Tag Archives: art/science

Quantum Inkblot; An evening of physics, psychology, art and astronomy on July 12, 2018 in Vancouver (Canada)

A June 26, 2018 HR MacMillan Space Centre (HRMSC) press release, received via email, announces an upcoming art/sci event,

This July the H.R. MacMillan Space Centre and Voirelia: Dance, Psychology and Philosophy Hub will be co-hosting Quantum Inkblot, an interactive evening exploring quantum physics through the lenses of physics and psychology, art, and astronomy. The evening will incorporate talks by a physicist and a psychologist, visual artwork, and original contemporary dance performances.

The talks and artistic works will explore some of the questions about how psychology and physics can mirror, inspire, and influence one another. We will touch on topics related to relativity, uncertainty, and predictability of this world.

A dialogue-style talk will be led by physicist Dr. Jaymie Matthews and psychologist Dr. Alina Sotskova exploring the intersections of quantum physics and psychology. Dr. Matthews will be discussing the concept of wave-particle duality and the way it takes the assumption that one thing cannot be in two places at once and turns it on its head.

Dr. Sotskova will be talking about the dissonance in predicting the behaviour of groups vs. predicting the behaviour of individuals, giving pause to reflect on the existence of order at a macro level and chaos at the micro level.

The evening will also feature three original contemporary dance performances and a visual art and music presentation that were all inspired by themes in psychology and the intersection with physics.

There will be time between performances to enjoy a drink, take part in interactive art activities, watch physics demonstrations, and chat with physicists, artists, and psychologists. The evening will end with a question and answer period with all of the performers and speakers.

Here are logistics and additional details,

Quantum Inkblot will take place at the H.R. MacMillan Space Centre Thursday, July 12th.

This is a 19+ event.

6:30pm doors open, 7:00pm show starts in the Planetarium Star Theatre

$25 for tickets

Tickets available online through Eventbrite,[clicking on this link will give you a map to the location] in person, or by phone at 604.738.7827.

Find the Quantum Inkblot event on Facebook for sneak peeks at the art work being created, learn more about the process of collaboration between artists and scientists, and more!

The H.R. MacMillan Space Centre is a non-profit community resource that brings the wonders of space to Earth, while providing a personal sense of ongoing discovery. Through innovative programming, exhibits and activities, our goal is to inspire sustained interest in the fields of Earth science, space science and astronomy from a Canadian perspective.

Voirelia is a Vancouver-based Dance, Psychology, and Philosophy Hub. Its main purpose is to create original dance and art works inspired by ideas in psychology and philosophy. Voirelia also organizes talks, workshops, and events relevant to the intersection between dance, psychology, & philosophy, such as talks on philosophy of science. Our aim is “movement with meaning.”

BC Psychological Association has provided support for this event and BCPA representatives will be available to chat with the guests.

Voirelia provides a few more information and pictures on its Upcoming Projects webpage,

There will be several dance works presented during Quantum Inkblot. Here are the latest shots from one of the rehearsals, with physicists Dr. Jaymie Matthews and Dr. Ewan Hill joining us for a transdisciplinary open-rehearsal style session.

Photographs: Jason Kirkness. Dancers: Sophie Brassard, Michael Demski. Rehearsal direction/choreography: Alina Sotskova. [Not all the images have been included in this excerpt.]

 

We wanted to document our artistic and creative process as we put together this unique event. Below you will see examples of original art works and how artistic creation progresses. In the dance photographs below (by Jason Kirkness), we had a brainstorming session that included people with backgrounds in physics, psychology, dance, and theater. We spent about an hour talking about concepts from quantum physics that people often find “weird” – such as the concepts of waves, particles, wave-particle duality, and the uncertainty principle. We touched on how quantum physics influences our perception of science, the world, and ourselves. We discussed topics of identity and searching for meaning and why the quantum world is so different from what we see with our senses. Then we took our brainstorming to the dance studio. Here, using prompts suggested by physicists and her own knowledge as a psychologist and dancer, Alina Sotskova facilitated improvisational movement exploration. This yielded a great deal [sic] of ideas about parallels between physics and psychology, and we will use these ideas a spring board as we begin to develop specific dance works for the event. You can also check out short videos of the improvisational movement research session on our Facebook page, in the Videos section. [Not all the images have been included in this excerpt.]

The team who was part of the brainstorming session […] included: Andrew Elias (Graduate Student working in the field of quantum physics, UBC); Jason Kirkness (Co-lead for the Quantum Inkblot Event and; background: physics and computer science); Alina Sotskova (Co-lead for the Quantum Inkblot Event and; background: psychology and dance). Our dancers were: Angelo Moroni, Michael Demski, Carolyn Schmidt, Alejandra Miranda Caballero, Alina Sotskova.

