the wings, including amplitude, frequency, and direction, and the fluid parameters, such as velocity and viscosity. Using the immersed boundary method, it solves for the motion of the wing and the thrust, lift, and lateral forces.

To establish the movement of wings across species, researchers use the ratio of wing flapping speed to forward speed. This value avoids any differences between air and water. Additionally, the authors define an angle of thrust, determined by the angle of the wings. Both of these parameters have a significant impact on the penguin’s thrust.

“We proposed the concept of angle of thrust, which explains why finned wings generate thrust: Thrust is primarily determined by the angle of attack and the relative angle of the wings to the forward direction,” said Prapamonthon. “The angle of thrust is an important concept in studying the mechanism of thrust generated by flapping motion and will be useful for designing mechanical wing motion.”

These findings can guide the design of aquatic vehicles by quickly estimating propulsion performance without high experimental or computational costs.

In the future, the team plans to examine a more realistic 3D penguin model. They will incorporate different wing properties and motion, such as starting, braking, turning, and jumping in and out of water.

Here’s a link to and a citation for the paper,

Hydrodynamic performance of a penguin wing: Effect of feathering and flapping by Hao Zhanzhou (郝占宙), Yin Bo (银波), Prasert Prapamonthon, Yang Guowei (杨国). Physics of Fluids 35 (6), 061907 (2023) DOI: https://doi.org/10.1063/5.0147776 Published online: June 20, 2023

This paper is open access.

Antikythera: a new Berggruen Institute program and a 2,000 year old computer

Starting with the new Antikythera program at the Berggruen Institute before moving onto the Antikythera itself, one of my favourite scientific mysteries.

Antikythera program at the Berggruen Institute

An October 5, 2022 Berggruen Institute news release (also received via email) announces a program exploring the impact of planetary-scale computation and invites applications for the program’s first ‘studio’,

Antikythera is convening over 75 philosophers, technologists, designers, and scientists in seminars, design research studios, and global salons to create new models that shift computation toward more viable long-term futures: https://antikythera.xyz/

Applications are now open for researchers to join Antikythera’s fully-funded five month Studio in 2023, launching at the Berggruen Institute in Los Angeles: https://antikythera.xyz/apply/

Today [October 5, 2022] the Berggruen Institute announced that it will incubate Antikythera, an initiative focused on understanding and shaping the impact of computation on philosophy, global society, and planetary systems. Antikythera will engage a wide range of thinkers at the intersections of software, speculative thought, governance, and design to explore computation’s ultimate pitfalls and potentials. Research will range from the significance of machine intelligence and the geopolitics of AI to new economic models and the long-term project of composing a healthy planetary society.

“Against a background of rising geopolitical tensions and an accelerating climate crisis, technology has outpaced our theory. As such, we are less interested in applying philosophy to the topic of computation than generating new ideas from a direct encounter with it.” said Benjamin Bratton, Professor at the University of California, San Diego, and director of the new program. “The purpose of Antikythera is to reorient the question “what is computation for?” and to model what it may become. That is a project that is not only technological but also philosophical, political, and ecological.”

Antikythera will begin this exploration with its Studio program, applications for which are now open at antikythera.xyz/apply/. The Studio program will take place over five months in spring 2023 and bring together researchers from across the world to work in multidisciplinary teams. These teams will work on speculative design proposals, and join 75+ Affiliate Researchers for workshops, talks, and design sprints that inform thinking and propositions around Antikythera’s core research topics. Affiliate Researchers will include philosophers, technologists, designers, scientists, and other thinkers and practitioners. Applications for the program are due November 11, 2022.

