Tag Archives: art/science

The sense of beauty: an art/science film about CERN, the European Particle Physics Laboratory, in Vancouver, Canada; art/sci September in Toronto (Canada), a science at the bar night in Vancouver (Canada), and a festival in Calgary (Canada)

Compared to five or more years ago, there’s a lollapalooza of art/sci (or sciart) events coming up in September 2018. Of course, it’s helpful if you live in or are visiting Toronto or Vancouver or Calgary at the right time.  All of these events occur from mid September (roughly) to the end of September. In no particular date order:

Sense of beauty in Vancouver

The September 10, 2018 Dante Alighieri Society of British Columbia invitation (received via email) offered more tease than information. Happily, the evite webpage for “The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo filled in the details,

The Dante Alighieri Society of British Columbia

Invites you to the screening of the documentary

“The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo

TUESDAY, SEPTEMBER 25, 2018 at 6:30 pm

The CINEMATHEQUE – 1131 Howe Street, Vancouver

Duration of film: 75’. Director in attendance; Q&A with the film director to follow the screening

Free Admission

RSVP: info@dantesocietybc.ca

Director Jalongo will discuss the making of his documentary in a seminar open to the public on September 24 (1:00-2:30 pm) at UBC  [University of British Columbia] (Buchanan Penthouse, *1866 Main Maill, Block C, 5th floor*, Vancouver).

The Sense of Beauty is the story of an unprecedented experiment that involves scientists from throughout the world collaborating around the largest machine ever constructed by human beings: the LHC (Large Hadron Collider). As the new experiment at CERN proceeds in its exploration of the mysterious energy that animates the universe, scientists and artists guide us towards the shadow line where science and art, in different ways, pursue truth and beauty.

Some of these men and women believe in God, while others believe only in experiment and doubt. But in their search for truth they are all alert to an elusive sixth – or seventh – sense: the sense of beauty. An unmissable opportunity for lovers of science, of beauty, or of both.

Rome-born Valerio Jalongo is a teacher, screenwriter and director who works in cinema and TV, for which he created works of fiction and award-winning documentaries. Among them: Sulla mia pelle (On My Skin, 2003) and La scuola è finita (2010), starring Valeria Golino, on the difficulties facing public schools in Italy.

This event is presented by the Dante Alighieri Society of BC in collaboration with the Consulate General of Italy in Vancouver and in association with ARPICO (www.arpico.ca), the Society of Italian Researchers and Professionals in Western Canada.

RSVP: info@dantesocietybc.ca

I searched for more information both about the film and about the seminar at UBC. I had no luck with the UBC seminar but I did find more about the film. There’s an April (?) 2017 synopsis by Luciano Barisone on the Vision du Réel website,

From one cave to another. In prehistoric times, human beings would leave paintings in caves to show their amazement and admiration for the complexity of the world. These reproductions of natural forms were the results of an act of creation and also of mystical gestures which appropriated the soul of things. In another gigantic and modern den, the immense CERN laboratory, the same thing is happening today, a combination of enthralled exploration of the cosmos and an attempt to control it. Valerio Jalongo’s film tackles the big questions that have fascinated poets, artists and philosophers since the dawn of time. Who are we? Where do we come from? Where are we going? The scientists at CERN attempt to answer them through machines that explore matter and search for the origins of life. In their conversations or their words to camera, the meaning of existence thus seems to become a pure question of the laws of physics and mathematical formulae. If only for solving the mystery of the universe a sixth sense is necessary. That of beauty…

There’s also a February 5, 2018 essay by Stefano Caggiano for Interni, which uses a description of the film to launch into a paean to Italian design,

The success of the documentary The Sense of Beauty by Valerio Jalongo, which narrates the ‘aesthetic’ side of the physicists at CERN when faced with the fundamental laws of nature, proves that the yearning for beauty is not just an aspect of art, but something shared by all human efforts to interpret reality.

It is no coincidence that the scientists themselves define the LHC particle accelerator (27 km) as a grand machine for beauty, conceived to investigate the meaning of things, not to perform some practical function. In fact, just as matter can be perceived only through form, and form only if supported by matter (Aristotle already understood this), so the laws of physics can be glimpsed only when they are applied to reality.

This is why in the Large Hadron Collider particles are accelerated to speeds close to that of light, reconstructing the matter-energy conditions just a few instants after the Big Bang. Only in this way is it possible to glimpse the hidden fundamental laws of the universe. It is precisely this evanescence that constitutes ‘beauty.’

The quivering of the form that reveals itself in the matter that conceals it, and which – given the fact that everything originates in the Big Bang – is found everywhere, in the most faraway stars and the closest objects: you just have to know how to prove it, grasp it, how to wait. Because this is the only way to establish relations with beauty: not perceiving it but awaiting it. Respecting its way of offering itself, which consists in denying itself.

Charging the form of an object with this sensation of awaiting, then, means catalyzing the ultimate and primary sense of beauty. And it is what is held in common by the work of the five Italian designers nominated for the Rising Talent Awards of Maison & Object 2018 (with Kensaku Oshiro as the only non-Italian designer, though he does live and work in Milan).

There’s a trailer (published by CERN on November 7, 2017,

It’s in both Italian and English with subtitles throughout, should you need them.

*The address for the Buchanan Penthouse was corrected from: 2329 West Mall to 1866 Main Maill, Block C, 5th floor on Sept. 17, 2018.

Toronto’s ArtSci Salon at Nuit Blanche, Mycology, Wild Bees and Art+Tech!

From a Tuesday, September 11, 2018 Art/Sci Salon announcement (received via email),

Baba Yaga Collective and ArtSci Salon Present:
Chaos Fungorum

In 1747, Carl Linnaeus, known as the “father of taxonomy”, observed
that the seeds of fungus moved in water like fish until “..by a law of
nature thus far unheard of and surpassing all human understanding..,”
they changed back to plant in their adult life.

He proceeded to include fungi in the new genus of “Chaos”. But why
delimiting fungi within categories and boundaries when it is exactly
their fluidity that make them so interesting?

Chaos Fungorum draws on the particular position occupied by fungi and
other hybrid organisms: neither plant nor animal, fungi extend across,
and can entertain, communications and collaborations between animal,
human and industrial realms.

Mixing different artistic practices and media, the artists featured in
this exhibition seek to move beyond rigid comprehensions of the living
by working with, rather than merely shaping, sculpting and manipulating
plants, microorganisms and fungi. Letting the non-human speak is to move
away from an anthropocentric approach to the world: it not only opens to
new rewarding artistic practices, but it also fosters new ideas of
sustainable coexistence, new unusual life collaborations and
adaptations, and new forms of communications and languages.

THE EXHIBITION
September 26 – October 7, 2018

Baba Yaga Collective 906 Queen Street West @Crawford, Toronto

info@babayagacollective.ca

FEATURING

BIO.CHROME COLLECTIVE
Robyn Crouch • Mellissa Fisher • Shavon Madden
Tracy Maurice • Tosca Teran • Alexis Williams

SPECIAL GUEST
Whitefeather Hunter

SPECIAL NUIT BLANCHE OPENING RECEPTION
September 29
6:00 – 9:00 pm

6:30pm: Artsci Salon introduction with Roberta Buiani and Stephen Morris
rethinking categories and the “non-human” in art and science

Followed by artist remarks.
Scientists from the University of Toronto will act as respondent.

9:30pm onward: Tosca Teran & Andrei Gravelle of Nanotopia [emphasis mine]

BIO-SONIFICATIONS: NON-HUMAN COLLABORATIONS Mycelium to MIDI •

Midnight Mushroom music live performance

This Special program is co-presented by The Baba Yaga Collective and
ArtSci Salon. For more information contact artscisalon@gmail.com
https://www.facebook.com/events/1763778620414561/

 All the Buzz on Wild Bee Club!
Summer Speaker Series

Wed Sept 19 at 7pm
High Park Nature Centre,
All the Buzz on Wild Bee Club! – Summer Speaker Series

The speaker series will feature the club’s biologist/leader SUSAN FRYE.
A major component of this club will use the SONIC SOLITARIES AUDIO BEE
CABINET  – an observable nest site for bees in OURSpace – to encompass a
sensory experience with stem nesting bees and wasps, and to record
weekly activity at the cabinet. Pairing magnified views in tandem with
amplified sound via headphones, the cabinet facilitates an enhanced
perception of its tiny inhabitants: solitary bees and wasps and other
nest biota in action, up close. As citizen scientists, we can gather and
record observations to compile them into a database that will contribute
to our growing understanding of native bees, the native (and non-native)
plants they use for food and nest material sources, their co-evolution,
and how pollination in a park and restored habitat setting is
facilitated by native bees.