The images below are samples of original art works by Andrew Short, one of Voirelia’s Core Consultants. Inspired by topics in quantum physics, psychology, and cosmology, Andrew is working on preparing a very special presentation especially for Quantum Inkblot. [There are more images at Voirelia.]

 

Interestingly, this does not seem to be a ‘sister’ event to Toronto’s ‘Out Of This World; Art inspired by all things astronomical’ exhibition and talks being held July 4 – 22, 2018 in honour of the Royal Astronomical Society of Canada’s (RASC) sesquicentennial (150th anniversary). There’s more about Toronto’s astronomical art/science event in my July 2, 2018 posting.

Out Of This World; Art inspired by all things astronomical from July 4 – 22, 2018 in Toronto, Canada

From a June 29, 2018 ArtSci Salon notice (received via email),

July 4 – 22  | Out Of This World | Juried Group Exhibition

“ Space… is big. Really big. You just won’t believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.”
– DOUGLAS ADAMS: THE HITCHHIKER’S GUIDE TO THE GALAXY (1979)


July 4 – 22  | Out of this World | Juried Group Exhibition
Opening Reception: Thurs. July 5th, 7 – 10 pm. (with telescopes! weather permitting… and astronomically-themed music from the 17th and 18th centuries)

2018 marks a century-and-a-half of the Royal Astronomical Society of Canada’s (RASC) promotion of astronomy and allied sciences in Canada. From early on, the RASC has encouraged exploring the connections of astronomy with other areas of culture, an interest which continues to the present. Propeller Gallery has partnered with the RASC to present an exhibition celebrating their sesquicentennial.

Astronomy, with its highly evocative imagery, and mindboggling and mindbending ideas about our Universe, provides artists with richly visual and deeply conceptual inspiration. Out of This World features a diverse array of work inspired by the cosmos, ranging from the visualization of astronomical data to textiles, video and installation. A select number of works from the archives of the RASC are also presented.

Participating Artists: Michael Black | Linda-Marlena Bucholtz Ross | David Cumming | Chris Domanski | Trinley Dorje | Dan Falk | Maya Foltyn | Peter Friedrichsen | Susan Gaby-Trotz | Aryan Ghaemmaghami | David Griffin | Xianda Guo, Charlotte Mueller, Sinead Lynch, Ramona Fluck, Christoph Blapp & Jayanne English | Diana Hamer | Chris Harms  | Angela Julian | Adam Kolodziej  | Irena IRiKO Kolodziej | Nancy Lalicon | Michelle Letarte | Shannon Leigh  | Elizabeth Lopez | Trevor McKinven | France McNeil  | John Ming Mark | Giuseppe Morano | Sarah Moreau  | Joseph Muscat  | Pria Muzumdar  | Neeko Paluzzi | Frances Patella | Donna Wells | Donna Wise | plus archival work from the Royal Astronomical Society of Canada

Curatorial Team: Robin Kingsburgh, Tony Saad, David Griffin, Randall Rosenfeld

Panel discussion: Understanding Astronomical Images, Saturday July 14, 1:30-3pm

Artist Talks and Star Party in Lisgar Park: Saturday July 21, 7pm+ (Join us in the gallery at 7pm for informal talks by artists about their work. Follow us outside to Lisgar Park across the street when it gets dark – where members of the RASC and York University will set up telescopes.)

As for exactly where the show, panel discussions, and artist talks are taking place,

Propeller Gallery
30 Abell Street, Toronto, ON M6J 0A9
416-504-7142

www.propellerctr.com
gallery@propellerctr.com

Happy star gazing!

Yes! Art, genetic modifications, gene editing, and xenotransplantation at the Vancouver Biennale (Canada)

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

Up to this point, I’ve been a little jealous of the Art/Sci Salon’s (Toronto, Canada) January 2018 workshops for artists and discussions about CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 and its social implications. (See my January 10, 2018 posting for more about the events.) Now, it seems Vancouver may be in line for its ‘own’ discussion about CRISPR and the implications of gene editing. The image you saw (above) represents one of the installations being hosted by the 2018 – 2020 edition of the Vancouver Biennale.

While this posting is mostly about the Biennale and Piccinini’s work, there is a ‘science’ subsection featuring the science of CRISPR and xenotransplantation. Getting back to the Biennale and Piccinini: A major public art event since 1988, the Vancouver Biennale has hosted over 91 outdoor sculptures and new media works by more than 78 participating artists from over 25 countries and from 4 continents.

Quickie description of the 2018 – 2020 Vancouver Biennale

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

The Vancouver Biennale will be bringing new —and unusual— works of public art to the city beginning this June.

The theme for this season’s Vancouver Biennale exhibition is “re-IMAGE-n” and it kicks off on June 20 [2018] in Vanier Park with Saudi artist Ajlan Gharem’s Paradise Has Many Gates.