Program project outcomes will include new combinations of theory, cinema, software, and policy. The five initial research themes animating this work are:

Synthetic Intelligence: the longer-term implications of machine intelligence, particularly as seen through the lens of artificial language

Hemispherical Stacks: the multipolar geopolitics of planetary computation

Recursive Simulations: the emergence of simulation as an epistemological technology, from scientific simulation to VR/AR

Synthetic Catallaxy: the ongoing organization of computational economics, pricing, and planning

Planetary Sapience: the evolutionary emergence of natural/artificial intelligence, and its role in composing a viable planetary condition

The program is named after the Antikythera Mechanism, the world’s first known computer, used more than 2,000 years ago to predict the movements of constellations and eclipses decades in advance. As an origin point for computation, it combined calculation, orientation and cosmology, dimensions of practice whose synergies may be crucial in setting our planetary future on a better course than it is on today.

Bratton continues, “The evolution of planetary intelligence has also meant centuries of destruction; its future must be radically different. We must ask, what future would make this past worth it? Taking the question seriously demands a different sort of speculative and practical philosophy and a corresponding sort of computation.”

Bratton is a philosopher of technology and Professor at the University of California, San Diego, and author of many books including The Stack: On Software and Sovereignty (MIT Press). His most recent book is The Revenge of the Real: Politics for a Post-Pandemic World (Verso Books), exploring the implications for political philosophy of COVID-19. Associate directors are Ben Cerveny, technologist, speculative designer, and director of the Amsterdam-based Foundation for Public Code, and Stephanie Sherman, strategist, writer, and director of the MA Narrative Environments program at Central St. Martins, London. The Studio is directed by architect and creative director Nicolay Boyadjiev.

In addition to the Studio, program activities will include a series of invitation-only planning salons inviting philosophers, designers, technologists, strategists, and others to discuss how to best interpret and intervene in the future of planetary-scale computation, and the historic philosophical and geopolitical force that it represents. These salons began in London in October 2022 and will continue in locations across the world including in Berlin; Amsterdam; Los Angeles; San Francisco; New York; Mexico City; Seoul; and Venice.

The announcement of Antikythera at the Berggruen Institute follows the recent spinoff of the Transformations of the Human school, successfully incubated at the Institute from 2017-2021.

“Computational technology covering the planet represents one of the largest and most urgent philosophical opportunities of our time,” said Nicolas Berggruen, Chairman and Co-Founder of the Berggruen Institute. “It is with great pleasure that we invite Antikythera to join our work at the Institute. Together, we can develop new ways of thinking to support planetary flourishing in the years to come.”

Web: Antikythera.xyz
Social: Antikythera_xyz on Twitter, Instagram, and Linkedin.
Email: contact@antikythera.xyz

Applications were opened on October, 4, 2022, the deadline is November 11, 2022 followed by interviews. Participants will be confirmed by December 11, 2022. Here are a few more details from the application portal,

Who should apply to the Studio?

Antikythera hopes to bring together a diverse cohort of researchers from different backgrounds, disciplines, perspectives, and levels of experience. The Antikythera research themes engage with global challenges that necessitate harnessing a diversity of thought and expertise. Anyone who is passionate about the research themes of the Antikythera program is strongly encouraged to apply. We accept applications from every discipline and background, from established to emerging researchers. Applicants do not need to meet any specific set of educational or professional experience.

Is the program free?

Yes, the program is free. You will be supported to cover the cost of housing, living expenses, and all program-related fieldwork travel along with a monthly stipend. Any other associated program costs will also be covered by the program.

Is the program in person and full-time?

Yes, the Studio program requires a full-time commitment (PhD students must also be on leave to participate). There is no part-time participation option. Though we understand this commitment may be challenging logistically for some individuals, we believe it is important for the Studio’s success. We will do our best to enable an environment that is comfortable and safe for participants from all backgrounds. Please do not hesitate to contact us if you may require any accommodations or have questions regarding the full-time, in-person nature of the program.

Do I need a Visa?

