Tag Archives: Arizona State University

Not enough talk about nano risks?

It’s not often that a controversy amongst visual artists intersects with a story about carbon nanotubes, risk, and the roles that  scientists play in public discourse.

Nano risks

Dr. Andrew Maynard, Director of the Risk Innovation Lab at Arizona State University, opens the discussion in a March 29, 2016 article for the appropriately named website, The Conversation (Note: Links have been removed),

Back in 2008, carbon nanotubes – exceptionally fine tubes made up of carbon atoms – were making headlines. A new study from the U.K. had just shown that, under some conditions, these long, slender fiber-like tubes could cause harm in mice in the same way that some asbestos fibers do.

As a collaborator in that study, I was at the time heavily involved in exploring the risks and benefits of novel nanoscale materials. Back then, there was intense interest in understanding how materials like this could be dangerous, and how they might be made safer.

Fast forward to a few weeks ago, when carbon nanotubes were in the news again, but for a very different reason. This time, there was outrage not over potential risks, but because the artist Anish Kapoor had been given exclusive rights to a carbon nanotube-based pigment – claimed to be one of the blackest pigments ever made.

The worries that even nanotech proponents had in the early 2000s about possible health and environmental risks – and their impact on investor and consumer confidence – seem to have evaporated.

I had covered the carbon nanotube-based coating in a March 14, 2016 posting here,

Surrey NanoSystems (UK) is billing their Vantablack as the world’s blackest coating and they now have a new product in that line according to a March 10, 2016 company press release (received via email),

A whole range of products can now take advantage of Vantablack’s astonishing characteristics, thanks to the development of a new spray version of the world’s blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack.

Oddly, the company news release notes Vantablack S-VIS could be used in consumer products while including the recommendation that it not be used in products where physical contact or abrasion is possible,

… Its ability to deceive the eye also opens up a range of design possibilities to enhance styling and appearance in luxury goods and jewellery [emphasis mine].

… “We are continuing to develop the technology, and the new sprayable version really does open up the possibility of applying super-black coatings in many more types of airborne or terrestrial applications. Possibilities include commercial products such as cameras, [emphasis mine] equipment requiring improved performance in a smaller form factor, as well as differentiating the look of products by means of the coating’s unique aesthetic appearance. It’s a major step forward compared with today’s commercial absorber coatings.”

The structured surface of Vantablack S-VIS means that it is not recommended for applications where it is subject to physical contact or abrasion. [emphasis mine] Ideally, it should be applied to surfaces that are protected, either within a packaged product, or behind a glass or other protective layer.

Presumably Surrey NanoSystems is looking at ways to make its Vantablack S-VIS capable of being used in products such as jewellery, cameras, and other consumers products where physical contact and abrasions are a strong possibility.

Andrew has pointed questions about using Vantablack S-VIS in new applications (from his March 29, 2016 article; Note: Links have been removed),

The original Vantablack was a specialty carbon nanotube coating designed for use in space, to reduce the amount of stray light entering space-based optical instruments. It was this far remove from any people that made Vantablack seem pretty safe. Whatever its toxicity, the chances of it getting into someone’s body were vanishingly small. It wasn’t nontoxic, but the risk of exposure was minuscule.

In contrast, Vantablack S-VIS is designed to be used where people might touch it, inhale it, or even (unintentionally) ingest it.

To be clear, Vantablack S-VIS is not comparable to asbestos – the carbon nanotubes it relies on are too short, and too tightly bound together to behave like needle-like asbestos fibers. Yet its combination of novelty, low density and high surface area, together with the possibility of human exposure, still raise serious risk questions.

For instance, as an expert in nanomaterial safety, I would want to know how readily the spray – or bits of material dislodged from surfaces – can be inhaled or otherwise get into the body; what these particles look like; what is known about how their size, shape, surface area, porosity and chemistry affect their ability to damage cells; whether they can act as “Trojan horses” and carry more toxic materials into the body; and what is known about what happens when they get out into the environment.

Risk and the roles that scientists play

Andrew makes his point and holds various groups to account (from his March 29, 2016 article; Note: Links have been removed),

… in the case of Vantablack S-VIS, there’s been a conspicuous absence of such nanotechnology safety experts in media coverage.

This lack of engagement isn’t too surprising – publicly commenting on emerging topics is something we rarely train, or even encourage, our scientists to do.

And yet, where technologies are being commercialized at the same time their safety is being researched, there’s a need for clear lines of communication between scientists, users, journalists and other influencers. Otherwise, how else are people to know what questions they should be asking, and where the answers might lie?

In 2008, initiatives existed such as those at the Center for Biological and Environmental Nanotechnology (CBEN) at Rice University and the Project on Emerging Nanotechnologies (PEN) at the Woodrow Wilson International Center for Scholars (where I served as science advisor) that took this role seriously. These and similar programs worked closely with journalists and others to ensure an informed public dialogue around the safe, responsible and beneficial uses of nanotechnology.

