Tag Archives: art/science

Did artists lead the way in mathematics?

There is no way to definitively answer the question of whether artists have led the way in mathematics but the question does provide interesting fodder for an essay (h/t April 28, 2017 news item on phys.org) by Henry Adams, professor of Art History at Case Western Reserve University , in his April 28, 2017 essay for TheConversation.com,

Mathematics and art are generally viewed as very different disciplines – one devoted to abstract thought, the other to feeling. But sometimes the parallels between the two are uncanny.

From Islamic tiling to the chaotic patterns of Jackson Pollock, we can see remarkable similarities between art and the mathematical research that follows it. The two modes of thinking are not exactly the same, but, in interesting ways, often one seems to foreshadow the other.

Does art sometimes spur mathematical discovery? There’s no simple answer to this question, but in some instances it seems very likely.

Patterns in the Alhambra

Consider Islamic ornament, such as that found in the Alhambra in Granada, Spain.

In the 14th and 15th centuries, the Alhambra served as the palace and harem of the Berber monarchs. For many visitors, it’s a setting as close to paradise as anything on earth: a series of open courtyards with fountains, surrounded by arcades that provide shelter and shade. The ceilings are molded in elaborate geometric patterns that resemble stalactites. The crowning glory is the ornament in colorful tile on the surrounding walls, which dazzles the eye in a hypnotic way that’s strangely blissful. In a fashion akin to music, the patterns lift the onlooker into an almost out-of-body state, a sort of heavenly rapture.

It’s a triumph of art – and of mathematical reasoning. The ornament explores a branch of mathematics known as tiling, which seeks to fill a space completely with regular geometric patterns. Math shows that a flat surface can be regularly covered by symmetric shapes with three, four and six sides, but not with shapes of five sides.

It’s also possible to combine different shapes, using triangular, square and hexagonal tiles to fill a space completely. The Alhambra revels in elaborate combinations of this sort, which are hard to see as stable rather than in motion. They seem to spin before our eyes. They trigger our brain into action and, as we look, we arrange and rearrange their patterns in different configurations.

An emotional experience? Very much so. But what’s fascinating about such Islamic tilings is that the work of anonymous artists and craftsmen also displays a near-perfect mastery of mathematical logic. Mathematicians have identified 17 types of symmetry: bilateral symmetry, rotational symmetry and so forth. At least 16 appear in the tilework of the Alhambra, almost as if they were textbook diagrams.

The patterns are not merely beautiful, but mathematically rigorous as well. They explore the fundamental characteristics of symmetry in a surprisingly complete way. Mathematicians, however, did not come up with their analysis of the principles of symmetry until several centuries after the tiles of the Alhambra had been set in place.

Tiles at the Alhambra. Credit: Wikimedia Commons, CC BY-SA

Quasicrystalline tiles

Stunning as they are, the decorations of the Alhambra may have been surpassed by a masterpiece in Persia. There, in 1453, anonymous craftsmen at the Darbi-I Imam shrine in Isfahan discovered quasicrystalline patterns. These patterns have complex and mysterious mathematical properties that were not analyzed by mathematicians until the discovery of Penrose tilings in the 1970s.

Such patterns fill a space completely with regular shapes, but in a configuration which never repeats itself – indeed, is infinitely nonrepeated – although the mathematical constant known as the Golden Section occurs over and over again.

Daniel Schectman won the 2001 Nobel Prize [Schechtman was awarded the Nobel Prize for Chemistry in 2011 as per his Wikipedia entry] or the discovery of quasicrystals, which obey this law of organization. This breakthrough forced scientists to reconsider their conception of the very nature of matter.

In 2005, Harvard physicist Peter James Lu showed that it’s possible to generate such quasicrystalline patterns relatively easily using girih tiles. Girih tiles combine several pure geometric shapes into five patterns: a regular decagon, an irregular hexagon, a bow tie, a rhombus and a regular pentagon.

Whatever the method, it’s clear that the quasicrystalline patterns at Darbi-I Imam were created by craftsmen without advanced training in mathematics. It took several more centuries for mathematicians to analyze and articulate what they were doing. In other words, intuition preceded full understanding.

It’s a fascinating essay and, if you have the time and the interest, it’s definitely a worthwhile read (Henry’s April 28, 2017 essay ).

May/June 2017 scienceish events in Canada (mostly in Vancouver)

I have five* events for this posting

(1) Science and You (Montréal)

The latest iteration of the Science and You conference took place May 4 – 6, 2017 at McGill University (Montréal, Québec). That’s the sad news, the good news is that they have recorded and released the sessions onto YouTube. (This is the first time the conference has been held outside of Europe, in fact, it’s usually held in France.) Here’s why you might be interested (from the 2017 conference page),

The animator of the conference will be Véronique Morin:

Véronique Morin is science journalist and communicator, first president of the World Federation of Science Journalists (WFSJ) and serves as judge for science communication awards. She worked for a science program on Quebec’s public TV network, CBCRadio-Canada, TVOntario, and as a freelancer is also a contributor to -among others-  The Canadian Medical Journal, University Affairs magazine, NewsDeeply, while pursuing documentary projects.

Let’s talk about S …

Holding the attention of an audience full of teenagers may seem impossible… particularly on topics that might be seen as boring, like sciences! Yet, it’s essential to demistify science in order to make it accessible, even appealing in the eyes of futur citizens.
How can we encourage young adults to ask themselves questions about the surrounding world, nature and science? How can we make them discover sciences with and without digital tools?

Find out tips and tricks used by our speakers Kristin Alford and Amanda Tyndall.

Kristin Alford
Dr Kristin Alford is a futurist and the inaugural Director of MOD., a futuristic museum of discovery at the University of South Australia. Her mind is presently occupied by the future of work and provoking young adults to ask questions about the role of science at the intersection of art and innovation.