The Studio is a traveling program with time spent between the USA, Mexico, and South Korea. Applicable visa requirements set by these countries will apply and will vary depending on your nationality. We are aware that current visa appointment wait times may preclude some individuals who would require a brand new visa from being able to enter the US by January, and we are working to ensure access to the program for all (if not for January 2023, then for future Studio cohorts). We will therefore ask you to identify your country of origin and passport/visa status in the application form so we can work to enable your participation. Anyone who is passionate about the research themes of the Antikythera program is strongly encouraged to apply.

For those who like to put a face to a name, you can find out more about the program and the people behind it on this page.

Antikythera, a 2000 year old computer & 100 year old mystery

As noted in the Berggruen Institute news release, the Antikythera Mechanism is considered the world’s first computer (as far as we know). The image below is one of the best known illustrations of the device as visualized by researchers,

Exploded model of the Cosmos gearing of the Antikythera Mechanism. ©2020 Tony Freeth.

Briefly, the Antikythera mechanism was discovered at the turn of the twentieth century in 1901 by sponge divers off the coast of Greece. Philip Chrysopoulos’s September 21, 2022 article for The Greek Reporter gives more details in an exuberant style (Note: Links have been removed),

… now—more than 120 years later—the astounding machine has been recreated once again, using 3-D imagery, by a brilliant group of researchers from University College London (UCL).

Not only is the recreation a thing of great beauty and amazing genius, but it has also made possible a new understanding of how it worked.

Since only eighty-two fragments of the original mechanism are extant—comprising only one-third of the entire calculator—this left researchers stymied as to its full capabilities.

Until this moment [in 2020 according to the copyright for the image], the front of the mechanism, containing most of the gears, has been a bit of a Holy Grail for marine archeologists and astronomers.

Professor Tony Freeth says in an article published in the periodical Scientific Reports: “Ours is the first model that conforms to all the physical evidence and matches the descriptions in the scientific inscriptions engraved on the mechanism itself.”

“The sun, moon and planets are displayed in an impressive tour de force of ancient Greek brilliance,” Freeth said.

The largest surviving piece of the mechanism, referred to by researchers as “Fragment A,” has bearings, pillars, and a block. Another piece, known as “Fragment D,” has a mysterious disk along with an extraordinarily intricate 63-toothed gear and a plate.

The inscriptions—just discovered recently by researchers—on the back cover of the mechanism have a description of the cosmos and the planets, shown by beads of various colors, and move on rings set around the inscriptions.

By employing the information gleaned from recent x-rays of the computer and their knowledge of ancient Greek mathematics, the UCL researchers have now shown that they can demonstrate how the mechanism determined the cycles of the planets Venus and Saturn.

Evaggelos Vallianatos, author of many books on the Antikythera Mechanism writing at Greek Reporter said that it was much more than a mere mechanism. It was a sophisticated, mind-bogglingly complex astronomical computer, he said “and Greeks made it.”

They employed advanced astronomy, mathematics, metallurgy, and engineering to do so, constructing the astronomical device 2,200 years ago. These scientific facts of the computer’s age and its flowless high-tech nature profoundly disturbed some of the scientists who studied it.

A few Western scientists of the twentieth century were shocked by the Antikythera Mechanism, Vallianatos said. They called it an astrolabe for several decades and refused to call it a computer. The astrolabe, a Greek invention, is a useful instrument for calculating the position of the Sun and other prominent stars. Yet, its technology is rudimentary compared to that of the Antikythera device.

In 2015, Kyriakos Efstathiou, a professor of mechanical engineering at the Aristotle University of Thessaloniki and head of the group which studied the Antikythera Mechanism said: “All of our research has shown that our ancestors used their deep knowledge of astronomy and technology to construct such mechanisms, and based only on this conclusion, the history of technology should be re-written because it sets its start many centuries back.”

The professor further explained that the Antikythera Mechanism is undoubtedly the first machine of antiquity which can be classified by the scientific term “computer,” because “it is a machine with an entry where we can import data, and this machine can bring and create results based on a scientific mathematical scale.