In 2016, there are no comparable programs, to my knowledge – both CBEN and PEN came to the end of their funding some years ago.

Some of the onus here lies with scientists themselves to make appropriate connections with developers, consumers and others. But to do this, they need the support of the institutions they work in, as well as the organizations who fund them. This is not a new idea – there is of course a long and ongoing debate about how to ensure academic research can benefit ordinary people.

Media and risk

As mainstream media such as newspapers and broadcast news continue to suffer losses in audience numbers, the situation vis à vis science journalism has changed considerably since 2008. Finding information is more of a challenge even for the interested.

As for those who might be interested, the chances of catching their attention are considerably more challenging. For example, some years ago scientists claimed to have achieved ‘cold fusion’ and there were television interviews (on the 60 minutes tv programme, amongst others) and cover stories in Time magazine and Newsweek magazine, which you could find in the grocery checkout line. You didn’t have to look for it. In fact, it was difficult to avoid the story. Sadly, the scientists had oversold and misrepresented their findings and that too was extensively covered in mainstream media. The news cycle went on for months. Something similar happened in 2010 with ‘arsenic life’. There was much excitement and then it became clear that scientists had overstated and misrepresented their findings. That news cycle was completed within three or fewer weeks and most members of the public were unaware. Media saturation is no longer what it used to be.

Innovative outreach needs to be part of the discussion and perhaps the Vantablack S-VIS controversy amongst artists can be viewed through that lens.

Anish Kapoor and his exclusive rights to Vantablack

According to a Feb. 29, 2016 article by Henri Neuendorf for artnet news, there is some consternation regarding internationally known artist, Anish Kapoor and a deal he has made with Surrey Nanosystems, the makers of Vantablack in all its iterations (Note: Links have been removed),

Anish Kapoor provoked the fury of fellow artists by acquiring the exclusive rights to the blackest black in the world.

The Indian-born British artist has been working and experimenting with the “super black” paint since 2014 and has recently acquired exclusive rights to the pigment according to reports by the Daily Mail.

The artist clearly knows the value of this innovation for his work. “I’ve been working in this area for the last 30 years or so with all kinds of materials but conventional materials, and here’s one that does something completely different,” he said, adding “I’ve always been drawn to rather exotic materials.”

This description from his Wikipedia entry gives some idea of Kapoor’s stature (Note: Links have been removed),

Sir Anish Kapoor, CBE RA (Hindi: अनीश कपूर, Punjabi: ਅਨੀਸ਼ ਕਪੂਰ), (born 12 March 1954) is a British-Indian sculptor. Born in Bombay,[1][2] Kapoor has lived and worked in London since the early 1970s when he moved to study art, first at the Hornsey College of Art and later at the Chelsea School of Art and Design.

He represented Britain in the XLIV Venice Biennale in 1990, when he was awarded the Premio Duemila Prize. In 1991 he received the Turner Prize and in 2002 received the Unilever Commission for the Turbine Hall at Tate Modern. Notable public sculptures include Cloud Gate (colloquially known as “the Bean”) in Chicago’s Millennium Park; Sky Mirror, exhibited at the Rockefeller Center in New York City in 2006 and Kensington Gardens in London in 2010;[3] Temenos, at Middlehaven, Middlesbrough; Leviathan,[4] at the Grand Palais in Paris in 2011; and ArcelorMittal Orbit, commissioned as a permanent artwork for London’s Olympic Park and completed in 2012.[5]

Kapoor received a Knighthood in the 2013 Birthday Honours for services to visual arts. He was awarded an honorary doctorate degree from the University of Oxford in 2014.[6] [7] In 2012 he was awarded Padma Bhushan by Congress led Indian government which is India’s 3rd highest civilian award.[8]

Artists can be cutthroat but they can also be prankish. Take a look at this image of Kapoor and note the blue background,

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

I don’t know why or when this image (used to illustrate Andrew’s essay) was taken so it may be coincidental but the background for the image brings to mind, Yves Klein and his International Klein Blue (IKB) pigment. From the IKB Wikipedia entry,

L'accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) - Foundation Stedelijk Museum Amsterdam Collection

L’accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) – Foundation Stedelijk Museum Amsterdam Collection

Here’s more from the IKB Wikipedia entry (Note: Links have been removed),

International Klein Blue (IKB) was developed by Yves Klein in collaboration with Edouard Adam, a Parisian art paint supplier whose shop is still in business on the Boulevard Edgar-Quinet in Montparnasse.[1] The uniqueness of IKB does not derive from the ultramarine pigment, but rather from the matte, synthetic resin binder in which the color is suspended, and which allows the pigment to maintain as much of its original qualities and intensity of color as possible.[citation needed] The synthetic resin used in the binder is a polyvinyl acetate developed and marketed at the time under the name Rhodopas M or M60A by the French pharmaceutical company Rhône-Poulenc.[2] Adam still sells the binder under the name “Médium Adam 25.”[1]

In May 1960, Klein deposited a Soleau envelope, registering the paint formula under the name International Klein Blue (IKB) at the Institut national de la propriété industrielle (INPI),[3] but he never patented IKB. Only valid under French law, a soleau enveloppe registers the date of invention, according to the depositor, prior to any legal patent application. The copy held by the INPI was destroyed in 1965. Klein’s own copy, which the INPI returned to him duly stamped is still extant.[4]

In short, it’s not the first time an artist has ‘owned’ a colour. Kapoor is not a performance artist as was Klein but his sculptural work lends itself to spectacle and to stimulating public discourse. As to whether or not, this is a prank, I cannot say but it has stimulated a discourse which ranges from intellectual property and artists to the risks of carbon nanotubes and the role scientists could play in the discourse about the risks associated with emerging technologies.