Fri, Sept 21, 8pm
Music Gallery, 918 Bathurst (their new location) –
Trio Wow & Flutter
with Bea Labikova, fujara, saxophones,
Kayla Milmine-Abbott, soprano saxophone,
Sarah Peebles, shō, cracklebox, amplifiers.

Call for Participants: Art+Tech Jam

ChangeUp’s Art+Tech Jam
September 21-23

This three days event will unite a diverse group of artists and
technologists in an intensive, collaborative three-day creation period
and culminating showcase (public exhibition and interdisciplinary rave).

ChangeUo is currently accepting applicants from tech and arts/culture
spaces of all ages, backgrounds, and experience levels.
Limited spots available.
For more information and to apply
https://tinyurl.com/changeup-artsorg

I looked up Nanotopia and found it on SoundCloud. Happy listening!

Et Al III (the ultimate science bar night in Vancouver) and more

A September 12, 2018 Curiosity Collider announcement (received via email) reveals details about the latest cooperative event/bar night put on by three sciencish groups,

Curiosity Collider is bringing art + science to Vancouver’s Ultimate Bar Science Night with Nerd Nite & Science Slam

Do you enjoy learning about science in a casual environment? This is the third year that Curiosity Collider is part of Et al, the Ultimate Bar Science Night where we bring together awesome speakers and activities. Come and enjoy Curiosity Collider’s segment on quantum physics with Spoken Word Poet Angelica Poversky, Physicist James Day, and CC’s own Creative Director Char Hoyt.

When: Drinks and mingling start at 6:30pm. Presentations start at 7:30pm.
Where: Rio Theatre, 1660 E Broadway, Vancouver, BC V5N 1W1
Cost: $15-20 via Eventbrite and at the door. Proceeds will be used to cover the cost of running this event, and to fund future science bar events.

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is the writer and host of an online series based on her books which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Follow updates on twitter via @ccollider or #ColliderCafe. This event is part of the Science Literacy Week celebration across Canada.

Head to the Facebook event page – let us know you are coming and share this event with others!

Looking for more Art+Science in Vancouver?
For more Vancouver art+science events, visit the Curiosity Collider events calendar.

Devoted readers 🙂 will note that the Vancouver Biennale’s Curious Imaginings show was featured here in a June 18, 2018 post and mentioned more recently in the context of a September 11, 2018 post on xenotransplantation.

Finally for this section, special mention to whomever wrote up the ‘bar night’ description on Eventbrite,

Et Al III: The Ultimate Bar Science Night Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

POSTER BY: Armin Mortazavi IG:@Armin.Scientoonist

Et Al III: The Ultimate Bar Science Night

Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

6:30pm – Doors open
6:30-7:30 Drinks, Socializing, Nerding
7:30pm-945pm Stage Show with two intermissions

You like science? You like drinking while sciencing? In Vancouver there are many options to get educated and inspired through science, art, and culture in a casual bar setting outside of universities. There’s Nerd Nite which focuses on nerdy lectures in the Fox Cabaret, Curiosity Collider which creates events that bring together artists and scientists, and Science Slam, a poetry-slam inspired science communication competition!

In this third installment of Et Al, we’re making the show bigger than ever. We want people to know all about the bar science nights in Vancouver, but we also want to connect all you nerds together as we build this community. We encourage you to COME DRESSED AS YOUR FAVOURITE SCIENTIST. We will give away prizes to the best costumes, plus it’s a great ice breaker. We’re also encouraging science based organizations to get involved in the show by promoting your institution. Contact Kaylee or Michael at vancouver@nerdnite.com if your science organization would like to contribute to the show with some giveaways, you will get a free ticket, if you don’t have anything to give away, contact us anyway, we want this to be a celebration of science nights in Vancouver!

BIOS

CARIN BONDAR
Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is writer and host of online series based on her books (Wild Sex and Wild Moms) which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Curiosity Collider Art Science Foundation promotes interdisciplinary collaborations that capture natural human curiosity. At the intersection of art, culture, technology, and humanity are innovative ways to communicate the daily relevance of science. Though exhibitions, performance events and our quarterly speaker event, the Collider Cafe we help create new ways to experience science.

NERD NITE
In our opinion, there has never been a better time to be a Nerd! Nerd Nite is an event which is currently held in over 60 cities worldwide! The formula for each Nerd Nite is pretty standard – 20 minute presentations from three presenters each night, in a laid-back environment with lots to learn, and lots to drink!

SCIENCE SLAM
Science Slam YVR is a community outreach organization committed to supporting and promoting science communication in Vancouver. Our Science Slams are informal competitions that bring together researchers, students, educators, and communicators to share interesting science in creative ways. Every event is different, with talks, poems, songs, dances, and unexpected surprises. Our only two rules? Each slammer has 5 minutes, and no slideshows are allowed! Slammers come to share their science, and the judges and audience decide their fate. Who will take away the title of Science Slam champion?

That’s a pretty lively description. You can get tickets here.

Calgary’s Beakerhead

An art, science, and engineering festival in Calgary, Alberta, Beakerhead opens on September 19, 2018 and runs until September 23, 2018. Here’s more from the 2018 online programme announcement made in late July (?) 2018,

Giant Dung Beetle, Zorb Ball Racers, Heart Powered Art and More Set to Explode on Calgary Streets!

Quirky, fun adventures result when art, science and engineering collide at Beakerhead September 19 – 23, 2018.

In just seven weeks, enormous electric bolts will light up the sky in downtown Calgary when a crazy cacophony of exhibits and events takes over the city. The Beakerhead crew is announcing the official program lineup with tickets now available online for all ticketed events. This year’s extravaganza will include remarkable spectacles of art and science, unique activities, and more than 50 distinct events – many of which are free, but still require registration to get tickets.

The Calgary-born smash up of art, science and engineering is in its sixth year. Last year, more than 145,000 people participated in Beakerhead and organizers are planning to top that number in 2018.

“Expect conversations that start with “wow!” says Mary Anne Moser, President and Co-founder of Beakerhead. “This year’s lineup includes a lot of original concepts, special culinary events, dozens of workshops, shows and and tours.”

Beakerhead events take place indoors and out. Beakernight is science’s biggest ticketed street party and tickets are now on sale.

Highlights of Beakerhead 2018:

  • Light up the Night: Giant electric bolts will light up the night sky thanks to two 10-metre Tesla Coils built by a team of artists and engineers.
  • Lunch Without Light: This special Dark Table dining experience is led by a famous broadcaster and an esteemed neuroscientist.
  • Beakereats and Beakerbar: Dining is a whole new experience when chef and bartender become scientist! Creative Calgary chefs and mixologists experiment with a new theme in 2018: canola.
  • Four to Six on Fourth: Blocks of open-air experimentation including a human-sized hamster wheel, artists, performers, and hands-on or feet-on experiences like walking on liquid.
  • Beacons: This series of free neighbourhood installations is completely wild! There’s everything from a giant dung beetle to a 3.5 metre lotus that lights up with your heart beat.
  • Workshops: Learn the art of animation, understand cryptocurrency, meet famous scientists and broadcasters, make organic facial oil or a vegan carrot cake and much more.
  • Zorbathon: Get inside a zorb and cavort with family and friends in an oversized playground. Participate in rolling races, bump-a-thons, obstacle courses. Make a day of it.

Beakerhead takes place September 19 – 23, 2018 with the ticketed Beakernight on Saturday, September 22 at Fort Calgary.

Here’s a special shout out to Shaskatchewan`s Jean-Sébastien Gauthier and Brian F. Eames (featured here in a February 16, 2018 posting) and their free ‘Within Measure’ Sept. 19 – 23, 2018 event at Beakerhead.

That’s all folks! For now, that is.