In 2016, yet another astounding discovery was made when an inscription on the device was revealed—something like a label or a user’s manual for the device.

It included a discussion of the colors of eclipses, details used at the time in the making of astrological predictions, including the ability to see exact times of eclipses of the moon and the sun, as well as the correct movements of celestial bodies.

Inscribed numbers 76, 19 and 223 show maker “was a Pythagorean”

On one side of the device lies a handle that begins the movement of the whole system. By turning the handle and rotating the gauges in the front and rear of the mechanism, the user could set a date that would reveal the astronomical phenomena that would potentially occur around the Earth.

Physicist Yiannis Bitsakis has said that today the NASA [US National Aeronautics and Space Adiministration] website can detail all the eclipses of the past and those that are to occur in the future. However, “what we do with computers today, was done with the Antikythera Mechanism about 2000 years ago,” he said.

The stars and night heavens have been important to peoples around the world. (This September 18, 2020 posting highlights millennia old astronomy as practiced by indigenous peoples in North America, Australia, and elsewhere. There’s also this March 17, 2022 article “How did ancient civilizations make sense of the cosmos, and what did they get right?” by Susan Bell of University of Southern California on phys.org.)

I have covered the Antikythera in three previous postings (March 17, 2021, August 3, 2016, and October 2, 2012) with the 2021 posting being the most comprehensive and the one featuring Professor Tony Freeth’s latest breakthrough.

However, 2022 has blessed us with more as this April 11, 2022 article by Jennifer Ouellette for Ars Technica reveals (Note: Links have been removed)

The mysterious Antikythera mechanism—an ancient device believed to have been used for tracking the heavens—has fascinated scientists and the public alike since it was first recovered from a shipwreck over a century ago. Much progress has been made in recent years to reconstruct the surviving fragments and learn more about how the mechanism might have been used. And now, members of a team of Greek researchers believe they have pinpointed the start date for the Antikythera mechanism, according to a preprint posted to the physics arXiv repository. Knowing that “day zero” is critical to ensuring the accuracy of the device.

“Any measuring system, from a thermometer to the Antikythera mechanism, needs a calibration in order to [perform] its calculations correctly,” co-author Aristeidis Voulgaris of the Thessaloniki Directorate of Culture and Tourism in Greece told New Scientist. “Of course it wouldn’t have been perfect—it’s not a digital computer, it’s gears—but it would have been very good at predicting solar and lunar eclipses.”

Last year, an interdisciplinary team at University College London (UCL) led by mechanical engineer Tony Freeth made global headlines with their computational model, revealing a dazzling display of the ancient Greek cosmos. The team is currently building a replica mechanism, moving gears and all, using modern machinery. The display is described in the inscriptions on the mechanism’s back cover, featuring planets moving on concentric rings with marker beads as indicators. X-rays of the front cover accurately represent the cycles of Venus and Saturn—462 and 442 years, respectively. 

The Antikythera mechanism was likely built sometime between 200 BCE and 60 BCE. However, in February 2022, Freeth suggested that the famous Greek mathematician and inventor Archimedes (sometimes referred to as the Leonardo da Vinci of antiquity) may have actually designed the mechanism, even if he didn’t personally build it. (Archimedes died in 212 BCE at the hands of a Roman soldier during the siege of Syracuse.) There are references in the writings of Cicero (106-43 BCE) to a device built by Archimedes for tracking the movement of the Sun, Moon, and five planets; it was a prized possession of the Roman general Marcus Claudius Marcellus. According to Freeth, that description is remarkably similar to the Antikythera mechanism, suggesting it was not a one-of-a-kind device.

Voulgaris and his co-authors based their new analysis on a 223-month cycle called a Saros, represented by a spiral inset on the back of the device. The cycle covers the time it takes for the Sun, Moon, and Earth to return to their same positions and includes associated solar and lunar eclipses. Given our current knowledge about how the device likely functioned, as well as the inscriptions, the team believed the start date would coincide with an annular solar eclipse.