Regardless of how is was intended, bravo to Kapoor.

More reading

Andrew’s March 29, 2016 article has also been reproduced on Nanowerk and Slate.

Johathan Jones has written about Kapoor and the Vantablack  controversy in a Feb. 29, 2016 article for The Guardian titled: Can an artist ever really own a colour?

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

Managing risks in a world of converging technology (the fourth industrial revolution)

Finally there’s an answer to the question: What (!!!) is the fourth industrial revolution? (I took a guess [wrongish] in my Nov. 20, 2015 post about a special presentation at the 2016 World Economic Forum’s IdeasLab.)

Andrew Maynard in a Dec. 3, 2015 think piece (also called a ‘thesis’) for Nature Nanotechnology answers the question,

… an approach that focuses on combining technologies such as additive manufacturing, automation, digital services and the Internet of Things, and … is part of a growing movement towards exploiting the convergence between emerging technologies. This technological convergence is increasingly being referred to as the ‘fourth industrial revolution’, and like its predecessors, it promises to transform the ways we live and the environments we live in. (While there is no universal agreement on what constitutes an ‘industrial revolution’, proponents of the fourth industrial revolution suggest that the first involved harnessing steam power to mechanize production; the second, the use of electricity in mass production; and the third, the use of electronics and information technology to automate production.)

In anticipation of the the 2016 World Economic Forum (WEF), which has the fourth industrial revolution as its theme, Andrew  explains how he sees the situation we are sliding into (from Andrew Maynard’s think piece),

As more people get closer to gaining access to increasingly powerful converging technologies, a complex risk landscape is emerging that lies dangerously far beyond the ken of current regulations and governance frameworks. As a result, we are in danger of creating a global ‘wild west’ of technology innovation, where our good intentions may be among the first casualties.

There are many other examples where converging technologies are increasing the gap between what we can do and our understanding of how to do it responsibly. The convergence between robotics, nanotechnology and cognitive augmentation, for instance, and that between artificial intelligence, gene editing and maker communities both push us into uncertain territory. Yet despite the vulnerabilities inherent with fast-evolving technological capabilities that are tightly coupled, complex and poorly regulated, we lack even the beginnings of national or international conceptual frameworks to think about responsible decision-making and responsive governance.

He also lists some recommendations,

Fostering effective multi-stakeholder dialogues.

Encouraging actionable empathy.

Providing educational opportunities for current and future stakeholders.

Developing next-generation foresight capabilities.

Transforming approaches to risk.

Investing in public–private partnerships.

Andrew concludes with this,

… The good news is that, in fields such as nanotechnology and synthetic biology, we have already begun to develop the skills to do this — albeit in a small way. We now need to learn how to scale up our efforts, so that our convergence in working together to build a better future mirrors the convergence of the technologies that will help achieve this.

It’s always a pleasure to read Andrew’s work as it’s thoughtful. I was surprised (since Andrew is a physicist by training) and happy to see the recommendation for “actionable empathy.”

Although, I don’t always agree with him on this occasion I don’t have any particular disagreements but I think that including a recommendation or two to cover the certainty we will get something wrong and have to work quickly to right things would be a good idea.  I’m thinking primarily of governments which are notoriously slow to respond with legislation for new developments and equally slow to change that legislation when the situation changes.

The technological environment Andrew is describing is dynamic, that is fast-moving and changing at a pace we have yet to properly conceptualize. Governments will need to change so they can respond in an agile fashion. My suggestion is:

Develop policy task forces that can be convened in hours and given the authority to respond to an immediate situation with oversight after the fact

Getting back to Andrew Maynard, you can find his think piece in its entirety via this link and citation,

Navigating the fourth industrial revolution by Andrew D. Maynard. Nature Nanotechnology 10, 1005–1006 (2015) doi:10.1038/nnano.2015.286 Published online 03 December 2015

This paper is behind a paywall.