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

Pancakes & booze (underground) art show on Sept. 28, 2018 in Toronto and North Carolina’s public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.

Pancakes & booze

From an August 12, 2018 Art/Sci Salon announcement (received via email),

Toronto — Batter sizzles, beer foams, and bare flesh is slathered in paint as gawkers look on. Indie musicians and DJs thunder sound waves off the canvas-lined, graffiti-strewn walls. Revelers stuff their faces with endless pancakes.

What is this, some type of hipster themed IHOP? A Lady Gaga video? Bansky’s mom’s basement? Nah, it’s the Pancakes & Booze Art Show – the hottest pop-up traveling art event in all the land.

This is no stuffy wine-and-cheese, someone-gag-me-with-a-cocktail-napkin gallery. It’s an innovative reimagining of the art show concept, as DIY art movement mayhem. Up-and-coming artists strut and sell their stuff in a freeverse, electric funhouse of mayhem.

You know you want to come, right? Hit me up so we can talk about ways to convince your editor to pay you to visit the show and maybe relax that no-alcohol-on-the-job policy. Hell, even bring your boss along If you like.

WHAT: Pancakes & Booze Art Show: Over 80 emerging artists showcasing their hottest work in a Warhol-style, anything-goes, massive warehouse environment–live music, body painting, multimedia displays, and FREE pancakes!   The show originated in 2009 in Los Angeles and since has popped up more than 300 times in over 35 cities around the world. Each show draws as many as 3000 guests throughout the night.

WHEN:
Friday, September 28
8pm – 2am

WHERE:
The Opera House
735 Queen St. E.
Toronto, Ontario M4M 1H1

ABOUT TOM: Tom Kirlin, 40, left his movie career as a Hollywood cameraman to start Pancakes & Booze in 2009. Born in Tucson, Ariz., he’s a travel fiend who has visited over forty countries across every continent but Antarctica. At 6-foot-6, he’s a hell of a ringer in pick-up basketball games. Bug him at info@pancakesandbooze.com

There’s also this summary along with additional details from the announcement:

Toronto’s Premier Underground Art Show featuring:

  • 80+ Emerging Local Artists
  • Live Body Painting
  • Live Art
  • Live Music
  • FREE Pancake Bar
  • 21+ EVENT
  • 8pm – 2am
  • $10 – $13

Event info: https://www.facebook.com/events/390234974807730/

Tickets: https://www.brownpapertickets.com/event/3442689

The Opera House
735 Queen St. E.
Toronto, Ontario M4M 1H1

Wanna show some work?
Submit here: www.pancakesandbooze.com/submit

Check us out on

IG @pancakesandbooze

FB @pancakesandboozeartshow
Twitter @pancakesbooze

#pancakesandbooze

North Carolina: Art’s work in the age of biotechnology: Shaping our genetic futures

This too is from an August 12, 2018 Art/Sci Salon email,

This looks good!
Apply!

The NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.

Planned for fall 2019, the multi-site exhibition will be held simultaneously at the Gregg Museum of Art & Design and in the physical and digital display spaces of the NCSU Libraries–the Exhibit Gallery in the D. H. Hilll Library and the video walls in the James B. Hunt Jr. Library. Outdoor and/or greenhouse spaces are also available.

about

Art’s Work/Genetic Futures poses the question: How do artists and designers contribute materially, rhetorically, and conceptually to modern biotechnology? We are looking for contemporary work and project proposals that will engage viewers in examining how genomic sciences could shape the future of our society. Projects that question and challenge current biotechnology tropes, as well as projects that embrace the transformative potential of biotechnology and biomedicine, are welcome.

Guest curator Hannah Star Rogers will organize Art’s Work/Genetic Futures with a panel from the exhibition partners at NC State. Rogers has curated Making Science Visible: The Photography of Berenice Abbott, which received an exhibits prize from the British Society for the History of Science and resulted in an invited lecture at the Smithsonian Archives of American Art. She is past Director of Research and Collaboration forEmerge: Artists and Scientists Redesign the Future 2016 and served as Guest Bioart Curator for 2017.

This call is open to artists, scientists, designers, and makers at all career stages. Emerging artists, creators who are traditionally underrepresented in the arts and sciences, and artists working outside the U.S. are especially encouraged to apply.

Artists will receive an honorarium of $2,500 and three copies of the full-color catalog with essays by the curator and other contributors. Artists working in a collaborative team will share the honorarium.

The deadline for work and proposals is Monday, Oct. 1, 2018.

A shortlist will be announced Thursday, Nov. 15, 2018. Final notification of acceptance will be Tuesday, Jan. 15, 2019.

Full details about the exhibition, the call for art, and how to submit are available on the Art’s Work/Genetic Futures exhibition website at go.ncsu.edu/artswork.

Good luck!

See Nobel prize winner’s (Kostya Novoselov) collaborative art/science video project on August 17, 2018 (Manchester, UK)

Dr. Konstantin (Kostya) Novoselov, one of the two scientists at the University of Manchester (UK) who were awarded Nobel prizes for their work with graphene, has embarked on an artistic career of sorts. From an August 8, 2018 news item on Nanowwerk,

Nobel prize-winning physicist Sir Kostya Novoselov worked with artist Mary Griffiths to create Prospect Planes – a video artwork resulting from months of scientific and artistic research and experimentation using graphene.

Prospect Planes will be unveiled as part of The Hexagon Experiment series of events at the Great Exhibition of the North 2018, Newcastle, on August 17 [2018].

An August 9, 2018 University of Manchester press release, which originated the news item (differences in the dates are likely due to timezones), describes the art/science project in some detail,

The fascinating video art project aims to shed light on graphene’s unique qualities and potential.

Providing a fascinating insight into scientific research into graphene, Prospect Planes began with a graphite drawing by Griffiths, symbolising the chemical element carbon.

This was replicated in graphene by Sir Kostya Novoselov, creating a microscopic 2D graphene version of Griffiths’ drawing just one atom thick and invisible to the naked eye.

They then used Raman spectroscopy to record a molecular fingerprint of the graphene image, using that fingerprint to map a digital visual representation of graphene’s unique qualities.

The six-part Hexagon Experiment series was inspired by the creativity of the Friday evening sessions that led to the isolation of graphene at The University of Manchester by Novoselov and Sir Andre Geim.

Mary Griffiths, has previously worked on other graphene artworks including From Seathwaite an installation in the National Graphene Institute, which depicts the story of graphite and graphene – its geography, geology and development in the North West of England.

Mary Griffiths, who is also Senior Curator at The Whitworth said: “Having previously worked alongside Kostya on other projects, I was aware of his passion for art. This has been a tremendously exciting and rewarding project, which will help people to better understand the unique qualities of graphene, while bringing Manchester’s passion for collaboration and creativity across the arts, industry and science to life.

“In many ways, the story of the scientific research which led to the creation of Prospect Planes is as exciting as the artwork itself. By taking my pencil drawing and patterning it in 2D with a single layer of graphene atoms, then creating an animated digital work of art from the graphene data, we hope to provoke further conversations about the nature of the first 2D material and the potential benefits and purposes of graphene.”

Sir Kostya Novoselov said: “In this particular collaboration with Mary, we merged two existing concepts to develop a new platform, which can result in multiple art projects. I really hope that we will continue working together to develop this platform even further.”

The Hexagon Experiment is taking place just a few months before the official launch of the £60m Graphene Engineering Innovation Centre, part of a major investment in 2D materials infrastructure across Manchester, cementing its reputation as Graphene City.

Prospect Planes was commissioned by Manchester-based creative music charity Brighter Sound.

The Hexagon Experiment is part of Both Sides Now – a three-year initiative to support, inspire and showcase women in music across the North of England, supported through Arts Council England’s Ambition for Excellence fund.

It took some searching but I’ve found the specific Hexagon event featuring Sir Novoselov’s and Mary Griffin’s work. From ‘The Hexagon Experiment #3: Adventures in Flatland’ webpage,

Lauren Laverne is joined by composer Sara Lowes and visual artist Mary Griffiths to discuss their experiments with music, art and science. Followed by a performance of Sara Lowes’ graphene-inspired composition Graphene Suite, and the unveiling of new graphene art by Mary Griffiths and Professor Kostya Novoselov. Alongside Andre Geim, Novoselov was awarded the Nobel Prize in Physics in 2010 for his groundbreaking experiments with graphene.