“This is a very specific and unique date [December 22, 178 BCE],” Voulgaris said. “In one day, there occurred too many astronomical events for it to be coincidence. This date was a new moon, the new moon was at apogee, there was a solar eclipse, the Sun entered into the constellation Capricorn, it was the winter solstice.”

Others have made independent calculations and arrived at a different conclusion: the calibration date would more likely fall sometime in the summer of 204 BCE, although Voulgaris countered that this doesn’t explain why the winter solstice is engraved so prominently on the device.

“The eclipse predictions on the [device’s back] contain enough astronomical information to demonstrate conclusively that the 18-year series of lunar and solar eclipse predictions started in 204 BCE,” Alexander Jones of New York University told New Scientist, adding that there have been four independent calculations of this. “The reason such a dating is possible is because the Saros period is not a highly accurate equation of lunar and solar periodicities, so every time you push forward by 223 lunar months… the quality of the prediction degrades.”

Read Ouellette’s April 11, 2022 article for a pretty accessible description of the work involved in establishing the date. Here’s a link to and a citation for the latest attempt to date the Antikythera,

The Initial Calibration Date of the Antikythera Mechanism after the Saros spiral mechanical Apokatastasis by Aristeidis Voulgaris, Christophoros Mouratidis, Andreas Vossinakis. arXiv > physics > arXiv:2203.15045 Submission history: From: Aristeidis Voulgaris Mr [view email] [v1] Mon, 28 Mar 2022 19:17:57 UTC (1,545 KB)

It’s open access. The calculations are beyond me otherwise, it’s quite readable.

Getting back to the Berggruen Institute and its Antikythera program/studio, good luck to all the applicants (the Antikythera application portal).

Archimedes as in nano-archimedes and graphene nanoscrolls

Over the last 10 days or so, I’ve stumbled across two references to Archimedes in my constant search for information on nanotechnology. Not remembering my ancient Greeks very well, I found this about him on Wikipedia (Note: Links and footnotes have been removed),

Archimedes of Syracuse (Greek: Ἀρχιμήδης; c. 287 BC – c. 212 BC) was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Among his advances in physics are the foundations of hydrostatics, statics and an explanation of the principle of the lever. He is credited with designing innovative machines, including siege engines and the screw pump that bears his name. Modern experiments have tested claims that Archimedes designed machines capable of lifting attacking ships out of the water and setting ships on fire using an array of mirrors.

Archimedes is generally considered to be the greatest mathematician of antiquity and one of the greatest of all time.

His influence lives on as he’s referenced in an Aug. 15, 2013 news item on Nanowerk concerning graphene nanoscrolls,

Researchers at Umeå University, together with researchers at Uppsala University and Stockholm University, show in a new study how nitrogen doped graphene can be rolled into perfect Archimedean nano scrolls by adhering magnetic iron oxide nanoparticles on the surface of the graphene sheets. The new material may have very good properties for application as electrodes in for example Li-ion batteries.

The Aug. 15, 2013 Umeå University press release,which originated the news item, provides technical details,

In the study the researchers have modified the graphene by replacing some of the carbon atoms by nitrogen atoms. By this method they obtain anchoring sites for the iron oxide nanoparticles that are decorated onto the graphene sheets in a solution process. In the decoration process one can control the type of iron oxide nanoparticles that are formed on the graphene surface, so that they either form so called hematite (the reddish form of iron oxide that often is found in nature) or maghemite, a less stable and more magnetic form of iron oxide.

“Interestingly we observed that when the graphene is decorated by maghemite, the graphene sheets spontaneously start to roll into perfect Archimedean nano scrolls, while when decorated by the less magnetic hematite nanoparticles the graphene remain as open sheets, says Thomas Wågberg, Senior lecturer at the Department of Physics at Umeå University.