Internet Website

Amanda Tyndall
Over 20 years of  science communication experience with organisations such as Café Scientifique, The Royal Institution of Great Britain (and Australia’s Science Exchange), the Science Museum in London and now with the Edinburgh International Science Festival. Particularly interested in engaging new audiences through linkages with the arts and digital/creative industries.

Internet Website

A troll in the room

Increasingly used by politicians, social media can reach thousand of people in few seconds. Relayed to infinity, the message seems truthful, but is it really? At a time of fake news and alternative facts, how can we, as a communicator or a journalist, take up the challenge of disinformation?
Discover the traps and tricks of disinformation in the age of digital technologies with our two fact-checking experts, Shawn Otto and Vanessa Schipani, who will offer concrete solutions to unravel the true from the false..

 

Shawn Otto
Shawn Otto was awarded the IEEE-USA (“I-Triple-E”) National Distinguished Public Service Award for his work elevating science in America’s national public dialogue. He is cofounder and producer of the US presidential science debates at ScienceDebate.org. He is also an award-winning screenwriter and novelist, best known for writing and co-producing the Academy Award-nominated movie House of Sand and Fog.

Vanessa Schipani
Vanessa is a science journalist at FactCheck.org, which monitors U.S. politicians’ claims for accuracy. Previously, she wrote for outlets in the U.S., Europe and Japan, covering topics from quantum mechanics to neuroscience. She has bachelor’s degrees in zoology and philosophy and a master’s in the history and philosophy of science.

At 20,000 clicks from the extreme

Sharing living from a space station, ship or submarine. The examples of social media use in extreme conditions are multiplying and the public is asking for more. How to use public tools to highlight practices and discoveries? How to manage the use of social networks of a large organisation? What pitfalls to avoid? What does this mean for citizens and researchers?
Find out with Phillipe Archambault and Leslie Elliott experts in extrem conditions.

Philippe Archambault

Professor Philippe Archambault is a marine ecologist at Laval University, the director of the Notre Golfe network and president of the 4th World Conference on Marine Biodiversity. His research on the influence of global changes on biodiversity and the functioning of ecosystems has led him to work in all four corners of our oceans from the Arctic to the Antarctic, through Papua New Guinea and the French Polynesia.

Website

Leslie Elliott

Leslie Elliott leads a team of communicators at Ocean Networks Canada in Victoria, British Columbia, home to Canada’s world-leading ocean observatories in the Pacific and Arctic Oceans. Audiences can join robots equipped with high definition cameras via #livedive to discover more about our ocean.

Website

Science is not a joke!

Science and humor are two disciplines that might seem incompatible … and yet, like the ig-Nobels, humour can prove to be an excellent way to communicate a scientific message. This, however, can prove to be quite challenging since one needs to ensure they employ the right tone and language to both captivate the audience while simultaneously communicating complex topics.

Patrick Baud and Brian Malow, both well-renowned scientific communicators, will give you with the tools you need to capture your audience and also convey a proper scientific message. You will be surprised how, even in Science, a good dose of humour can make you laugh and think.

Patrick Baud
Patrick Baud is a French author who was born on June 30, 1979, in Avignon. He has been sharing for many years his passion for tales of fantasy, and the marvels and curiosities of the world, through different media: radio, web, novels, comic strips, conferences, and videos. His YouTube channel “Axolot”, was created in 2013, and now has over 420,000 followers.

Internet Website
Youtube

Brian Malow
Brian Malow is Earth’s Premier Science Comedian (self-proclaimed).  Brian has made science videos for Time Magazine and contributed to Neil deGrasse Tyson’s radio show.  He worked in science communications at a museum, blogged for Scientific American, and trains scientists to be better communicators.

Internet Website
YouTube

I don’t think they’ve managed to get everything up on YouTube yet but the material I’ve found has been subtitled (into French or English, depending on which language the speaker used).

Here are the opening day’s talks on YouTube with English subtitles or French subtitles when appropriate. You can also find some abstracts for the panel presentations here. I was particularly in this panel (S3 – The Importance of Reaching Out to Adults in Scientific Culture), Note: I have searched out the French language descriptions for those unavailable in English,

Organized by Coeur des sciences, Université du Québec à Montréal (UQAM)
Animator: Valérie Borde, Freelance Science Journalist

Anouk Gingras, Musée de la civilisation, Québec
Text not available in English

[La science au Musée de la civilisation c’est :
• Une cinquantaine d’expositions et espaces découvertes
• Des thèmes d’actualité, liés à des enjeux sociaux, pour des exposition souvent destinées aux adultes
• Un potentiel de nouveaux publics en lien avec les autres thématiques présentes au Musée (souvent non scientifiques)
L’exposition Nanotechnologies : l’invisible révolution :
• Un thème d’actualité suscitant une réflexion
• Un sujet sensible menant à la création d’un parcours d’exposition polarisé : choix entre « oui » ou « non » au développement des nanotechnologies pour l’avenir
• L’utilisation de divers éléments pour rapprocher le sujet du visiteur

  • Les nanotechnologies dans la science-fiction
  • Les objets du quotidien contenant des nanoparticules
  • Les objets anciens qui utilisant les nanotechnologies
  • Divers microscopes retraçant l’histoire des nanotechnologies

• Une forme d’interaction suscitant la réflexion du visiteur via un objet sympatique : le canard  de plastique jaune, muni d’une puce RFID

  • Sept stations de consultation qui incitent le visiteur à se prononcer et à réfléchir sur des questions éthiques liées au développement des nanotechnologies
  • Une compilation des données en temps réel
  • Une livraison des résultats personnalisée
  • Une mesure des visiteurs dont l’opinion s’est modifiée à la suite de la visite de l’exposition

Résultats de fréquentation :
• Public de jeunes adultes rejoint (51%)
• Plus d’hommes que de femmes ont visité l’exposition
• Parcours avec canard: incite à la réflexion et augmente l’attention
• 3 visiteurs sur 4 prennent le canard; 92% font l’activité en entier]