Afrofuturism in the UK’s Guardian newspaper and as a Future Tense Dec. 2015 event

My introduction to the term, Afrofuturism was in a March 11, 2015 posting by Jessica Bland for the Guardian in the Technology/Political Science section. It was written on the occasion of a then upcoming FutureFest event,

This is unapologetically connected to FutureFest, the festival Nesta (where I work) is holding this weekend in London Bridge. These thoughts represent the ideas that piqued my interest while curating talks and exhibits based on the thought experiment of a future African city-superpower. George Clinton, Spoek Mathambo, Tegan Bristow and Fabian-Carlos Guhl (from Ampion Venture Bus) will be speaking during the weekend. Thomas Aquilina is displaying photographs from his trip and the architects of the Lagos 2060 project will take part in a debate on whether their fiction can lead to a different kind of future.

In anticipation of the March 2015 FutureFest event, Bland had  written a roundup piece about “New sounds from South Africa and Nigeria’s urban science fiction [that] could change the future of technology and the city.” Here are some excerpts from her piece (Note: Links have been removed),

Strong stories or visions of the future stick around. The 1920s sci-fi fantasy of a jetpack commute still pops up in discussions about the future of technology, not to mention as an option on the Citymapper travel app. By co-opting or creating new visions of the future, it seems possible to influence the development of new products and services – from consumer tech to urban infrastructure. A new generation of African artists is taking over the mantle of Afrofuturist arts from a US-centred crowd. They could bring a welcome change to how technology is developed in the region, as well as a challenge to the dominance of imported plans for urban development.

Last Thursday’s London gig from Fantasma was sweaty and boisterous. It was also very different from the remix of Joy Division’s She’s Lost Control that brought front man Spoek Mathambo to the attention of a global audience a couple of years ago. Fantasma is a group of South African musicians with different backgrounds. Guitarist Bhekisenzo Cele started the gig with three of his own songs, introducing the traditional Zulu maskandi music that they went on to mix with shangaan electro, hiphop, punk, electronica and everything in between.

The gig had a buzz about it. But the performance was from a new collective trying things out; it wasn’t as genre-smashing as expected. And expectations ride high for Spoek. In 2011, he titled a collection from his back catalogue ‘Beyond Afrofuturism’. He took on, at least in name, a whole Afro-American cultural movement: embodied by musicians like Sun Ra, George Clinton and Drexciya. A previous post on this blog by Chardine Taylor-Stone describes the roots of Afrofuturism in science fiction that centres on space travel and human enhancement. But she goes on to say: “Afrofuturism also goes beyond spaceships, androids and aliens, and encompasses African mythology and cosmology with an aim to connect those from across the Black Diaspora to their forgotten African ancestry.” Spoek shares what he calls a cultural lineage with this movement. But he is not Afro-American. He also shares a cultural lineage with the sounds of South African musicians he grew up listening to.

Other forms of art are taking an increasingly activist role in the future of technology. Lydia Nicholas’s description of the relationship between Douglas Adam’s fictional Hitchhiker’s Guide and the real life development of the iPad shows how science fiction can effortlessly influence the development of new technology.

The science fiction collection Lagos 2060 is a more purposeful intervention. Published in 2013, it speculates about what it will be like to live in Lagos 100 years after Nigeria gained independence from the UK. It was born out of a creative writing workshop initiated by DADA books in Lagos. Foundation director of DADA, Ayodele Arigbabu, described the collection and other similar video and visual art work (in an email): “Far more than aesthetic indulgence, these renditions are a calibration of the changes deemed necessary in today’s political, technical and cultural infrastructure.”

Bland also explores a history of this movement,

Gaston Berger was the Senegalese founder of the academic journal Prospectiv in 1957. To many, he was the first futurist, or at least one of the first people to describe themselves as one. He founded promotes the practice of playing out the human consequences of today’s action. This is about avoiding a fatalistic approach to the future: about being proactive and provoking change, as much as anticipating it.

Berger’s early work spawned a generation, and then another and another, of professional futurists. They work in different ways and different places. Some are in government, enticing and frightening politicians with the prospect of a different transport system, healthcare sector or national security regime. Some are consultants to large companies, offering advice on the way that trends like 3D printing or flying robots will change their sector. An article from 1996 does a good job of summarising the principles of this movement: don’t act like an ostrich and ignore the future by putting your head in the sand; don’t act like a fireman and just respond to threats to your future; and don’t focus just on insurance against for the future.

Bland has written an interesting and sprawling piece, which in some way reflects the subject. Africa is a huge and sprawling continent.

Slate, a US online magazine, is hosting along with New America and Arizona State University a Future Tense event on Afrofuturism but this seems to be quite US-centric. From the Future Tense Afrofuturism event webpage on the Slate website (Note: Links have been removed),

Future Tense is hosting a conversation about Afrofuturism in New York City on December 3rd, 2015 from 6:30-8:30 p.m.

Afrofuturism emphasizes the intersection of black cultures with questions of imagination, liberation, and technology. Rooted in works like those of science fiction author Octavia Butler, avant-garde jazz legend Sun Ra, and George Clinton, Afrofuturism explores concepts of race, space and time in order to ask the existential question posed by critic Mark Dery: “Can a community whose past has been deliberately erased imagine possible futures?”