About The Hexagon Experiment

Music, art and science collide in an explosive celebration of women’s creativity

A six-part series of ‘Friday night experiments’ featuring live music, conversations and original commissions from pioneering women at the forefront of music, art and science.

Inspired by the creativity that led to the discovery of the Nobel-Prize winning ‘wonder material’ graphene, The Hexagon Experiment brings together the North’s most exciting musicians and scientists for six free events – from music made by robots to a spectacular tribute to an unsung heroine.

Presented by Brighter Sound and the National Graphene Institute at The University of Manchester, as part of the Great Exhibition of the North.

Buy tickets here.

One final comment, the title for the evening appears to have been inspired by a novella, from the Flatland Wikipedia entry (Note: Links have been removed),

Flatland: A Romance of Many Dimensions is a satirical novella by the English schoolmaster Edwin Abbott Abbott, first published in 1884 by Seeley & Co. of London.

Written pseudonymously by “A Square”,[1] the book used the fictional two-dimensional world of Flatland to comment on the hierarchy of Victorian culture, but the novella’s more enduring contribution is its examination of dimensions.[2]

That’s all folks.

ETA August 14, 2018: Not quite all. Hopefully this attempt to add a few details for people not familiar with graphene won’t lead increased confusion. The Hexagon event ‘Advetures in Flatland’ which includes Novoselov’s and Griffiths’ video project features some wordplay based on graphene’s two dimensional nature.

Quantum Inkblot; An evening of physics, psychology, art and astronomy on July 12, 2018 in Vancouver (Canada)

A June 26, 2018 HR MacMillan Space Centre (HRMSC) press release, received via email, announces an upcoming art/sci event,

This July the H.R. MacMillan Space Centre and Voirelia: Dance, Psychology and Philosophy Hub will be co-hosting Quantum Inkblot, an interactive evening exploring quantum physics through the lenses of physics and psychology, art, and astronomy. The evening will incorporate talks by a physicist and a psychologist, visual artwork, and original contemporary dance performances.

The talks and artistic works will explore some of the questions about how psychology and physics can mirror, inspire, and influence one another. We will touch on topics related to relativity, uncertainty, and predictability of this world.

A dialogue-style talk will be led by physicist Dr. Jaymie Matthews and psychologist Dr. Alina Sotskova exploring the intersections of quantum physics and psychology. Dr. Matthews will be discussing the concept of wave-particle duality and the way it takes the assumption that one thing cannot be in two places at once and turns it on its head.

Dr. Sotskova will be talking about the dissonance in predicting the behaviour of groups vs. predicting the behaviour of individuals, giving pause to reflect on the existence of order at a macro level and chaos at the micro level.

The evening will also feature three original contemporary dance performances and a visual art and music presentation that were all inspired by themes in psychology and the intersection with physics.

There will be time between performances to enjoy a drink, take part in interactive art activities, watch physics demonstrations, and chat with physicists, artists, and psychologists. The evening will end with a question and answer period with all of the performers and speakers.

Here are logistics and additional details,

Quantum Inkblot will take place at the H.R. MacMillan Space Centre Thursday, July 12th.

This is a 19+ event.

6:30pm doors open, 7:00pm show starts in the Planetarium Star Theatre

$25 for tickets

Tickets available online through Eventbrite,[clicking on this link will give you a map to the location] in person, or by phone at 604.738.7827.

Find the Quantum Inkblot event on Facebook for sneak peeks at the art work being created, learn more about the process of collaboration between artists and scientists, and more!

The H.R. MacMillan Space Centre is a non-profit community resource that brings the wonders of space to Earth, while providing a personal sense of ongoing discovery. Through innovative programming, exhibits and activities, our goal is to inspire sustained interest in the fields of Earth science, space science and astronomy from a Canadian perspective.

Voirelia is a Vancouver-based Dance, Psychology, and Philosophy Hub. Its main purpose is to create original dance and art works inspired by ideas in psychology and philosophy. Voirelia also organizes talks, workshops, and events relevant to the intersection between dance, psychology, & philosophy, such as talks on philosophy of science. Our aim is “movement with meaning.”

BC Psychological Association has provided support for this event and BCPA representatives will be available to chat with the guests.

Voirelia provides a few more information and pictures on its Upcoming Projects webpage,

There will be several dance works presented during Quantum Inkblot. Here are the latest shots from one of the rehearsals, with physicists Dr. Jaymie Matthews and Dr. Ewan Hill joining us for a transdisciplinary open-rehearsal style session.

Photographs: Jason Kirkness. Dancers: Sophie Brassard, Michael Demski. Rehearsal direction/choreography: Alina Sotskova. [Not all the images have been included in this excerpt.]

 

We wanted to document our artistic and creative process as we put together this unique event. Below you will see examples of original art works and how artistic creation progresses. In the dance photographs below (by Jason Kirkness), we had a brainstorming session that included people with backgrounds in physics, psychology, dance, and theater. We spent about an hour talking about concepts from quantum physics that people often find “weird” – such as the concepts of waves, particles, wave-particle duality, and the uncertainty principle. We touched on how quantum physics influences our perception of science, the world, and ourselves. We discussed topics of identity and searching for meaning and why the quantum world is so different from what we see with our senses. Then we took our brainstorming to the dance studio. Here, using prompts suggested by physicists and her own knowledge as a psychologist and dancer, Alina Sotskova facilitated improvisational movement exploration. This yielded a great deal [sic] of ideas about parallels between physics and psychology, and we will use these ideas a spring board as we begin to develop specific dance works for the event. You can also check out short videos of the improvisational movement research session on our Facebook page, in the Videos section. [Not all the images have been included in this excerpt.]

The team who was part of the brainstorming session […] included: Andrew Elias (Graduate Student working in the field of quantum physics, UBC); Jason Kirkness (Co-lead for the Quantum Inkblot Event and; background: physics and computer science); Alina Sotskova (Co-lead for the Quantum Inkblot Event and; background: psychology and dance). Our dancers were: Angelo Moroni, Michael Demski, Carolyn Schmidt, Alejandra Miranda Caballero, Alina Sotskova.

The images below are samples of original art works by Andrew Short, one of Voirelia’s Core Consultants. Inspired by topics in quantum physics, psychology, and cosmology, Andrew is working on preparing a very special presentation especially for Quantum Inkblot. [There are more images at Voirelia.]

 

Interestingly, this does not seem to be a ‘sister’ event to Toronto’s ‘Out Of This World; Art inspired by all things astronomical’ exhibition and talks being held July 4 – 22, 2018 in honour of the Royal Astronomical Society of Canada’s (RASC) sesquicentennial (150th anniversary). There’s more about Toronto’s astronomical art/science event in my July 2, 2018 posting.

Out Of This World; Art inspired by all things astronomical from July 4 – 22, 2018 in Toronto, Canada

From a June 29, 2018 ArtSci Salon notice (received via email),

July 4 – 22  | Out Of This World | Juried Group Exhibition

“ Space… is big. Really big. You just won’t believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.”
– DOUGLAS ADAMS: THE HITCHHIKER’S GUIDE TO THE GALAXY (1979)


July 4 – 22  | Out of this World | Juried Group Exhibition
Opening Reception: Thurs. July 5th, 7 – 10 pm. (with telescopes! weather permitting… and astronomically-themed music from the 17th and 18th centuries)

2018 marks a century-and-a-half of the Royal Astronomical Society of Canada’s (RASC) promotion of astronomy and allied sciences in Canada. From early on, the RASC has encouraged exploring the connections of astronomy with other areas of culture, an interest which continues to the present. Propeller Gallery has partnered with the RASC to present an exhibition celebrating their sesquicentennial.

Astronomy, with its highly evocative imagery, and mindboggling and mindbending ideas about our Universe, provides artists with richly visual and deeply conceptual inspiration. Out of This World features a diverse array of work inspired by the cosmos, ranging from the visualization of astronomical data to textiles, video and installation. A select number of works from the archives of the RASC are also presented.