Marie Lambert-Chan, Québec Science
Capting the attention of adult readership : challenging mission, possible mission
Since 1962, Québec Science Magazine is the only science magazine aimed at an adult readership in Québec. Our mission : covering topical subjects related to science and technology, as well as social issues from a scientific point of view. Each year, we print eight issues, with a circulation of 22,000 copies. Furthermore, the magazine has received several awards and accolades. In 2017, Québec Science Magazine was honored by the Canadian Magazine Awards/Grands Prix du Magazine and was named Best Magazine in Science, Business and Politics category.
Although we have maintained a solid reputation among scientists and the media industry, our magazine is still relatively unknown to the general public. Why is that ? How is it that, through all those years, we haven’t found the right angle to engage a broader readership ?
We are still searching for definitive answers, but here are our observations :
Speaking science to adults is much more challenging than it is with children, who can marvel endlessly at the smallest things. Unfortunately, adults lose this capacity to marvel and wonder for various reasons : they have specific interests, they failed high-school science, they don’t feel competent enough to understand scientific phenomena. How do we bring the wonder back ? This is our mission. Not impossible, and hopefully soon to be accomplished. One noticible example is the number of reknown scientists interviewed during the popular talk-show Tout le monde en parle, leading us to believe the general public may have an interest in science.
However, to accomplish our mission, we have to recount science. According to the Bulgarian writer and blogger Maria Popova, great science writing should explain, elucidate and enchant . To explain : to make the information clear and comprehensible. To elucidate : to reveal all the interconnections between the pieces of information. To enchant : to go beyond the scientific terms and information and tell a story, thus giving a kaleidoscopic vision of the subject. This is how we intend to capture our readership’s attention.
Our team aims to accomplish this challenge. Although, to be perfectly honest, it would be much easier if we had more resources, financial-wise or human-wise. However, we don’t lack ideas. We dream of major scientific investigations, conferences organized around themes from the magazine’s issues, Web documentaries, podcasts… Such initiatives would give us the visibility we desperately crave.
That said, even in the best conditions, would be have more subscribers ? Perhaps. But it isn’t assured. Even if our magazine is aimed at adult readership, we are convinced that childhood and science go hand in hand, and is even decisive for the children’s future. At the moment, school programs are not in place for continuous scientific development. It is possible to develop an interest for scientific culture as adults, but it is much easier to achieve this level of curiosity if it was previously fostered.

Robert Lamontagne, Université de Montréal
Since the beginning of my career as an astrophysicist, I have been interested in scientific communication to non-specialist audiences. I have presented hundreds of lectures describing the phenomena of the cosmos. Initially, these were mainly offered in amateur astronomers’ clubs or in high-schools and Cégeps. Over the last few years, I have migrated to more general adult audiences in the context of cultural activities such as the “Festival des Laurentides”, the Arts, Culture and Society activities in Repentigny and, the Université du troisième âge (UTA) or Senior’s University.
The Quebec branch of the UTA, sponsored by the Université de Sherbrooke (UdeS), exists since 1976. Seniors universities, created in Toulouse, France, are part of a worldwide movement. The UdeS and its senior’s university antennas are members of the International Association of the Universities of the Third Age (AIUTA). The UTA is made up of 28 antennas located in 10 regions and reaches more than 10,000 people per year. Antenna volunteers prepare educational programming by drawing on a catalog of courses, seminars and lectures, covering a diverse range of subjects ranging from history and politics to health, science, or the environment.
The UTA is aimed at people aged 50 and over who wish to continue their training and learn throughout their lives. It is an attentive, inquisitive, educated public and, given the demographics in Canada, its number is growing rapidly. This segment of the population is often well off and very involved in society.
I usually use a two-prong approach.
• While remaining rigorous, the content is articulated around a few ideas, avoiding analytical expressions in favor of a qualitative description.
• The narrative framework, the story, which allows to contextualize the scientific content and to forge links with the audience.

Sophie Malavoy, Coeur des sciences – UQAM

Many obstacles need to be overcome in order to reach out to adults, especially those who aren’t in principle interested in science.
• Competing against cultural activities such as theater, movies, etc.
• The idea that science is complex and dull
• A feeling of incompetence. « I’ve always been bad in math and physics»
• Funding shortfall for activities which target adults
How to reach out to those adults?
• To put science into perspective. To bring its relevance out by making links with current events and big issues (economic, heath, environment, politic). To promote a transdisciplinary approach which includes humanities and social sciences.
• To stake on originality by offering uncommon and ludic experiences (scientific walks in the city, street performances, etc.)
• To bridge between science and popular activities to the public (science/music; science/dance; science/theater; science/sports; science/gastronomy; science/literature)
• To reach people with emotions without sensationalism. To boost their curiosity and ability to wonder.
• To put a human face on science, by insisting not only on the results of a research but on its process. To share the adventure lived by researchers.
• To liven up people’s feeling of competence. To insist on the scientific method.
• To invite non-scientists (citizens groups, communities, consumers, etc.) to the reflections on science issues (debate, etc.).  To move from dissemination of science to dialog