Gharem’s architectural chain-link sculpture resembles a traditional mosque, the piece is meant to challenge the notions of religious orthodoxy and encourages individuals to image a space free of Islamophobia.

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

Given that this blog is focused on nanotechnology and other emerging technologies such as CRISPR, I’m focusing on Piccinini’s work and its art/science or sci-art status. This image from the GOMA Gallery where Piccinini’s ‘Curious Affection‘ installation is being shown from March 24 – Aug. 5, 2018 in Brisbane, Queensland, Australia may give you some sense of what one of her installations is like,

Courtesy: Queensland Art Gallery | Gallery of Modern Art (QAGOMA)

I spoke with Serena at the Vancouver Biennale office and asked about the ‘interactive’ aspect of Piccinini’s installation. She suggested the term ‘immersive’ as an alternative. In other words, you won’t be playing with the sculptures or pressing buttons and interacting with computer screens or robots. She also noted that the ticket prices have not been set yet and they are currently developing events focused on the issues raised by the installation. She knew that 2018 is the 200th anniversary of the publication of Mary Shelley’s Frankenstein but I’m not sure how the Biennale folks plan (or don’t plan)  to integrate any recognition of the novle’s impact on the discussions about ‘new’ technologies .They expect Piccinini will visit Vancouver. (Note 1: Piccinini’s work can  also be seen in a group exhibition titled: Frankenstein’s Birthday Party at the Hosfselt Gallery in San Francisco (California, US) from June 23 – August 11, 2018.  Note 2: I featured a number of international events commemorating the 200th anniversary of the publication of Mary Shelley’s novel, Frankenstein, in my Feb. 26, 2018 posting. Note 3: The term ‘Frankenfoods’ helped to shape the discussion of genetically modified organisms and food supply on this planet. It was a wildly successful campaign for activists affecting legislation in some areas of research. Scientists have not been as enthusiastic about the effects. My January 15, 2009 posting briefly traces a history of the term.)

The 2018 – 2020 Vancouver Biennale and science

A June 7, 2018 Vancouver Biennale news release provides more detail about the current series of exhibitions,

The Biennale is also committed to presenting artwork at the cutting edge of discussion and in keeping with the STEAM (science, technology, engineering, arts, math[ematics]) approach to integrating the arts and sciences. In August [2018], Colombian/American visual artist Jessica Angel will present her monumental installation Dogethereum Bridge at Hinge Park in Olympic Village. Inspired by blockchain technology, the artwork’s design was created through the integration of scientific algorithms, new developments in technology, and the arts. This installation, which will serve as an immersive space and collaborative hub for artists and technologists, will host a series of activations with blockchain as the inspirational jumping-off point.

In what is expected to become one of North America’s most talked-about exhibitions of the year, Melbourne artist Patricia Piccinini’s Curious Imaginings will see the intersection of art, science, and ethics. For the first time in the Biennale’s fifteen years of creating transformative experiences, and in keeping with the 2018-2020 theme of “re-IMAGE-n,” the Biennale will explore art in unexpected places by exhibiting in unconventional interior spaces.  The hyperrealist “world of oddly captivating, somewhat grotesque, human-animal hybrid creatures” will be the artist’s first exhibit in a non-museum setting, transforming a wing of the 105-year-old Patricia Hotel. Situated in Vancouver’s oldest neighbourbood of Strathcona, Piccinini’s interactive experience will “challenge us to explore the social impacts of emerging bio-technology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.” In this intimate hotel setting located in a neighborhood continually undergoing its own change, Curious Imaginings will empower visitors to personally consider questions posed by the exhibition, including the promises and consequences of genetic research and human interference. …

There are other pieces being presented at the Biennale but my special interest is in the art/sci pieces and, at this point, CRISPR.

Piccinini in more depth

You can find out more about Patricia Piccinini in her biography on the Vancouver Biennale website but I found this Char Larsson April 7, 2018 article for the Independent (UK) more informative (Note: A link has been removed),

Patricia Piccinini’s sculptures are deeply disquieting. Walking through Curious Affection, her new solo exhibition at Brisbane’s Gallery of Modern Art, is akin to entering a science laboratory full of DNA experiments. Made from silicone, fibreglass and even human hair, her sculptures are breathtakingly lifelike, however, we can’t be sure what life they are like. The artist creates an exuberant parallel universe where transgenic experiments flourish and human evolution has given way to genetic engineering and DNA splicing.

Curious Affection is a timely and welcome recognition of Piccinini’s enormous contribution to reaching back to the mid-1990s. Working across a variety of mediums including photography, video and drawing, she is perhaps best known for her hyperreal creations.