Participating Artists: Michael Black | Linda-Marlena Bucholtz Ross | David Cumming | Chris Domanski | Trinley Dorje | Dan Falk | Maya Foltyn | Peter Friedrichsen | Susan Gaby-Trotz | Aryan Ghaemmaghami | David Griffin | Xianda Guo, Charlotte Mueller, Sinead Lynch, Ramona Fluck, Christoph Blapp & Jayanne English | Diana Hamer | Chris Harms  | Angela Julian | Adam Kolodziej  | Irena IRiKO Kolodziej | Nancy Lalicon | Michelle Letarte | Shannon Leigh  | Elizabeth Lopez | Trevor McKinven | France McNeil  | John Ming Mark | Giuseppe Morano | Sarah Moreau  | Joseph Muscat  | Pria Muzumdar  | Neeko Paluzzi | Frances Patella | Donna Wells | Donna Wise | plus archival work from the Royal Astronomical Society of Canada

Curatorial Team: Robin Kingsburgh, Tony Saad, David Griffin, Randall Rosenfeld

Panel discussion: Understanding Astronomical Images, Saturday July 14, 1:30-3pm

Artist Talks and Star Party in Lisgar Park: Saturday July 21, 7pm+ (Join us in the gallery at 7pm for informal talks by artists about their work. Follow us outside to Lisgar Park across the street when it gets dark – where members of the RASC and York University will set up telescopes.)

As for exactly where the show, panel discussions, and artist talks are taking place,

Propeller Gallery
30 Abell Street, Toronto, ON M6J 0A9
416-504-7142

www.propellerctr.com
gallery@propellerctr.com

Happy star gazing!

Yes! Art, genetic modifications, gene editing, and xenotransplantation at the Vancouver Biennale (Canada)

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

Up to this point, I’ve been a little jealous of the Art/Sci Salon’s (Toronto, Canada) January 2018 workshops for artists and discussions about CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 and its social implications. (See my January 10, 2018 posting for more about the events.) Now, it seems Vancouver may be in line for its ‘own’ discussion about CRISPR and the implications of gene editing. The image you saw (above) represents one of the installations being hosted by the 2018 – 2020 edition of the Vancouver Biennale.

While this posting is mostly about the Biennale and Piccinini’s work, there is a ‘science’ subsection featuring the science of CRISPR and xenotransplantation. Getting back to the Biennale and Piccinini: A major public art event since 1988, the Vancouver Biennale has hosted over 91 outdoor sculptures and new media works by more than 78 participating artists from over 25 countries and from 4 continents.

Quickie description of the 2018 – 2020 Vancouver Biennale

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

The Vancouver Biennale will be bringing new —and unusual— works of public art to the city beginning this June.

The theme for this season’s Vancouver Biennale exhibition is “re-IMAGE-n” and it kicks off on June 20 [2018] in Vanier Park with Saudi artist Ajlan Gharem’s Paradise Has Many Gates.

Gharem’s architectural chain-link sculpture resembles a traditional mosque, the piece is meant to challenge the notions of religious orthodoxy and encourages individuals to image a space free of Islamophobia.

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

Given that this blog is focused on nanotechnology and other emerging technologies such as CRISPR, I’m focusing on Piccinini’s work and its art/science or sci-art status. This image from the GOMA Gallery where Piccinini’s ‘Curious Affection‘ installation is being shown from March 24 – Aug. 5, 2018 in Brisbane, Queensland, Australia may give you some sense of what one of her installations is like,

Courtesy: Queensland Art Gallery | Gallery of Modern Art (QAGOMA)

I spoke with Serena at the Vancouver Biennale office and asked about the ‘interactive’ aspect of Piccinini’s installation. She suggested the term ‘immersive’ as an alternative. In other words, you won’t be playing with the sculptures or pressing buttons and interacting with computer screens or robots. She also noted that the ticket prices have not been set yet and they are currently developing events focused on the issues raised by the installation. She knew that 2018 is the 200th anniversary of the publication of Mary Shelley’s Frankenstein but I’m not sure how the Biennale folks plan (or don’t plan)  to integrate any recognition of the novle’s impact on the discussions about ‘new’ technologies .They expect Piccinini will visit Vancouver. (Note 1: Piccinini’s work can  also be seen in a group exhibition titled: Frankenstein’s Birthday Party at the Hosfselt Gallery in San Francisco (California, US) from June 23 – August 11, 2018.  Note 2: I featured a number of international events commemorating the 200th anniversary of the publication of Mary Shelley’s novel, Frankenstein, in my Feb. 26, 2018 posting. Note 3: The term ‘Frankenfoods’ helped to shape the discussion of genetically modified organisms and food supply on this planet. It was a wildly successful campaign for activists affecting legislation in some areas of research. Scientists have not been as enthusiastic about the effects. My January 15, 2009 posting briefly traces a history of the term.)

The 2018 – 2020 Vancouver Biennale and science

A June 7, 2018 Vancouver Biennale news release provides more detail about the current series of exhibitions,

The Biennale is also committed to presenting artwork at the cutting edge of discussion and in keeping with the STEAM (science, technology, engineering, arts, math[ematics]) approach to integrating the arts and sciences. In August [2018], Colombian/American visual artist Jessica Angel will present her monumental installation Dogethereum Bridge at Hinge Park in Olympic Village. Inspired by blockchain technology, the artwork’s design was created through the integration of scientific algorithms, new developments in technology, and the arts. This installation, which will serve as an immersive space and collaborative hub for artists and technologists, will host a series of activations with blockchain as the inspirational jumping-off point.

In what is expected to become one of North America’s most talked-about exhibitions of the year, Melbourne artist Patricia Piccinini’s Curious Imaginings will see the intersection of art, science, and ethics. For the first time in the Biennale’s fifteen years of creating transformative experiences, and in keeping with the 2018-2020 theme of “re-IMAGE-n,” the Biennale will explore art in unexpected places by exhibiting in unconventional interior spaces.  The hyperrealist “world of oddly captivating, somewhat grotesque, human-animal hybrid creatures” will be the artist’s first exhibit in a non-museum setting, transforming a wing of the 105-year-old Patricia Hotel. Situated in Vancouver’s oldest neighbourbood of Strathcona, Piccinini’s interactive experience will “challenge us to explore the social impacts of emerging bio-technology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.” In this intimate hotel setting located in a neighborhood continually undergoing its own change, Curious Imaginings will empower visitors to personally consider questions posed by the exhibition, including the promises and consequences of genetic research and human interference. …

There are other pieces being presented at the Biennale but my special interest is in the art/sci pieces and, at this point, CRISPR.

Piccinini in more depth

You can find out more about Patricia Piccinini in her biography on the Vancouver Biennale website but I found this Char Larsson April 7, 2018 article for the Independent (UK) more informative (Note: A link has been removed),

Patricia Piccinini’s sculptures are deeply disquieting. Walking through Curious Affection, her new solo exhibition at Brisbane’s Gallery of Modern Art, is akin to entering a science laboratory full of DNA experiments. Made from silicone, fibreglass and even human hair, her sculptures are breathtakingly lifelike, however, we can’t be sure what life they are like. The artist creates an exuberant parallel universe where transgenic experiments flourish and human evolution has given way to genetic engineering and DNA splicing.

Curious Affection is a timely and welcome recognition of Piccinini’s enormous contribution to reaching back to the mid-1990s. Working across a variety of mediums including photography, video and drawing, she is perhaps best known for her hyperreal creations.

As a genre, hyperrealism depends on the skill of the artist to create the illusion of reality. To be truly successful, it must convince the spectator of its realness. Piccinini acknowledges this demand, but with a delightful twist. The excruciating attention to detail deliberately solicits our desire to look, only to generate unease, as her sculptures are imbued with a fascinating otherness. Part human, part animal, the works are uncannily familiar, but also alarmingly “other”.

Inspired by advances in genetically modified pigs to generate replacement organs for humans [also known as xenotransplantation], we are reminded that Piccinini has always been at the forefront of debates concerning the possibilities of science, technology and DNA cloning. She does so, however, with a warm affection and sense of humour, eschewing the hysterical anxiety frequently accompanying these scientific developments.