Didier Pourquery, The Conversation France
Text not available in English

[Depuis son lancement en septembre 2015 la plateforme The Conversation France (2 millions de pages vues par mois) n’a cessé de faire progresser son audience. Selon une étude menée un an après le lancement, la structure de lectorat était la suivante
Pour accrocher les adultes et les ainés deux axes sont intéressants ; nous les utilisons autant sur notre site que sur notre newsletter quotidienne – 26.000 abonnés- ou notre page Facebook (11500 suiveurs):
1/ expliquer l’actualité : donner les clefs pour comprendre les débats scientifiques qui animent la société ; mettre de la science dans les discussions (la mission du site est de  « nourrir le débat citoyen avec de l’expertise universitaire et de la recherche »). L’idée est de poser des questions de compréhension simple au moment où elles apparaissent dans le débat (en période électorale par exemple : qu’est-ce que le populisme ? Expliqué par des chercheurs de Sciences Po incontestables.)
Exemples : comprendre les conférences climat -COP21, COP22 – ; comprendre les débats de société (Gestation pour autrui); comprendre l’économie (revenu universel); comprendre les maladies neurodégénératives (Alzheimer) etc.
2/ piquer la curiosité : utiliser les formules classiques (le saviez-vous ?) appliquées à des sujets surprenants (par exemple : «  Que voit un chien quand il regarde la télé ? » a eu 96.000 pages vues) ; puis jouer avec ces articles sur les réseaux sociaux. Poser des questions simples et surprenantes. Par exemple : ressemblez-vous à votre prénom ? Cet article académique très sérieux a comptabilisé 95.000 pages vues en français et 171.000 en anglais.
3/ Susciter l’engagement : faire de la science participative simple et utile. Par exemple : appeler nos lecteurs à surveiller l’invasion de moustiques tigres partout sur le territoire. Cet article a eu 112.000 pages vues et a été republié largement sur d’autres sites. Autre exemple : appeler les lecteurs à photographier les punaises de leur environnement.]

Here are my very brief and very rough translations. (1) Anouk Gingras is focused largely on a nanotechnology exhibit and whether or not visitors went through it and participated in various activities. She doesn’t seem specifically focused on science communication for adults but they are doing some very interesting and related work at Québec’s Museum of Civilization. (2) Didier Pourquery is describing an online initiative known as ‘The Conversation France’ (strange—why not La conversation France?). Moving on, there’s a website with a daily newsletter (blog?) and a Facebook page. They have two main projects, one is a discussion of current science issues in society, which is informed with and by experts but is not exclusive to experts, and more curiosity-based science questions and discussion such as What does a dog see when it watches television?

Serendipity! I hadn’t stumbled across this conference when I posted my May 12, 2017 piece on the ‘insanity’ of science outreach in Canada. It’s good to see I’m not the only one focused on science outreach for adults and that there is some action, although seems to be a Québec-only effort.

(2) Ingenious—a book launch in Vancouver

The book will be launched on Thursday, June 1, 2017 at the Vancouver Public Library’s Central Branch (from the Ingenious: An Evening of Canadian Innovation event page)

Ingenious: An Evening of Canadian Innovation
Thursday, June 1, 2017 (6:30 pm – 8:00 pm)
Central Branch
Description

Gov. Gen. David Johnston and OpenText Corp. chair Tom Jenkins discuss Canadian innovation and their book Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier.

Books will be available for purchase and signing.

Doors open at 6 p.m.

INGENIOUS : HOW CANADIAN INNOVATORS MADE THE WORLD SMARTER, SMALLER, KINDER, SAFER, HEALTHIER, WEALTHIER, AND HAPPIER

Address:

350 West Georgia St.
VancouverV6B 6B1

Get Directions

  • Phone:

Location Details:

Alice MacKay Room, Lower Level

I do have a few more details about the authors and their book. First, there’s this from the Ottawa Writer’s Festival March 28, 2017 event page,

To celebrate Canada’s 150th birthday, Governor General David Johnston and Tom Jenkins have crafted a richly illustrated volume of brilliant Canadian innovations whose widespread adoption has made the world a better place. From Bovril to BlackBerrys, lightbulbs to liquid helium, peanut butter to Pablum, this is a surprising and incredibly varied collection to make Canadians proud, and to our unique entrepreneurial spirit.

Successful innovation is always inspired by at least one of three forces — insight, necessity, and simple luck. Ingenious moves through history to explore what circumstances, incidents, coincidences, and collaborations motivated each great Canadian idea, and what twist of fate then brought that idea into public acceptance. Above all, the book explores what goes on in the mind of an innovator, and maps the incredible spectrum of personalities that have struggled to improve the lot of their neighbours, their fellow citizens, and their species.

From the marvels of aboriginal invention such as the canoe, snowshoe, igloo, dogsled, lifejacket, and bunk bed to the latest pioneering advances in medicine, education, philanthropy, science, engineering, community development, business, the arts, and the media, Canadians have improvised and collaborated their way to international admiration. …

Then, there’s this April 5, 2017 item on Canadian Broadcasting Corporation’s (CBC) news online,

From peanut butter to the electric wheelchair, the stories behind numerous life-changing Canadian innovations are detailed in a new book.

Gov. Gen. David Johnston and Tom Jenkins, chair of the National Research Council and former CEO of OpenText, are the authors of Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier. The authors hope their book reinforces and extends the culture of innovation in Canada.

“We started wanting to tell 50 stories of Canadian innovators, and what has amazed Tom and myself is how many there are,” Johnston told The Homestretch on Wednesday. The duo ultimately chronicled 297 innovations in the book, including the pacemaker, life jacket and chocolate bars.

“Innovations are not just technological, not just business, but they’re social innovations as well,” Johnston said.

Many of those innovations, and the stories behind them, are not well known.

“We’re sort of a humble people,” Jenkins said. “We’re pretty quiet. We don’t brag, we don’t talk about ourselves very much, and so we then lead ourselves to believe as a culture that we’re not really good inventors, the Americans are. And yet we knew that Canadians were actually great inventors and innovators.”

‘Opportunities and challenges’

For Johnston, his favourite story in the book is on the light bulb.

“It’s such a symbol of both our opportunities and challenges,” he said. “The light bulb was invented in Canada, not the United States. It was two inventors back in the 1870s that realized that if you passed an electric current through a resistant metal it would glow, and they patented that, but then they didn’t have the money to commercialize it.”

American inventor Thomas Edison went on to purchase that patent and made changes to the original design.

Johnston and Jenkins are also inviting readers to share their own innovation stories, on the book’s website.