The nanoscrolls can be visualized as traditional “Swiss rolls” where the sponge-cake represents the graphene, and the creamy filling is the iron oxide nanoparticles. The graphene nanoscrolls are however around one million times thinner.

The results that now have been published in Nature Communications are conceptually interesting for several reasons. It shows that the magnetic interaction between the iron oxide nanoparticles is one of the main effects behind the scroll formation. It also shows that the nitrogen defects in the graphene lattice are necessary for both stabilizing a sufficiently high number of maghemite nanoparticles, and also responsible for “buckling” the graphene sheets and thereby lowering the formation energy of the nanoscrolls.

The process is extraordinary efficient. Almost 100 percent of the graphene sheets are scrolled. After the decoration with maghemite particles the research team could not find any open graphene sheets.

Moreover, they showed that by removing the iron oxide nanoparticles by acid treatment the nanoscrolls again open up and go back to single graphene sheets

The researchers have an image showing a partially reopened scroll (despite references to Archimedes and swiss rolls, I see a plant leaf or flower unfurling),

Caption: Snapshot of a partially re-opened nanoscroll. The atomic layer thick graphene resembles a thin foil with some few wrinkles. [Courtesy of  Umeå University]

Caption: Snapshot of a partially re-opened nanoscroll. The atomic layer thick graphene resembles a thin foil with some few wrinkles. [Courtesy of Umeå University]

Here’s a link to and a citation for the published paper,

Tiva Sharifi, Eduardo Gracia-Espino, Hamid Reza Barzegar, Xueen Jia, Florian Nitze, Guangzhi Hu, Per Nordblad, Cheuk-Wai Tai, and Thomas Wågberg: Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles, Nature Communications (2013), DOI:10.1038/ncomms3319.

The article is behind a paywall.

The other Archimedes reference is regarding a new website, nano-archimedes, mentioned in an Aug. 10, 2013 news item on Nanowerk,

Nano-archimedes is a Technology Computer Aided Design tool (TCAD) for the simulation of electron transport in nanometer scale semiconductor devices (nanodevices). It is based on the Wigner equation, a convenient reformulation of the Schrödinger equation in terms of a phase-space, which allows the application of stochastic particles methods and the extension towards mixed state kinetic descriptions such as the Wigner-Boltzmann equation.

There’s more on the nano-archimedes homepage,

It is an experimental code for validation and analysis of the compatibility of existing quantum particle concepts in algorithmic schemes. Our preliminary results have clearly shown that time-dependent, full quantum and multi-dimensional simulations of electron transport can be achieved with no special computational requirements. The code is already able to simulate time dependent phenomena such as two-dimensional wave phase breaking and single electron ballistic transport with open boundary conditions aiming to have, very soon, full quantum self-consistent calculations for nanodevices.

nano-archimedes runs both on serial and parallel machines and the parallelization scheme is based on OpenMP – a standard library for parallel calculations. The code is entirely written in C and can compile on a huge variety of machines without any particular effort. The only external dependence is OpenMP, everything else is embedded in the code to make it truly cross-platform.

I found the background of the team members behind this effort rather interesting, from the Team page,

Main developer and principal maintainer of the code:
Jean Michel Sellier, IICT, Bulgarian Academy of Sciences, Bulgaria, supported by the AComIn project.

Main developer, theory and physical analysis:
Mihail Nedjalkov, Institute for Microelectronics, TU Wien, Austria.

Advisory board:
Ivan Dimov, Bulgarian Academy of Sciences, Bulgaria.
Siegfried Selberherr, Institute for Microelectronics, TU Wien, Austria.

Website Master:
Marc Sellier, working at Selliweb, Italy.

I don’t often have a chance to mention Bulgaria and I expect that’s due to the fact that my linguistic skills are largely English with a little French flavour thrown into the mix. The consequence is that I’m confined and while  I realize English is the dominant language in science there’s still a lot of scientific materials that never finds its way into English and I don’t trust machine translations.