Beyond the astonishing level of detail achieved by working with silicon and fibreglass, there is an ethics at work here. Piccinini is asking us not to avert our gaze from the other, and in doing so, to develop empathy and understanding through the encounter.

I encourage anyone who’s interested to read Larsson’s entire piece (April 7, 2018 article).

According to her Wikipedia entry, Piccinini works in a variety of media including video, sound, sculpture, and more. She also has her own website.

Gene editing and xenotransplantation

Sarah Zhang’s June 8, 2018 article for The Atlantic provides a peek at the extraordinary degree of interest and competition in the field of gene editing and CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 research (Note: A link has been removed),

China Is Genetically Engineering Monkeys With Brain Disorders

Guoping Feng applied to college the first year that Chinese universities reopened after the Cultural Revolution. It was 1977, and more than a decade’s worth of students—5.7 million—sat for the entrance exams. Feng was the only one in his high school to get in. He was assigned—by chance, essentially—to medical school. Like most of his contemporaries with scientific ambitions, he soon set his sights on graduate studies in the United States. “China was really like 30 to 50 years behind,” he says. “There was no way to do cutting-edge research.” So in 1989, he left for Buffalo, New York, where for the first time he saw snow piled several feet high. He completed his Ph.D. in genetics at the State University of New York at Buffalo.

Feng is short and slim, with a monk-like placidity and a quick smile, and he now holds an endowed chair in neuroscience at MIT, where he focuses on the genetics of brain disorders. His 45-person lab is part of the McGovern Institute for Brain Research, which was established in 2000 with the promise of a $350 million donation, the largest ever received by the university. In short, his lab does not lack for much.

Yet Feng now travels to China several times a year, because there, he can pursue research he has not yet been able to carry out in the United States. [emphasis mine] …

Feng had organized a symposium at SIAT [Shenzhen Institutes of Advanced Technology], and he was not the only scientist who traveled all the way from the United States to attend: He invited several colleagues as symposium speakers, including a fellow MIT neuroscientist interested in tree shrews, a tiny mammal related to primates and native to southern China, and Chinese-born neuroscientists who study addiction at the University of Pittsburgh and SUNY Upstate Medical University. Like Feng, they had left China in the ’80s and ’90s, part of a wave of young scientists in search of better opportunities abroad. Also like Feng, they were back in China to pursue a type of cutting-edge research too expensive and too impractical—and maybe too ethically sensitive—in the United States.

Here’s what precipitated Feng’s work in China, (from Zhang’s article; Note: Links have been removed)

At MIT, Feng’s lab worked on genetically engineering a monkey species called marmosets, which are very small and genuinely bizarre-looking. They are cheaper to keep due to their size, but they are a relatively new lab animal, and they can be difficult to train on lab tasks. For this reason, Feng also wanted to study Shank3 on macaques in China. Scientists have been cataloging the social behavior of macaques for decades, making it an obvious model for studies of disorders like autism that have a strong social component. Macaques are also more closely related to humans than marmosets, making their brains a better stand-in for those of humans.

The process of genetically engineering a macaque is not trivial, even with the advanced tools of CRISPR. Researchers begin by dosing female monkeys with the same hormones used in human in vitro fertilization. They then collect and fertilize the eggs, and inject the resulting embryos with CRISPR proteins using a long, thin glass needle. Monkey embryos are far more sensitive than mice embryos, and can be affected by small changes in the pH of the injection or the concentration of CRISPR proteins. Only some of the embryos will have the desired mutation, and only some will survive once implanted in surrogate mothers. It takes dozens of eggs to get to just one live monkey, so making even a few knockout monkeys required the support of a large breeding colony.

The first Shank3 macaque was born in 2015. Four more soon followed, bringing the total to five.

To visit his research animals, Feng now has to fly 8,000 miles across 12 time zones. It would be a lot more convenient to carry out his macaque research in the United States, of course, but so far, he has not been able to.

He originally inquired about making Shank3 macaques at the New England Primate Research Center, one of eight national primate research centers then funded by the National Institutes of Health in partnership with a local institution (Harvard Medical School, in this case). The center was conveniently located in Southborough, Massachusetts, just 20 miles west of the MIT campus. But in 2013, Harvard decided to shutter the center.

The decision came as a shock to the research community, and it was widely interpreted as a sign of waning interest in primate research in the United States. While the national primate centers have been important hubs of research on HIV, Zika, Ebola, and other diseases, they have also come under intense public scrutiny. Animal-rights groups like the Humane Society of the United States have sent investigators to work undercover in the labs, and the media has reported on monkey deaths in grisly detail. Harvard officially made its decision to close for “financial” reasons. But the announcement also came after the high-profile deaths of four monkeys from improper handling between 2010 and 2012. The deaths sparked a backlash; demonstrators showed up at the gates. The university gave itself two years to wind down their primate work, officially closing the center in 2015.

“They screwed themselves,” Michael Halassa, the MIT neuroscientist who spoke at Feng’s symposium, told me in Shenzhen. Wei-Dong Yao, another one of the speakers, chimed in, noting that just two years later CRISPR has created a new wave of interest in primate research. Yao was one of the researchers at Harvard’s primate center before it closed; he now runs a lab at SUNY Upstate Medical University that uses genetically engineered mouse and human stem cells, and he had come to Shenzhen to talk about restarting his addiction research on primates.

Here’s comes the competition (from Zhang’s article; Note: Links have been removed),

While the U.S. government’s biomedical research budget has been largely flat, both national and local governments in China are eager to raise their international scientific profiles, and they are shoveling money into research. A long-rumored, government-sponsored China Brain Project is supposed to give neuroscience research, and primate models in particular, a big funding boost. Chinese scientists may command larger salaries, too: Thanks to funding from the Shenzhen local government, a new principal investigator returning from overseas can get 3 million yuan—almost half a million U.S. dollars—over his or her first five years. China is even finding success in attracting foreign researchers from top U.S. institutions like Yale.

In the past few years, China has seen a miniature explosion of genetic engineering in monkeys. In Kunming, Shanghai, and Guangzhou, scientists have created monkeys engineered to show signs of Parkinson’s, Duchenne muscular dystrophy, autism, and more. And Feng’s group is not even the only one in China to have created Shank3 monkeys. Another group—a collaboration primarily between researchers at Emory University and scientists in China—has done the same.

Chinese scientists’ enthusiasm for CRISPR also extends to studies of humans, which are moving much more quickly, and in some cases under less oversight, than in the West. The first studies to edit human embryos and first clinical trials for cancer therapies using CRISPR have all happened in China. [emphases mine]

Some ethical issues are also covered (from Zhang’s article),

Parents with severely epileptic children had asked him if it would be possible to study the condition in a monkey. Feng told them what he thought would be technically possible. “But I also said, ‘I’m not sure I want to generate a model like this,’” he recalled. Maybe if there were a drug to control the monkeys’ seizures, he said: “I cannot see them seizure all the time.”

But is it ethical, he continued, to let these babies die without doing anything? Is it ethical to generate thousands or millions of mutant mice for studies of brain disorders, even when you know they will not elucidate much about human conditions?

Primates should only be used if other models do not work, says Feng, and only if a clear path forward is identified. The first step in his work, he says, is to use the Shank3 monkeys to identify the changes the mutations cause in the brain. Then, researchers might use that information to find targets for drugs, which could be tested in the same monkeys. He’s talking with the Oregon National Primate Research Center about carrying out similar work in the United States. ….[Note: I have a three-part series about CRISPR and germline editing* in the US, precipitated by research coming out of Oregon, Part 1, which links to the other parts, is here.]

Zhang’s June 8, 2018 article is excellent and I highly recommend reading it.

I touched on the topic of xenotransplanttaion in a commentary on a book about the science  of the television series, Orphan Black in a January 31,2018 posting (Note: A chimera is what you use to incubate a ‘human’ organ for transplantation or, more accurately, xenotransplantation),

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

The end

I am very excited to see Piccinini’s work come to Vancouver. There have been a number of wonderful art and art/science installations and discussions here but this is the first one (I believe) to tackle the emerging gene editing technologies and the issues they raise. (It also fits in rather nicely with the 200th anniversary of the publication of Mary Shelley’s Frankenstein which continues to raise issues and stimulate discussion.)