I’m looking forward to the talk and wondering if they’ve included the botox and cellulose nanocrystal (CNC) stories to the book. BTW, Tom Jenkins was the chair of a panel examining Canadian research and development and lead author of the panel’s report (Innovation Canada: A Call to Action) for the then Conservative government (it’s also known as the Jenkins report). You can find out more about in my Oct. 21, 2011 posting.

(3) Made in Canada (Vancouver)

This is either fortuitous or there’s some very high level planning involved in the ‘Made in Canada; Inspiring Creativity and Innovation’ show which runs from April 21 – Sept. 4, 2017 at Vancouver’s Science World (also known as the Telus World of Science). From the Made in Canada; Inspiring Creativity and Innovation exhibition page,

Celebrate Canadian creativity and innovation, with Science World’s original exhibition, Made in Canada, presented by YVR [Vancouver International Airport] — where you drive the creative process! Get hands-on and build the fastest bobsled, construct a stunning piece of Vancouver architecture and create your own Canadian sound mashup, to share with friends.

Vote for your favourite Canadian inventions and test fly a plane of your design. Discover famous (and not-so-famous, but super neat) Canadian inventions. Learn about amazing, local innovations like robots that teach themselves, one-person electric cars and a computer that uses parallel universes.

Imagine what you can create here, eh!!

You can find more information here.

One quick question, why would Vancouver International Airport be presenting this show? I asked that question of Science World’s Communications Coordinator, Jason Bosher, and received this response,

 YVR is the presenting sponsor. They donated money to the exhibition and they also contributed an exhibit for the “We Move” themed zone in the Made in Canada exhibition. The YVR exhibit details the history of the YVR airport, it’s geographic advantage and some of the planes they have seen there.

I also asked if there was any connection between this show and the ‘Ingenious’ book launch,

Some folks here are aware of the book launch. It has to do with the Canada 150 initiative and nothing to do with the Made in Canada exhibition, which was developed here at Science World. It is our own original exhibition.

So there you have it.

(4) Robotics, AI, and the future of work (Ottawa)

I’m glad to finally stumble across a Canadian event focusing on the topic of artificial intelligence (AI), robotics and the future of work. Sadly (for me), this is taking place in Ottawa. Here are more details  from the May 25, 2017 notice (received via email) from the Canadian Science Policy Centre (CSPC),

CSPC is Partnering with CIFAR {Canadian Institute for Advanced Research]
The Second Annual David Dodge Lecture

Join CIFAR and Senior Fellow Daron Acemoglu for
the Second Annual David Dodge CIFAR Lecture in Ottawa on June 13.
June 13, 2017 | 12 – 2 PM [emphasis mine]
Fairmont Château Laurier, Drawing Room | 1 Rideau St, Ottawa, ON
Along with the backlash against globalization and the outsourcing of jobs, concern is also growing about the effect that robotics and artificial intelligence will have on the labour force in advanced industrial nations. World-renowned economist Acemoglu, author of the best-selling book Why Nations Fail, will discuss how technology is changing the face of work and the composition of labour markets. Drawing on decades of data, Acemoglu explores the effects of widespread automation on manufacturing jobs, the changes we can expect from artificial intelligence technologies, and what responses to these changes might look like. This timely discussion will provide valuable insights for current and future leaders across government, civil society, and the private sector.

Daron Acemoglu is a Senior Fellow in CIFAR’s Insitutions, Organizations & Growth program, and the Elizabeth and James Killian Professor of Economics at the Massachusetts Institute of Technology.

Tickets: $15 (A light lunch will be served.)

You can find a registration link here. Also, if you’re interested in the Canadian efforts in the field of artificial intelligence you can find more in my March 24, 2017 posting (scroll down about 25% of the way and then about 40% of the way) on the 2017 Canadian federal budget and science where I first noted the $93.7M allocated to CIFAR for launching a Pan-Canadian Artificial Intelligence Strategy.

(5) June 2017 edition of the Curiosity Collider Café (Vancouver)

This is an art/science (also known called art/sci and SciArt) that has taken place in Vancouver every few months since April 2015. Here’s more about the June 2017 edition (from the Curiosity Collider events page),

Collider Cafe

When
8:00pm on Wednesday, June 21st, 2017. Door opens at 7:30pm.

Where
Café Deux Soleils. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost
$5.00-10.00 cover at the door (sliding scale). Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

***

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet, discover, connect, create. How do you explore curiosity in your life? Join us and discover how our speakers explore their own curiosity at the intersection of art & science.

The event will start promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Enjoy!

*I changed ‘three’ events to ‘five’ events and added a number to each event for greater reading ease on May 31, 2017.

The Cabinet Project: a call for proposals from Canada’s ArtSci Salon

Thanks to my colleague, Raewyn Turner (artist, New Zealand) for information about this call for proposals. BTW, she and I are talking about putting our own proposal forward but the deadline is Sept. 30, 2016, which isn’t all that far away.

The ArtSci Salon; A Hub for the Arts & Science communities in Toronto and Beyond is soliciting proposals for ‘The Cabinet Project; An artsci exhibition about cabinets‘ to be held *March 30 – May 1* 2017 at the University of Toronto in a series of ‘science cabinets’ found around campus,

Despite being in full sight, many cabinets and showcases at universities and scientific institutions lie empty or underutilized. Located at the entrance of science departments, in proximity of laboratories, or in busy areas of transition, some contain outdated posters, or dusty scientific objects that have been forgotten there for years. Others lie empty, like old furniture on the curb after a move, waiting for a lucky passer-by in need. The ceaseless flow of bodies walking past these cabinets – some running to meetings, some checking their schedule, some immersed in their thoughts – rarely pay attention to them.

The neglect of these cabinets seems to confirm well-established ideas about science institutions as recluse spaces where secrecy reigns, and communication with the outside world is either underappreciated or prohibited. But at a closer look, this is not the case: those seemingly ignored and neglected cabinets have fascinating and compelling stories that speak to their mobility, their past uses and their owners; laboratories in their proximity burst of excitement and boredom, frustration and euphoria, their machineries being constantly fabricated, rethought, dismantled or replaced; in these laboratories, individuals, objects and instruments come to life in complicated ways. These objects, human relations and stories are forming complex ecologies that are very much alive.