Will the alternative futures and realities Afrofuturism describes transform and reshape the concept of black identity? Join Future Tense for a discussion on Afrofuturism and its unique vantage on the challenges faced by black Americans and others throughout the African diaspora.

During the event, enjoy an Afrofuturist inspired drink from 67 Orange Street. Follow the discussion online using #Afrofuturism and by following @NewAmericaNYC and @FutureTenseNow.

Click here to RSVP. Space is limited so register now!

PARTICIPANTS

Michael Bennett
Principal Investigator, School for the Future of Innovation in Society, Arizona State University
@MGBennett

Ytasha Womack
Author, Afrofuturism: The World of Black Sci-Fi and Fantasy Culture and Post Black: How A New Generation is Redefining African American Identity
@ytashawomack

Juliana Huxtable
DJ and Artist
@HUXTABLEJULIANA

Walé Oyéjidé
Designer and Creative Director, Ikire Jones
@IkireJones

Aisha Harris
Staff writer, Slate
@craftingmystyle

It seems we have one word, Afrofuturism, and two definitions. One where Africa is referenced and one where African-American experience is referenced.

For anyone curious about Nesta, where Jessica Bland works and the Future Fest host (from its Wikipedia entry),

Nesta (formerly NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK.

The organisation acts through a combination of practical programmes, investment, policy and research, and the formation of partnerships to promote innovation across a broad range of sectors.

That’s it for now.

$81M for US National Nanotechnology Coordinated Infrastructure (NNCI)

Academics, small business, and industry researchers are the big winners in a US National Science Foundation bonanza according to a Sept. 16, 2015 news item on Nanowerk,

To advance research in nanoscale science, engineering and technology, the National Science Foundation (NSF) will provide a total of $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI sites will provide researchers from academia, government, and companies large and small with access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering and technology.

A Sept. 16, 2015 NSF news release provides a brief history of US nanotechnology infrastructures and describes this latest effort in slightly more detail (Note: Links have been removed),

The NNCI framework builds on the National Nanotechnology Infrastructure Network (NNIN), which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

“NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said Pramod Khargonekar, assistant director for engineering. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

The awards are up to five years and range from $500,000 to $1.6 million each per year. Nine of the sites have at least one regional partner institution. These 16 sites are located in 15 states and involve 27 universities across the nation.

Through a fiscal year 2016 competition, one of the newly awarded sites will be chosen to coordinate the facilities. This coordinating office will enhance the sites’ impact as a national nanotechnology infrastructure and establish a web portal to link the individual facilities’ websites to provide a unified entry point to the user community of overall capabilities, tools and instrumentation. The office will also help to coordinate and disseminate best practices for national-level education and outreach programs across sites.

New NNCI awards:

Mid-Atlantic Nanotechnology Hub for Research, Education and Innovation, University of Pennsylvania with partner Community College of Philadelphia, principal investigator (PI): Mark Allen
Texas Nanofabrication Facility, University of Texas at Austin, PI: Sanjay Banerjee

Northwest Nanotechnology Infrastructure, University of Washington with partner Oregon State University, PI: Karl Bohringer

Southeastern Nanotechnology Infrastructure Corridor, Georgia Institute of Technology with partners North Carolina A&T State University and University of North Carolina-Greensboro, PI: Oliver Brand

Midwest Nano Infrastructure Corridor, University of  Minnesota Twin Cities with partner North Dakota State University, PI: Stephen Campbell

Montana Nanotechnology Facility, Montana State University with partner Carlton College, PI: David Dickensheets
Soft and Hybrid Nanotechnology Experimental Resource,

Northwestern University with partner University of Chicago, PI: Vinayak Dravid

The Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Polytechnic Institute and State University, PI: Michael Hochella

North Carolina Research Triangle Nanotechnology Network, North Carolina State University with partners Duke University and University of North Carolina-Chapel Hill, PI: Jacob Jones

San Diego Nanotechnology Infrastructure, University of California, San Diego, PI: Yu-Hwa Lo

Stanford Site, Stanford University, PI: Kathryn Moler

Cornell Nanoscale Science and Technology Facility, Cornell University, PI: Daniel Ralph

Nebraska Nanoscale Facility, University of Nebraska-Lincoln, PI: David Sellmyer

Nanotechnology Collaborative Infrastructure Southwest, Arizona State University with partners Maricopa County Community College District and Science Foundation Arizona, PI: Trevor Thornton

The Kentucky Multi-scale Manufacturing and Nano Integration Node, University of Louisville with partner University of Kentucky, PI: Kevin Walsh

The Center for Nanoscale Systems at Harvard University, Harvard University, PI: Robert Westervelt

The universities are trumpeting this latest nanotechnology funding,

NSF-funded network set to help businesses, educators pursue nanotechnology innovation (North Carolina State University, Duke University, and University of North Carolina at Chapel Hill)

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network

ASU [Arizona State University] chosen to lead national nanotechnology site

UChicago, Northwestern awarded $5 million nanotechnology infrastructure grant

That is a lot of excitement.