In addition to the ethical issues raised in Zhang’s article, there are some other philosophical questions:

  • what does it mean to be human
  • if we are going to edit genes to create hybrid human/animals, what are they and how do they fit into our current animal/human schema
  • are you still human if you’ve had an organ transplant where the organ was incubated in a pig

There are also going to be legal issues. In addition to any questions about legal status, there are also fights about intellectual property such as the one involving Harvard & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley (March 15, 2017 posting)..

While I’m thrilled about the Piccinini installation, it should be noted the issues raised by other artworks hosted in this version of the Biennale are important. Happily, they have been broached here in Vancouver before and I suspect this will result in more nuanced  ‘conversations’ than are possible when a ‘new’ issue is introduced.

Bravo 2018 – 2020 Vancouver Biennale!

* Germline editing is when your gene editing will affect subsequent generations as opposed to editing out a mutated gene for the lifetime of a single individual.

Art/sci and CRISPR links

This art/science posting may prove of some interest:

The connectedness of living things: an art/sci project in Saskatchewan: evolutionary biology (February 16, 2018)

A selection of my CRISPR posts:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning (August 15, 2017)

NOTE: An introductory CRISPR video describing how CRISPR/Cas9 works was embedded in part1.

Why don’t you CRISPR yourself? (January 25, 2018)

Editing the genome with CRISPR ((clustered regularly interspaced short palindromic repeats)-carrying nanoparticles (January 26, 2018)

Immune to CRISPR? (April 10, 2018)

Curiosity Collider event: May 16, 2018 and exhibit: June 8 – 22, 2018 in Vancouver (Canada)

I have two bits of news from the Curiosity Collider folks. One event is part of their regular Collider Cafe series and the other is a special event.

Collider Cafe: Art. Science. Chronicles.

From the Curiosity Collider May 16, 2018 event page,

Collider Cafe: Art. Science. Chronicles.

Map Unavailable

Date/Time
Date(s) – 16/05/2018
8:00 pm – 9:30 pm

Location
Café Deux Soleils

 

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet. Discover. Connect. Create.

Are you curious? Join us at “Collider Cafe: Art. Science. Chronicles.” to explore how art and science intersect in the exploration of curiosity.

  • Armin Mortazavi (science cartoonist): Scientooning Adventures
  • Cheryl Hamilton (conceptual artist): Image Analysis – inspirations from cancer research
  • Kayla Glynn (science communicator and researcher): True, Personal Stories About Science
  • Marlene Swidzinski (comedian, humorist, and technical writer/editor): Travelling at the Speed of Oy / That Joke Would Kill at a Physics Convention
  • Rachel Rozanski (artist): In Between Tides

The event starts promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Visit our Facebook page to let us know you are coming, and see event updates and speaker profiles.

Interstitial

This upcoming exhibit was first mentioned here in a March 27, 2018 posting in the context of a call for submissions. I’m glad to see they have moved onto the exhibit phase, from the Curiosity Collider ‘Interstitial’ event page,

Interstitial: Science Innovations by Canadian Women

Date/Time
Date(s) – 08/06/2018 – 22/06/2018
12:00 pm – 5:00 pm

Location
Beaumont Gallery

 

Interstitial: Science Innovations by Canadian Women is an exhibition with events in June 2018, showcasing 2D work by female artists featuring women in Science, Technology, Engineering, and Mathematics (STEM, or STEAM when Arts is included). Our approach intends to challenge the public as to how they think of women in STEM. What does it take for a woman to be “in” with the science community?

The importance of storytelling, and using art in the dissemination of scientific information, has grown in the past few years. The Sci/Art and STEAM movements have rapidly gained momentum. Creative outlets are critical to sharing science and stories of science, and to connecting with people on an personal level. We are establishing new connections in the community, and presenting women in STEM through a different experience.

This exhibition and associated events are created by women, feature women, and highlight the achievements of women in STEM. We seek to encourage girls and young women to see themselves as eligible for the opportunities available in STEAM industries, to connect with them beyond what is written in the books or taught in school. We present women as capable participants within the STEAM community. It is important that as women, we tell our own stories, support, and celebrate each other.

This event is curated by Larissa Blokhuis, Exhibitions Director, Curiosity Collider.

Opening Night: June 8, 2018 from 7pm till late

Art+Science Workshops on June 9 / 16. More information to come.

Artists

Cheryl Hamilton (oil paint on wood panel)

Cheryl Hamilton is a conceptual artist with a penchant for visual ingenuity.  A stickler for perfection, Cheryl imbues her design work with a kineticism inspired by her education as an animator at Vancouver’s Emily Carr Institute.  Her recent training in the techniques of glass blowing at Alberta’s Red Deer College and Pilchuck Glass School coupled with her metal-working expertise now enable her to animate light and colour within her monumental steel structures.  Cheryl also draws and paints and exhibits internationally. Her goal as an artist is to render an accessible beauty that withstands the test of time.

Ele Willoughby (linocut prints (water based inks) on Japanese paper)

Artist Ele Willoughby is a modern Renaissance woman.  After pursuing her doctorate in physics, she built her portfolio while working as an ocean-going marine geophysicist by day and printmaker by night.  Her hand-pulled block prints reflect her love of science and the natural world with a hint of humour and whimsy. Many of her works focus on the history of science and scientists.  She also makes interactive multimedia work, incorporating colour-changing or electrically conductive inks and electronics, which straddle the art/science divide. She lives and works in Toronto with her husband, and young son.

Paige Blumer (digital painting with photoshop printed on canvas)

Paige was born in Montreal Quebec where she had a competing passion for art and science.  She chose to pursue science and graduated with a bachelor’s degree in Kinesiology. Upon graduation, she decided to follow her yearning to pursue art, specifically cartoons, and applied to the Art Fundamentals program at Sheridan College in Ontario.  It was there that she developed a love for illustration. A professor told her that there were five specialized graduate programs in North America where she could combine her art skills with her passion for health and the human body. It took three years for her to polish her portfolio and finally get accepted into the Biomedical Visualization program at the University of Illinois at Chicago.

In Chicago, she learned how to visually represent health and scientific concepts through traditional, digital, and technical media. She get to use these skills everyday at the University of British Columbia where she is a Biomedical Visualization Specialist in the Faculty of Medicine.  She loves telling the stories of the human body at a physiological level and this affinity is inspiring me to write a graphic novel about the life of two red blood cells.

Acknowledgement

We would like to thank eng.cite and WWEST for their generous support for this exhibition and associated events.

There you have it.

Santiago Ramón y Cajal and the butterflies of the soul

The Cajal exhibit of drawings was here in Vancouver (Canada) this last fall (2017) and I still carry the memory of that glorious experience (see my Sept. 11, 2017 posting for more about the show and associated events). It seems Cajal’s drawings had a similar response in New York city, from a January 18, 2018 article by Roberta Smith for the New York Times,

It’s not often that you look at an exhibition with the help of the very apparatus that is its subject. But so it is with “The Beautiful Brain: The Drawings of Santiago Ramón y Cajal” at the Grey Art Gallery at New York University, one of the most unusual, ravishing exhibitions of the season.

The show finished its run on March 31, 2018 and is now on its way to the Massachusetts Institute of Technology (MIT) in Boston, Massachusetts for its opening on May 3, 2018. It looks like they have an exciting lineup of events to go along with the exhibit (from MIT’s The Beautiful Brain: The Drawings of Santiago Ramón y Cajal exhibit and event page),

SUMMER PROGRAMS

ONGOING

Spotlight Tours
Explorations led by local and Spanish scientists, artists, and entrepreneurs who will share their unique perspectives on particular aspects of the exhibition. (2:00 pm on select Tuesdays and Saturdays)

Tue, May 8 – Mark Harnett, Fred and Carole Middleton Career Development Professor at MIT and McGovern Institute Investigator Sat, May 26 – Marion Boulicault, MIT Graduate Student and Neuroethics Fellow in the Center for Sensorimotor Neural Engineering Tue, June 5 – Kelsey Allen, Graduate researcher, MIT Center for Brains, Minds, and Machines Sat, Jun 23 – Francisco Martin-Martinez, Research Scientist in MIT’s Laboratory for Atomistic & Molecular Mechanics and President of the Spanish Foundation for Science and Technology Jul 21 – Alex Gomez-Marin, Principal Investigator of the Behavior of Organisms Laboratory in the Instituto de Neurociencias, Spain Tue, Jul 31– Julie Pryor, Director of Communications at the McGovern Institute for Brain Research at MIT Tue, Aug 28 – Satrajit Ghosh, Principal Research Scientist at the McGovern Institute for Brain Research at MIT, Assistant Professor in the Department of Otolaryngology at Harvard Medical School, and faculty member in the Speech and Hearing Biosciences and Technology program in the Harvard Division of Medical Sciences

Idea Hub
Drop in and explore expansion microscopy in our maker-space.