Here are the objectives (from the Project page),

The Cabinet project seeks to explore and to bring to life historical, anecdotal and imagined stories evoked by scientific objects, their surrounding space and the individuals that inhabit them. The goal is to reflect on, and reverse the stereotypical assumptions about science as inaccessible and secretive, to make the intense creativity existing inside science laboratories visible, and to suggest potential interactions between the sciences and the arts.

We invite artists, scientists and other creative individuals to turn a select number of cabinets across the University of Toronto into small-scale installations. Interventions can use a variety of media and material and engage with a number of disciplines.

The resulting distributed exhibition ( March 2017) will feature dialogues between art and science that engage with objects and instruments created in nearby science labs.

Before you send your proposal, make sure to check the location/size of the cabinets, as well as the UTSIC collection.
Please come back often as more cabinets are added

There’s also the Call for Proposals (from the Project page),

Artists are invited to populate a variety of cabinets around the St. George Campus at the University of Toronto with artworks that

  • interact with objects and instruments that have been fabricated or used in the labs nearby;
  • engage with the history of the cabinets (how they got there, who donated them, what was their initial purpose etc..);
  • narrate imaginary or science fictional stories about the cabinets, the labs in their proximity and the mysterious objects they have produced in the past or are currently producing.

Of course, these are only suggested scenarios. Please, contact us if you have a particular request or idea.

We request that you fill in the online proposal below with a 250 words MAX description, accompanied by 3-4 images that meaningfully describe your work. Please, specify your goals, how you plan to interact with certain objects or a particular environment, and how you plan to install your work, using which media etc..  This project assumes that a meaningful interaction with the surrounding context is established.

The application form is here. Don’t forget to go to the Project page for a list of cabinets and the deadline is Sept. 30, 2016. Good luck to us all!

*’March’ replaced by ‘March 30 – May 1’ on S.1.16 at 1420 PDT.

Online art/science exhibit on stem cells and Canadians, Dr. Jim Till and Dr. Ernest McCulloch

Before getting to the exhibit, here’s some background information from Stacey Johnson’s July 22, 2016 posting on the Signals blog (Note: Links have been removed),

You would be hard-pressed to find a Canadian stem cell scientist who doesn’t know that Drs. Jim Till and Ernest McCulloch advanced medical research across the globe with their discovery, in 1961, of blood stem cells at Toronto’s Princess Margaret Hospital, today the Princess Margaret Cancer Centre.

Recently, a group of artists, doctors, scientists and educators launched an art exhibit based on Till and McCulloch. The group, NASCENT Art Science Collective, created portraits of the two men, produced drawings and designed banners to honour these pioneers and their ground-breaking work.

You can find the show, The Protean SELF here. Before clicking on the link I encourage you to read Johnson’s piece in its entirety. Whether you choose to read it further or not, I highly (!) recommend that you scroll down the exhibit page or click on Interpretive Guide for Museum of Health Care before when viewing the images and text otherwise it will seem a hodgepodge. The guide was for the real life exhibit, which is over.

The guide won’t answer all your questions but will help greatly to contextualize the images and the text. For example,

Hanging in the main windows are two banners by Elizabeth Greisman. Elizabeth has been extending her work on stem cells, their discovery by Dr. James Till and the importance of “ah hah’ moments to the field of dance. Elizabeth has worked with the National Ballet – cross fertilization through this work has expanded her understanding of the two defining features of stem cells – the ability to regenerate and the ability to differentiate.

That description applies to this image (I believe),

Artist: Elizabeth Greisman

Artist: Elizabeth Greisman

It’s also very helpful for understanding why there’s a fair chunk text devoted to open access,

On entering the museum, you will find a banner with an original written piece by Dr. James Till, produced for this show. Dr. Till has become a tireless advocate for Open Access. His words speak for themselves.

Artist: Dr. James Till. Formatted by Wendy Wobeser

Artist: Dr. James Till. Formatted by Wendy Wobeser

Enjoy!

Beatrix Potter and her science on her 150th birthday

July 28, 2016 was the 150th anniversary of Beatrix Potter‘s birthday. Known by many through her children’s books, she has left an indelible mark on many of us. Hop-skip-jump.com has a description of an extraordinary woman, from their Beatrix Potter 150 years page,

An artist, storyteller, botanist, environmentalist, farmer and impeccable businesswoman, Potter was a visionary and a trailblazer. Single-mindedly determined and ambitious she overcame professional rejection, academic humiliation, and personal heartbreak, going on to earn her fortune and a formidable reputation.

A July 27, 2016 posting by Alex Jackson on the Guardian science blogs provides more information about Potter’s science (Note: Links have been removed),

Influenced by family holidays in Scotland, Potter was fascinated by the natural world from a young age. Encouraged to follow her interests, she explored the outdoors with sketchbook and camera, honing her skills as an artist, by drawing and sketching her school room pets: mice, rabbits and hedgehogs. Led first by her imagination, she developed a broad interest in the natural sciences: particularly archaeology, entomology and mycology, producing accurate watercolour drawings of unusual fossils, fungi, and archaeological artefacts.

Potter’s uncle, Sir Henry Enfield Roscoe FRS, an eminent nineteenth-century chemist, recognised her artistic talent and encouraged her scientific interests. By the 1890s, Potter’s skills in mycology drew Roscoe’s attention when he learned she had successfully germinated spores of a class of fungi, and had ideas on how they reproduced. He used his scientific connections with botanists at Kew’s Royal Botanic Gardens to gain a student card for his niece and to introduce her to Kew botanists interested in mycology.