Antikythera; ancient computer and a 100 year adventure

This post has been almost two years in the making, which seems laughable when considering that the story starts in 100 BCE (before the common era).

Picture ancient Greece and a Roman sailing ship holding an object we know as an Antikythera, named after the Greek island near where the ship was wrecked and where it lay undiscovered until 1900. From the Dec.10, 2010 posting by GrrlScientist on the Guardian science blogs,

Two years ago [2008], a paper was published in Nature describing the function of the oldest known scientific computer, a device built in Greece around 100 BCE. Recovered in 1901 from a shipwreck near the island of Antikythera, this mechanism had been lost and unknown for 2000 years. It took one century for scientists to understand its purpose: it is an astronomical clock that determines the positions of celestial bodies with extraordinary precision. In 2010, a fully-functional replica was constructed out of Lego.

Here’s the video mentioned by Grrl Scientist,

As noted in the video, it is a replica that requires twice as many gears as the original to make the same calculations. It seems we still haven’t quite caught up with the past.

Bob Yirka’s April 4, 2011 article for phys.org describes some of the research involved in decoding the mechanism,

If modern research is correct, the device worked by hand cranking a main dial to display a chosen date, causing the wheels and gears inside to display (via tabs on separate dials) the position of the sun, moon, and the five known planets at that time, for that date; a mechanical and technical feat that would not be seen again until the fourteenth century in Europe with precision clocks.

Now James Evans and his colleagues at the University of Puget Sound in Washington State, have shown that instead of trying to use the same kind of gear mechanism to account for the elliptical path the Earth takes around the sun, and subsequent apparent changes in speed, the inventor of the device may have taken a different tack, and that was to stretch or distort the zodiac on the dial face to change the width of the spaces on the face to make up for the slightly different amount of time that is represented as the hand moves around the face.

In a paper published in the Journal for the History of Astronomy, Evans describes how he and his team were able to examine x-rays taken of the corroded machine (69 then later 88 degrees of the circle) and discovered that the two circles that were used to represent the Zodiac and Egyptian calendar respectively, did indeed differ just enough to account for what appeared to be the irregular movement during different parts of the year.

Though not all experts agree on the findings, this new evidence does appear to suggest that an attempt was made by the early inventor to take into account the elliptical nature of the Earth orbiting the sun, no small thing.

Jenny Winder’s June 11, 2012 article for Universe Today and republished on phys.org provides more details about the gears and the theories behind the device,

The device is made of bronze and contains 30 gears though it may have had as many as 72 originally. Each gear was meticulously hand cut with between 15 and 223 triangular teeth, which were the key to discovering the mechanism’s various functions. It was based on theories of astronomy and mathematics developed by Greek astronomers who may have drawn from earlier Babylonian astronomical theories and its construction could be attributed to the astronomer Hipparchus or, more likely, Archimedes the famous Greek mathematician, physicist, engineer, inventor and astronomer. … [emphases mine]

I’ve highlighted the verbs which suggest they’re still conjecturing as to where the theories and knowledge to develop this ancient computer came from. Yirka’s article mentions that some folks believe that the Antikythera may be the result of alien visitations, along with the more academic guesses about the Babylonians and the Greeks.

I strongly recommend reading the articles and chasing down more videos about the Antikythera on Youtube as the story is fascinating and given the plethora of material (including a book and website by Jo Marchant, Decoding the Heavens), I don’t seem to be alone in my fascination.

Mathematics as a literary endeavour

Like novelists, mathematicians are creative authors. With diagrams, symbolism, metaphor, double entendre and elements of surprise, a good proof reads like a good story.

So starts Corrie Goldman’s May 8, 2012 article about Stanford University (California, US) professor Reviel Netz and his new book, Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic. (Goldman’s article was republished from the May 7, 2012 article in the Stanford Report.) The article was written in a Question and Answer format and here is an excerpt from the Stanford website,

You have said that a math proof is more focused on the properties of text than any other human endeavor, short of poetry.