Kavli Foundation roundtable on artificial synthesis as a means to produce clean fuel

A Sept. 9, 2015 news item on Azonano features a recent roundtable discussion about artificial photosynthesis and clean fuel held by the Kavli Foundation,

Imagine creating artificial plants that make gasoline and natural gas using only sunlight. And imagine using those fuels to heat our homes or run our cars without adding any greenhouse gases to the atmosphere. By combining nanoscience and biology, researchers led by scientists at University of California, Berkeley, have taken a big step in that direction.

Peidong Yang, a professor of chemistry at Berkeley and co-director of the school’s Kavli Energy NanoSciences Institute, leads a team that has created an artificial leaf that produces methane, the primary component of natural gas, using a combination of semiconducting nanowires and bacteria. The research, detailed in the online edition of Proceedings of the National Academy of Sciences in August, builds on a similar hybrid system, also recently devised by Yang and his colleagues, that yielded butanol, a component in gasoline, and a variety of biochemical building blocks.

The research is a major advance toward synthetic photosynthesis, a type of solar power based on the ability of plants to transform sunlight, carbon dioxide and water into sugars. Instead of sugars, however, synthetic photosynthesis seeks to produce liquid fuels that can be stored for months or years and distributed through existing energy infrastructure.

In a [Kavli Foundation] roundtable discussion on his recent breakthroughs and the future of synthetic photosynthesis, Yang said his hybrid inorganic/biological systems give researchers new tools to study photosynthesis — and learn its secrets.

There is a list of the participants and an edited transcript of the roundtable, which took place sometime during summer 2015, on the Kavli Foundation’s Fueling up: How nanoscience is creating a new type of solar power webpage (Note: Links have been removed),

The participants were:

PEIDONG YANG – is professor of chemistry and Chan Distinguished Professor of Energy at University of California, Berkeley, and co-director of the Kavli Energy NanoScience Institute at Berkeley National Laboratory and UC Berkeley. He serves as director of the California Research Alliance by BASF, and was a founding member of the U.S. Department of Energy (DOE) Joint Center for Artificial Photosynthesis (JCAP).
THOMAS MOORE – is Regents’ Professor of Chemistry and Biochemistry and past director of the Center for Bioenergy & Photosynthesis at Arizona State University. He is a past president of the American Society for Photobiology, and a team leader at the Center for Bio-Inspired Solar Fuel Production.
TED SARGENT – is a University Professor of Electrical and Computer Engineering at the University of Toronto where he is vice-dean for research for the Faculty of Applied Science and Engineering. He holds the Canada Research Chair in Nanotechnology and is a founder of two companies, InVisage Technologies and Xagenic.

THE KAVLI FOUNDATION (TKF): Solar cells do a good job of converting sunlight into electricity. Converting light into fuel seems far more complicated. Why go through the bother?

THOMAS MOORE: That’s a good question. In order to create sustainable, solar-driven societies, we need a way to store solar energy. With solar cells, we can make electricity efficiently, but we cannot conveniently store that electricity to use when it is cloudy or at night. If we want to stockpile large quantities of energy, we have to store it as chemical energy, the way it is locked up in coal, oil, natural gas, hydrogen and biomass.

PEIDONG YANG: I agree. Perhaps, one day, researchers will come up with an effective battery to store photoelectric energy produced by solar cells. But photosynthesis can solve the energy conversion and storage problem in one step. It converts and stores solar energy in the chemical bonds of organic molecules.

TED SARGENT: Much of the globe’s power infrastructure, from automobiles, trucks and planes to gas-fired electrical generators, is built upon carbon-based fossil fuels. So creating a new technology that can generate liquid fuels that can use this infrastructure is a very powerful competitive advantage for a renewable energy technology.

For someone who’s interested in solar energy and fuel issues, this discussion provide a good introduction to some of what’s driving the research and, happily, none of these scientists are proselytizing.

One final comment. Ted Sargent has been mentioned here several times in connection with his work on solar cells and/or quantum dots.

Not origami but kirigami-inspired foldable batteries

Origami is not noted for its stretchy qualities, a shortcoming according to a June 16, 2015 news item on Azonano,

Origami, the centuries-old Japanese paper-folding art, has inspired recent designs for flexible energy-storage technology. But energy-storage device architecture based on origami patterns has so far been able to yield batteries that can change only from simple folded to unfolded positions. They can flex, but not actually stretch.

Now an Arizona State University [ASU] research team has overcome the limitation by using a variation of origami, called kirigami, as a design template for batteries that can be stretched to more than 150 percent of their original size and still maintain full functionality.

A June 15, 2015 ASU news release, which originated the news item, provides a few more details about the kirigami-influenced batteries (Note: A link has been removed),

A paper published on June 11 [2015] in the research journal Scientific Reports describes how the team developed kirigami-based lithium-ion batteries using a combination of folds and cuts to create patterns that enable a significant increase in stretchability.

The kirigami-based prototype battery was sewn into an elastic wristband that was attached to a smart watch. The battery fully powered the watch and its functions – including playing video – as the band was being stretched.