Although Potter had good reason to think that her success might break some new ground, the botanists at Kew were sceptical. One Kew scientist, George Massee, however, was sufficiently interested in Potter’s drawings, encouraging her to continue experimenting. Although the director of Kew, William Thistleton-Dyer refused to give Potter’s theories or her drawings much attention both because she was an amateur and a female, Roscoe encouraged his niece to write up her investigations and offer her drawings in a paper to the Linnean Society.

In 1897, Potter put forward her paper, which Massee presented to the Linnean Society, since women could not be members or attend a meeting. Her paper, On the Germination of the Spores of the Agaricineae, was not given much notice and she quickly withdrew it, recognising that her samples were likely contaminated. Sadly, her paper has since been lost, so we can only speculate on what Potter actually concluded.

Until quite recently, Potter’s accomplishments and her experiments in natural science went unrecognised. Upon her death in 1943, Potter left hundreds of her mycological drawings and paintings to the Armitt Museum and Library in Ambleside, where she and her husband had been active members. Today, they are valued not only for their beauty and precision, but also for the assistance they provide modern mycologists in identifying a variety of fungi.

In 1997, the Linnean Society issued a posthumous apology to Potter, noting the sexism displayed in the handling of her research and its policy toward the contributions of women.

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

I’m sure you recognized the bunsen burner. From the James posting (Note: A link has been removed),

London-born, Henry Roscoe, whose family roots were in Liverpool, studied at University College London, before moving to Heidelberg, Germany, where he worked under Robert Bunsen, inventor of the new-fangled apparatus that inspired Potter’s drawing. Together, using magnesium as a light source, Roscoe and Bunsen reputedly carried out the first flashlight photography in 1864. Their research laid the foundations of comparative photochemistry.

These excerpts do not give full justice to James’ piece which I encourage you to read in its entirety.

Should you be going to the UK and inclined to follow up further, there’s a listing of 2016 events being held to honour Potter on the UK National Trust’s Celebrating Beatrix Potter’s anniversary in the Lake District webpage.

Curiosity Collider event on May 4, 2016 (Vancouver, Canada)

The latest Curiosity Collider event in Vancouver, Canada is being billed as “Untold Stories of Collisions … between Art + Science Vol II. From an April 28, 2016 notice (received via email),

From Star Wars and blown glass, to knots and scents, join Curiosity Collider on May the 4th [2016] to celebrate collisions between art and science.

When: 8:00pm on Wednesday, May 4th, 2016. Doors open at 7:30pm.

Where: Café Deux Soleils. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost: $5.00 cover (sliding scale) at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events.

With Fascinating Stories by

Holman Wang (@JackandHolman) | Co-author of Star Wars Epic Yarns | Star Wars in Felt
Kelly Ablard (@kellyablard) | Biologist (olfactory communication) | Order Through Odour
Larissa Blokhuis (@LarissaBlokhuis) | Glass Artist | Nature in Blown Glass
Rob Scharein | Scientist, Digital Artist of LocoMoto Art Collective | Why Knots? A Tangled Tale…

Art & Science Open Mic

And back by popular demand, we are having another art-science open mic. 90 seconds to share your ideas, look for art-science collaborators, or showcase your own project!

Follow updates on twitter via @ccollider or #ArtSciStories2

You can find more information about the individual speakers here and I encourage you to do so if you have the time. There’s also a Facebook page where you can sign up for the event.

Meet a Scientist – Experiment with an Artist at Vancouver’s (Canada) Science World and Curiosity Collider’s joint event

An April 4, 2016 Curiosity Collider announcement, received via email, highlights an upcoming art/science weekend event,

9 artists. 9 scientists.

Participate in their experiment!   Join Curiosity Collider and Science World BC on April 9/10 for the special “Meet a Scientist – Experiment with an Artist” weekend! Participate in hands-on activities with scientists, and interact with on-site artists while they experiment with their art in collaboration with the scientists.Date & Time: April 9 and 10, from 10am to 4pmLocation: TELUS World of Science (1455 Quebec Street, Vancouver)

Admission: General Science World admission is required to attend this event. Visit our Facebook event page (http://bit.ly/ArtSciExperiment) to let us know you are coming. Plus, we will be giving out some free Science World passes on the page!

Participating artists and scientists:

Saturday

Char Hoyt (2/d drawing/oil painting) & Stefanie Vogt (microbiology)

Dzee Louise (2/d drawing/watercolor/acrylic painting) & Amy Smith (neuroscience)

Laura Lee Coles (digital arts/installations, found objects) & Rosa An (geo-technical engineering)

Sammy Chien (interdisciplinary media arts) & Jacqueline Wong (audiologist)Willa Downing (2/d mixed media collage/drawing) & Antonya Gonzalez (developmental psychology)

Sunday

Christopher Rodrigues (2/d & 3/d – painting / digital) & Philip LeSueur (geological engineering)

Michelle Weinstein (3/d drawing/experimental animation) & Samuel Brenner(civil engineering

Robi Smith (2/d acrylic painting/mixed media) & Kelly Ablard (biology)

Rob Scharein (digital art, 3/d graphics) & Regan Zhang (medical genetics)

This is a pilot project – let us know your experience so that we can create more events like this in the future. We will also showcase our new and awesome Curiosity Collider T-shirts at the event – ask us how you can get one.

Enjoy!

Should you be curious about Curiosity Collider, you can find out more here. One last comment, an adult ticket for Science World costs $23.25 (not cheap).

You say SciArt, I say art/sci (tomayta/tomahtoe)

Whether it’s called SciArt or art/sci, it’s a thrill to be exposed to the broad range of pieces being shared in #SciArt, the Science Art Tweetstorm. Here’s more from Kimberly Moynahan’s March 2, 2016 posting on her Endless Forms Most Beautiful blog (Note Links have been removed),

Here, for the 2nd year in a row, is #SCIART, the Science Art Tweetstorm organized by the Symbiartic crew at Scientific American Blogs.