Mathematics is structured around texts – proofs – that have very rich protocols in terms of their textual arrangement, whether in the use of extra-verbal elements – diagrams – in the very layout, in the use of a particular formulaic language, in the structuring of the text. And its success or failure depends entirely on features residing in the text itself. It is really an activity very powerfully concentrated around the manipulation of written documents, more perhaps than anywhere else in science, and comparable, then, to modern poetry.

How do you define or identify literary-like elements like metaphors in a mathematical proof?

Metaphor is fairly standard in mathematics. Mathematics can only become truly interesting and original when it involves the operation of seeing something as something else – a pair of similarly looking triangles, say, as a site for an abstract proportion; a diagonal crossing through the set of all real numbers.

You have said that a proof can be seen as having a complex narrative and even elements of surprise much like how a story unfolds. Can you give me an example?

You tell me, “I’m going to find the volume of a sphere.” And then you do nothing of the kind, going instead through an array of unrelated results – a cone here, a funny polygon there, various proportion results and general problems; then you make a thought experiment that shows how a sphere is like a series of cones produced from a certain funny polygon and, lo and behold, all the results do allow one a very quick determination of the volume of the sphere. Here is surprise and narrative. That’s Archimedes’ “Sphere and Cylinder” proof; it’s a typical mechanism in his works. Other authors are often much more sedate and progress in a more stately manner; this is Euclid’s approach.

These questions are answers derived from an April 13, 2012 workshop (Mathematics as Literature / Mathematics as Text Workshop) held at Stanford University.

The description for Netz’s book, Ludic Proof, provides more insight into his work (excerpted from the description),

This book represents a new departure in science studies: an analysis of a scientific style of writing, situating it within the context of the contemporary style of literature. Its philosophical significance is that it provides a novel way of making sense of the notion of a scientific style. For the first time, the Hellenistic mathematical corpus – one of the most substantial extant for the period – is placed centre-stage in the discussion of Hellenistic culture as a whole. Professor Netz argues that Hellenistic mathematical writings adopt a narrative strategy based on surprise, a compositional form based on a mosaic of apparently unrelated elements, and a carnivalesque profusion of detail. He further investigates how such stylistic preferences derive from, and throw light on, the style of Hellenistic poetry.

The word ‘carnivalesque’ made me think of literary theorist Mikhail Mikhailovich Bakhtin, from the Wikipedia essay (footnotes and links removed),

Bakhtin had a difficult life and career, and few of his works were published in an authoritative form during his lifetime.As a result, there is substantial disagreement over matters that are normally taken for granted: in which discipline he worked (was he a philosopher or literary critic?), how to periodize his work, and even which texts he wrote (see below). He is known for a series of concepts that have been used and adapted in a number of disciplines: dialogism, the carnivalesque, the chronotope, heteroglossia and “outsidedness” (the English translation of a Russian term vnenakhodimost, sometimes rendered into English—from French rather than from Russian—as “exotopy”). [emphasis mine] Together these concepts outline a distinctive philosophy of language and culture that has at its center the claims that all discourse is in essence a dialogical exchange and that this endows all language with a particular ethical or ethico-political force.

I didn’t find that description as helpful as I hoped and so clicked to Carnivalesque and here I found a liaison between this term and Netz’s response about mathematical proofs unfolding as complex narratives with surprises,

Carnivalesque is a term coined by the Russian critic Mikhail Bakhtin, which refers to a literary mode that subverts and liberates the assumptions of the dominant style or atmosphere through humor and chaos.

It’s not the first time I’ve across a reference to Bakhtin’s theories, specifically ‘carnivalesque’, in the context of scientific and/or technical writing. Somehow one doesn’t usually associate chaos, humour, and surprise with those writing forms and yet, ‘carnivalesque’ keeps popping up.