Visualizing Science Workshop
Experiential learning with micro-scale biological images. (pre-registration required)

Gallery Demonstrations
Researchers share the latest on neural anatomy, signal transmission, and modern imaging techniques.

EVENTS

Teen Science Café: Mindful Matters
MIT researchers studying the brain share their mind-blowing findings.

Neuron Paint Night
Create a painting of cerebral cortex neurons and learn about the EyeWire citizen science game.

Cerebral Cinema Series
Hear from researchers and then compare real science to depictions on the big screen.

Brainy Trivia
Test your brain power in a night of science trivia and short, snappy research talks.

Come back to see our exciting lineup for the fall!

If you don’t have a chance to see the show or if you’d like a preview, I encourage you to read Smith’s article as it has embedded several Cajal drawings and rendered them exceptionally well.

For those who like a little contemporary (and related) science with their art, there’s a March 30, 2018 Harvard Medical Schoo (HMS)l news release by Kevin Jang (also on EurekAlert), Note: All links save one have been removed,

Drawing of the cells of the chick cerebellum by Santiago Ramón y Cajal, from “Estructura de los centros nerviosos de las aves,” Madrid, circa 1905

 

Modern neuroscience, for all its complexity, can trace its roots directly to a series of pen-and-paper sketches rendered by Nobel laureate Santiago Ramón y Cajal in the late 19th and early 20th centuries.

His observations and drawings exposed the previously hidden composition of the brain, revealing neuronal cell bodies and delicate projections that connect individual neurons together into intricate networks.

As he explored the nervous systems of various organisms under his microscope, a natural question arose: What makes a human brain different from the brain of any other species?

At least part of the answer, Ramón y Cajal hypothesized, lay in a specific class of neuron—one found in a dazzling variety of shapes and patterns of connectivity, and present in higher proportions in the human brain than in the brains of other species. He dubbed them the “butterflies of the soul.”

Known as interneurons, these cells play critical roles in transmitting information between sensory and motor neurons, and, when defective, have been linked to diseases such as schizophrenia, autism and intellectual disability.

Despite more than a century of study, however, it remains unclear why interneurons are so diverse and what specific functions the different subtypes carry out.

Now, in a study published in the March 22 [2018] issue of Nature, researchers from Harvard Medical School, New York Genome Center, New York University and the Broad Institute of MIT and Harvard have detailed for the first time how interneurons emerge and diversify in the brain.

Using single-cell analysis—a technology that allows scientists to track cellular behavior one cell at a time—the team traced the lineage of interneurons from their earliest precursor states to their mature forms in mice. The researchers identified key genetic programs that determine the fate of developing interneurons, as well as when these programs are switched on or off.

The findings serve as a guide for efforts to shed light on interneuron function and may help inform new treatment strategies for disorders involving their dysfunction, the authors said.

“We knew more than 100 years ago that this huge diversity of morphologically interesting cells existed in the brain, but their specific individual roles in brain function are still largely unclear,” said co-senior author Gordon Fishell, HMS professor of neurobiology and a faculty member at the Stanley Center for Psychiatric Research at the Broad.

“Our study provides a road map for understanding how and when distinct interneuron subtypes develop, giving us unprecedented insight into the biology of these cells,” he said. “We can now investigate interneuron properties as they emerge, unlock how these important cells function and perhaps even intervene when they fail to develop correctly in neuropsychiatric disease.”

A hippocampal interneuron. Image: Biosciences Imaging Gp, Soton, Wellcome Trust via Creative CommonsA hippocampal interneuron. Image: Biosciences Imaging Gp, Soton, Wellcome Trust via Creative Commons

Origins and Fates

In collaboration with co-senior author Rahul Satija, core faculty member of the New York Genome Center, Fishell and colleagues analyzed brain regions in developing mice known to contain precursor cells that give rise to interneurons.

Using Drop-seq, a single-cell sequencing technique created by researchers at HMS and the Broad, the team profiled gene expression in thousands of individual cells at multiple time points.

This approach overcomes a major limitation in past research, which could analyze only the average activity of mixtures of many different cells.

In the current study, the team found that the precursor state of all interneurons had similar gene expression patterns despite originating in three separate brain regions and giving rise to 14 or more interneuron subtypes alone—a number still under debate as researchers learn more about these cells.

“Mature interneuron subtypes exhibit incredible diversity. Their morphology and patterns of connectivity and activity are so different from each other, but our results show that the first steps in their maturation are remarkably similar,” said Satija, who is also an assistant professor of biology at New York University.

“They share a common developmental trajectory at the earliest stages, but the seeds of what will cause them to diverge later—a handful of genes—are present from the beginning,” Satija said.

As they profiled cells at later stages in development, the team observed the initial emergence of four interneuron “cardinal” classes, which give rise to distinct fates. Cells were committed to these fates even in the early embryo. By developing a novel computational strategy to link precursors with adult subtypes, the researchers identified individual genes that were switched on and off when cells began to diversify.

For example, they found that the gene Mef2c—mutations of which are linked to Alzheimer’s disease, schizophrenia and neurodevelopmental disorders in humans—is an early embryonic marker for a specific interneuron subtype known as Pvalb neurons. When they deleted Mef2c in animal models, Pvalb neurons failed to develop.

These early genes likely orchestrate the execution of subsequent genetic subroutines, such as ones that guide interneuron subtypes as they migrate to different locations in the brain and ones that help form unique connection patterns with other neural cell types, the authors said.

The identification of these genes and their temporal activity now provide researchers with specific targets to investigate the precise functions of interneurons, as well as how neurons diversify in general, according to the authors.

“One of the goals of this project was to address an incredibly fascinating developmental biology question, which is how individual progenitor cells decide between different neuronal fates,” Satija said. “In addition to these early markers of interneuron divergence, we found numerous additional genes that increase in expression, many dramatically, at later time points.”

The association of some of these genes with neuropsychiatric diseases promises to provide a better understanding of these disorders and the development of therapeutic strategies to treat them, a particularly important notion given the paucity of new treatments, the authors said.

Over the past 50 years, there have been no fundamentally new classes of neuropsychiatric drugs, only newer versions of old drugs, the researchers pointed out.

“Our repertoire is no better than it was in the 1970s,” Fishell said.

“Neuropsychiatric diseases likely reflect the dysfunction of very specific cell types. Our study puts forward a clear picture of what cells to look at as we work to shed light on the mechanisms that underlie these disorders,” Fishell said. “What we will find remains to be seen, but we have new, strong hypotheses that we can now test.”

As a resource for the research community, the study data and software are open-source and freely accessible online.

A gallery of the drawings of Santiago Ramón y Cajal is currently on display in New York City, and will open at the MIT Museum in Boston in May 2018.

Christian Mayer, Christoph Hafemeister and Rachel Bandler served as co-lead authors on the study.

This work was supported by the National Institutes of Health (R01 NS074972, R01 NS081297, MH071679-12, DP2-HG-009623, F30MH114462, T32GM007308, F31NS103398), the European Molecular Biology Organization, the National Science Foundation and the Simons Foundation.

Here’s link to and a citation for the paper,

Developmental diversification of cortical inhibitory interneurons by Christian Mayer, Christoph Hafemeister, Rachel C. Bandler, Robert Machold, Renata Batista Brito, Xavier Jaglin, Kathryn Allaway, Andrew Butler, Gord Fishell, & Rahul Satija. Nature volume 555, pages 457–462 (22 March 2018) doi:10.1038/nature25999 Published: 05 March 2018

This paper is behind a paywall.