“This type of battery could potentially be used to replace the bulky and rigid batteries that are limiting the development of compact wearable electronic devices,” Jiang said.

Such stretchable batteries could even be integrated into fabrics – including those used for clothing, he said.

The researchers have provided a video demonstrating the kirigami-inspired battery in action,

Here’s a link to and a citation for the paper,

Kirigami-based stretchable lithium-ion batteries by Zeming Song, Xu Wang, Cheng Lv, Yonghao An, Mengbing Liang, Teng Ma, David He, Ying-Jie Zheng, Shi-Qing Huang, Hongyu Yu & Hanqing Jiang. Scientific Reports 5, Article number: 10988 doi:10.1038/srep10988 Published 11 June 2015

This is an open access paper.

According to the ASU news release, the team published a previous paper on origami-inspired batteries and some of the problems associated with them (Note: Links have been removed),

An earlier paper in the research journal Nature Communications by Jiang and some of his research team members and other colleagues provides an in-depth look at progress and obstacles in the development of origami-based lithium-ion batteries.

The paper explains technical challenges in flexible-battery development that Jiang says his team’s kirigami-based devices are helping to solve.

Read more about the team’s recent progress and the potential applications of stretchable batteries in Popular Mechanics, the Christian Science Monitor, Yahoo News and the Daily Mail.

Here’s a link to and a citation for the team’s earlier paper,

Origami lithium-ion batteries by Zeming Song, Teng Ma,    Rui Tang, Qian Cheng, Xu Wang, Deepakshyam Krishnaraju, Rahul Panat, Candace K. Chan, Hongyu Yu, & Hanqing Jiang. Nature Communications 5, Article number: 3140 doi:10.1038/ncomms4140 Published 28 January 2014

This paper is behind a paywall but there is a free preview available via ReadCube Access.

On a related note, Dexter Johnson has written up Binghamton University research into paper-based origami batteries powered by the respiration of bacteria in a June 16, 2015 posting on his Nanoclast blog.

Could engineered nanoparticles be behind rise in obesity and metabolic disorders?

The researchers haven’t published a study and they have used fruit flies as their testing mechanism (animal models) so, it’s a little difficult (futile) to analyze the work at this stage but it is intriguing. A June 9, 2015 news item on Azonano announces a research collaboration  designed to examine the impact engineered nanoparticles have on the gut and the gut microbiome,

Researchers at Binghamton University believe understanding nano particles’ ability to influence our metabolic processing may be integral to mediating metabolic disorders and obesity, both of which are on the rise and have been linked to processed foods.

Anthony Fiumera, associate professor of biological sciences, and Gretchen Mahler, assistant professor of biomedical engineering, are collaborating on a research project funded by a Binghamton University Transdisciplinary Areas of Excellence (TAE) grant to discover the role ingested nanoparticles play in the physiology and function of the gut and gut microbiome.

A June 8, 2015 Binghamton University news release, which originated the news item, describes the reasoning behind the research,

The gut microbiome is the population of microbes living within the human intestine, consisting of tens of trillions of microorganisms (including at least 1,000 different species of known bacteria). Nanoparticles, which are often added to processed foods to enhance texture and color, have been linked to changes in gut function. As processed foods become more common elements of our diet, there has been a significant increase in concentrations of these particles found in the human body.

Fiumera works in vivo with fruit flies while Mahler works in vitro using a 3-D cell-culture model of the gastrointestinal (GI) tract to understand how ingesting nanoparticles influences glucose processing and the gut microbiome. By using complementary research methods, the researchers have helped advance each other’s understanding of nanoparticles.

Using fruit flies, Fiumera looks at the effects of nanoparticles on development, physiology and biochemical composition, as well as the microbial community in the GI tract of the fly. The fly model offers two advantages: 1) research can be done on a wide range of traits that might be altered by changes in metabolism and 2) the metabolic processes within the fly are similar to those in humans. Fiumera also aims to investigate which genes are associated with responses to the nanoparticles, which ultimately may help us understand why individuals react differently to nanoparticles.

For this project, Mahler expanded her GI tract model to include a commensal intestinal bacterial species and used the model to determine a more detailed mechanism of the role of nanoparticle exposure on gut bacteria and intestinal function. Early results have shown that nanoparticle ingestion alters glucose absorption, and that the presence of beneficial gut bacteria eliminates these effects.

Mahler was already investigating nanoparticles when she reached out to Fiumera and proposed they combine their respective expertise. With the help of undergraduate students Gabriella Shull and John Fountain and graduate student Jonathan Richter, Fiumera and Mahler have begun to uncover some effects of ingesting nanoparticles. Since they are using realistic, low concentrations of nanoparticles, the effects are slight, but eventually may be additive.

The most interesting aspect of this research (to me) is the notion that the impact may be additive. In short, you might be able to tolerate a few more nanoparticles in your gut but as more engineered nanoparticles become part of our food and drink (including water) and your gut receives more and more that tolerance may no longer possible.