Now, if you imagine that “science art” means only scientific/medical illustration, infographics and notebook sketches, then you are in for a treat!

A quick scan of the #sciart hashtag shows works spanning every imaginable medium and genre — science-themed jewelry and clothing, 3-d renderings, sculptures and models, sketches and paintings, murals, tattoos, cartoons, photographs, videos and well ..

Her post has many examples copied from the feed. Do enjoy!

You can find #sciart here and there’s more about this twitterstorm in a March 1, 2016 post by Glendon Mellow for the Symbiartic blog,

Last year [2015], during the 1st week of March, the Symbiartic crew asked artists who create work inspired by science to follow 3 simple rules, and tweet every day:

  1. Tweet 3 pieces of your own #SciArt
  2. Retweet 5 pieces of #SciArt by other people
  3. Make sure to hashtag them with #SciArt

Katie, Kalliopi, and I were hoping to see a few thousand tweets by the end of the week, and instead we saw almost 29,000 tweets. More importantly, scientists, science communicators and science fans got to see the incredible amount of artwork that we here on Symbiartic know is out there.

The event was reported on by Nature, Gizmodo, and a number of artists’ own blogs. More importantly was how happy it made everyone: thought-provoking art about science made by varied skill sets took over Twitter and proved the platform isn’t just an outrage machine.

So we’re doing it again. And we’re hoping it will lead to bigger and better events that we, along with other #SciArt bloggers, have been working on. You can sign-up for our newsletter if you want to be the first to find out more.

A few more tips:

  • Go bananas: You can go ahead and post more than 3 pieces of your own work each day.
  • The field is open: last year we saw works-in-progress, sketches, finished paintings, sculptures, glassworks, fabric-art, bioart, and so much more. Science encompasses all the coolest subjects in the universe so jump in there and share.
  • Credit artists: If you’re from a school, museum or institution and want to show off that amazing sciart installation in your foyer, just make sure you tag the tweet or somehow credit the artist.
  • Keep it simple: A tweet with the the title of the work, the image, and a link to your online store or a blog post is fantastic. Don’t forget the hashtag #SciArt!
  • Reporters can join in: If you’re a writer or site that interviews and shows #SciArt, go ahead and post those links!
  • Dig into your back-catalogue: works being shared don’t have to be new. Even if you shared them last year, chances are they’re new to someone!
  • Repeat tweet: the audience on Tuesday morning isn’t the same as on Saturday afternoon. Go ahead and tweet your work a second time.

Here are a few pieces I saw on the feed today (March 3, 2016),

This is a fast moving feed.

ETA March 4, 2016: For anyone interested in the Canadian SciArt and the March 2016 twitterstorm, there’s a March 4, 2016 posting by Liz Martin-Silverstone featuring a number of Canadian contributions to the #SciArt Tweet Storm.

Montreal Neuro goes open science

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Montreal Neuro and its place in Canadian and world history

Before pursuing this announcement a little more closely, you might be interested in some of the institute’s research history (from the Montreal Neurological Institute Wikipedia entry and Note: Links have been removed),

The MNI was founded in 1934 by the neurosurgeon Dr. Wilder Penfield (1891–1976), with a $1.2 million grant from the Rockefeller Foundation of New York and the support of the government of Quebec, the city of Montreal, and private donors such as Izaak Walton Killam. In the years since the MNI’s first structure, the Rockefeller Pavilion was opened, several major structures were added to expand the scope of the MNI’s research and clinical activities. The MNI is the site of many Canadian “firsts.” Electroencephalography (EEG) was largely introduced and developed in Canada by MNI scientist Herbert Jasper, and all of the major new neuroimaging techniques—computer axial tomography (CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) were first used in Canada at the MNI. Working under the same roof, the Neuro’s scientists and physicians made discoveries that drew world attention. Penfield’s technique for epilepsy neurosurgery became known as the Montreal procedure. K.A.C. Elliott identified γ-aminobutyric acid (GABA) as the first inhibitory neurotransmitter. Brenda Milner revealed new aspects of brain function and ushered in the field of neuropsychology as a result of her groundbreaking study of the most famous neuroscience patient of the 20th century, H.M., who had anterograde amnesia and was unable to form new memories. In 2007, the Canadian government recognized the innovation and work of the MNI by naming it one of seven national Centres of Excellence in Commercialization and Research.

For those with the time and the interest, here’s a link to an interview (early 2015?) with Brenda Milner (and a bonus, related second link) as part of a science podcast series (from my March 6, 2015 posting),

Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.

  • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
  • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Brief personal anecdote
For those who just want the science, you may want to skip this section.

About 15 years ago, I had the privilege of talking with Mary Filer, a former surgical nurse and artist in glass. Originally from Saskatchewan, she, a former member of Wilder Penfield’s surgical team, was then in her 80s living in Vancouver and still associated with Montreal Neuro, albeit as an artist rather than a surgical nurse.

Penfield had encouraged her to pursue her interest in the arts (he was an art/science aficionado) and at this point her work could be seen many places throughout the world and, if memory serves, she had just been asked to go MNI for the unveiling of one of her latest pieces.

Her husband, then in his 90s, had founded the School of Architecture at McGill University. This couple had known all the ‘movers and shakers’ in Montreal society for decades and retired to Vancouver where their home was in a former chocolate factory.

It was one of those conversations, you just don’t forget.

More about ‘open science’ at Montreal Neuro

Brian Owens’ Jan. 21, 2016 article for Science Magazine offers some insight into the reason for the move to ‘open science’,

Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.”

So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. …

“It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. …”

After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. …

Owens’ article provides more information about implementation and issues about sharing. I encourage you to read it in its entirety.

As for getting more research to the patient, there’s a Jan. 26, 2016 Cafe Scientifique talk in Vancouver (my Jan. 22, 2016 ‘Events’ posting; scroll down about 40% of the way) regarding that issue although there’s no hint that the speakers will be discussing ‘open science’.