There is increasing concern about engineered nanoparticles as they cycle through environment and the US Environmental Protection Agency (EPA) funded a programed by Arizona State University (ASU), LCnano Network (part of the EPA’s larger Life Cycle of Nanomaterials project). You can find out more about the ASU program in my April 8, 2014 post (scroll down about 50% of the way).

Getting back to Binghamton, I look forward to hearing more about the research as it progresses.

Electrifying DNA (deoxyribonucleic acid)

All kinds of things have electrical charges including DNA (deoxyribonucleic acid) according to an April 15, 2015 news item on Azonano,

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University’s Biodesign Institute, explore the ways in which electrical charges move along DNA bases affixed to a pair of electrodes.

Their work reveals a new mechanism of charge transport that differs from the two recognized patterns in which charge either tunnels or hops along bases of the DNA chain.

An April 13, 2015 Arizona State University (ASU) news release (also on EurekAlert and dated April 14, 2015), which originated the news item, explains why this ‘blue sky’ research may prove important in the future,

Researchers predict that foundational work of this kind will have important implications in the design of a new generation of functional DNA-based electronic devices as well as providing new insights into health risks associated with transport-related damage to DNA.

Oxidative damage is believed to play a role in the initiation and progression of cancer. It is also implicated in neurodegenerative disorders like Alzheimer’s, Huntington’s disease and Parkinson’s disease and a range of other human afflictions.

An electron’s movements plays an important role in your body’s chemical reactions (from the news release),

The transfer of electrons is often regarded as the simplest form of chemical reaction, but nevertheless plays a critical role in a broad range of life-sustaining processes, including respiration and photosynthesis.

Charge transport can also produce negative effects on living systems, particularly through the process of oxidative stress, which causes damage to DNA and has been invoked in a broad range of diseases.

“When DNA is exposed to UV light, there’s a chance one of the bases– such as guanine–gets oxidized, meaning that it loses an electron,” Tao says. (Guanine is easier to oxidize than the other three bases, cytosine, thymine, and adenine, making it the most important base for charge transport.)

In some cases, the DNA damage is repaired when an electron migrates from another portion of the DNA strand to replace the missing one. DNA repair is a ceaseless, ongoing process, though a gradual loss of repair efficiency over time is one factor in the aging process. Oxidation randomly damages both RNA and DNA, which can interfere with normal cellular metabolism.

Radiation damage is also an issue for semiconductor devices, Tao notes–a factor that must be accounted for when electronics are exposed to high-energy particles like X rays, as in applications designed for outer space.

Researchers like Xiang and Tao hope to better understand charge transport through DNA, and the molecule provides a unique testing ground for observation. The length of a DNA molecule and its sequence of 4 nucleotides A, T, C and G can be readily modified and studies have shown that both alterations have an effect on how electrical charge moves through the molecule.

When the loss of an electron or oxidation occurs in DNA bases, a hole is left in place of the electron. This hole carries a positive charge, which can move along the DNA length under the influence of an electrical or magnetic field, just as an electron would. The movement of these positively charged holes along a stretch of DNA is the focus of the current study.

The news release goes on to describe charge transport,

Two primary mechanisms of charge transport have been examined in detail in previous research. Over short distances, an electron displays the properties of a wave, permitting it to pass straight through a DNA molecule. This process is a quantum mechanical effect known as tunneling.

Charge transport in DNA (and other molecules) over longer distances involves the process of hopping. When a charge hops from point to point along the DNA segment, it behaves classically and loses its wavelike properties. The electrical resistance is seen to increases exponentially during tunneling behavior and linearly, during hopping.

By attaching electrodes to the two ends of a DNA molecule, the researchers were able to monitor the passage of charge through the molecule, observing something new: “What we found in this particular paper is that there is an intermediate behavior,” Tao says. “It’s not exactly hopping because the electron still displays some of the wave properties.”

Instead, the holes observed in certain sequences of DNA are delocalized, spread over several base pairs. The effect is neither a linear nor exponential increase in electrical resistance but a periodic oscillation. The phenomenon was shown to be highly sequence dependent, with stacked base pairs of guanine-cytosine causing the observed oscillation.

Control experiments where G bases alternated, rather than occurring in a sequential stack, showed a linear increase in resistance with molecular length, in agreement with conventional hopping behavior.

A further property of DNA is also of importance in considering charge transport. The molecule at room temperature is not like a wire in a conventional electronic device, but rather is a highly dynamic structure, that writhes and fluctuates.

The last bit about writhing and fluctuating makes this work sound fascinating and very challenging.

Here’s a link to and a citation for the paper,

Intermediate tunnelling–hopping regime in DNA charge transport by Limin Xiang, Julio L. Palma, Christopher Bruot, Vladimiro Mujica, Mark A. Ratner, & Nongjian Tao. Nature Chemistry 7, 221–226 (2015) doi:10.1038/nchem.2183 Published online 20 February 2015

This paper is behind a paywall.