As a genre, hyperrealism depends on the skill of the artist to create the illusion of reality. To be truly successful, it must convince the spectator of its realness. Piccinini acknowledges this demand, but with a delightful twist. The excruciating attention to detail deliberately solicits our desire to look, only to generate unease, as her sculptures are imbued with a fascinating otherness. Part human, part animal, the works are uncannily familiar, but also alarmingly “other”.

Inspired by advances in genetically modified pigs to generate replacement organs for humans [also known as xenotransplantation], we are reminded that Piccinini has always been at the forefront of debates concerning the possibilities of science, technology and DNA cloning. She does so, however, with a warm affection and sense of humour, eschewing the hysterical anxiety frequently accompanying these scientific developments.

Beyond the astonishing level of detail achieved by working with silicon and fibreglass, there is an ethics at work here. Piccinini is asking us not to avert our gaze from the other, and in doing so, to develop empathy and understanding through the encounter.

I encourage anyone who’s interested to read Larsson’s entire piece (April 7, 2018 article).

According to her Wikipedia entry, Piccinini works in a variety of media including video, sound, sculpture, and more. She also has her own website.

Gene editing and xenotransplantation

Sarah Zhang’s June 8, 2018 article for The Atlantic provides a peek at the extraordinary degree of interest and competition in the field of gene editing and CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 research (Note: A link has been removed),

China Is Genetically Engineering Monkeys With Brain Disorders

Guoping Feng applied to college the first year that Chinese universities reopened after the Cultural Revolution. It was 1977, and more than a decade’s worth of students—5.7 million—sat for the entrance exams. Feng was the only one in his high school to get in. He was assigned—by chance, essentially—to medical school. Like most of his contemporaries with scientific ambitions, he soon set his sights on graduate studies in the United States. “China was really like 30 to 50 years behind,” he says. “There was no way to do cutting-edge research.” So in 1989, he left for Buffalo, New York, where for the first time he saw snow piled several feet high. He completed his Ph.D. in genetics at the State University of New York at Buffalo.

Feng is short and slim, with a monk-like placidity and a quick smile, and he now holds an endowed chair in neuroscience at MIT, where he focuses on the genetics of brain disorders. His 45-person lab is part of the McGovern Institute for Brain Research, which was established in 2000 with the promise of a $350 million donation, the largest ever received by the university. In short, his lab does not lack for much.

Yet Feng now travels to China several times a year, because there, he can pursue research he has not yet been able to carry out in the United States. [emphasis mine] …

Feng had organized a symposium at SIAT [Shenzhen Institutes of Advanced Technology], and he was not the only scientist who traveled all the way from the United States to attend: He invited several colleagues as symposium speakers, including a fellow MIT neuroscientist interested in tree shrews, a tiny mammal related to primates and native to southern China, and Chinese-born neuroscientists who study addiction at the University of Pittsburgh and SUNY Upstate Medical University. Like Feng, they had left China in the ’80s and ’90s, part of a wave of young scientists in search of better opportunities abroad. Also like Feng, they were back in China to pursue a type of cutting-edge research too expensive and too impractical—and maybe too ethically sensitive—in the United States.

Here’s what precipitated Feng’s work in China, (from Zhang’s article; Note: Links have been removed)

At MIT, Feng’s lab worked on genetically engineering a monkey species called marmosets, which are very small and genuinely bizarre-looking. They are cheaper to keep due to their size, but they are a relatively new lab animal, and they can be difficult to train on lab tasks. For this reason, Feng also wanted to study Shank3 on macaques in China. Scientists have been cataloging the social behavior of macaques for decades, making it an obvious model for studies of disorders like autism that have a strong social component. Macaques are also more closely related to humans than marmosets, making their brains a better stand-in for those of humans.

The process of genetically engineering a macaque is not trivial, even with the advanced tools of CRISPR. Researchers begin by dosing female monkeys with the same hormones used in human in vitro fertilization. They then collect and fertilize the eggs, and inject the resulting embryos with CRISPR proteins using a long, thin glass needle. Monkey embryos are far more sensitive than mice embryos, and can be affected by small changes in the pH of the injection or the concentration of CRISPR proteins. Only some of the embryos will have the desired mutation, and only some will survive once implanted in surrogate mothers. It takes dozens of eggs to get to just one live monkey, so making even a few knockout monkeys required the support of a large breeding colony.

The first Shank3 macaque was born in 2015. Four more soon followed, bringing the total to five.

To visit his research animals, Feng now has to fly 8,000 miles across 12 time zones. It would be a lot more convenient to carry out his macaque research in the United States, of course, but so far, he has not been able to.

He originally inquired about making Shank3 macaques at the New England Primate Research Center, one of eight national primate research centers then funded by the National Institutes of Health in partnership with a local institution (Harvard Medical School, in this case). The center was conveniently located in Southborough, Massachusetts, just 20 miles west of the MIT campus. But in 2013, Harvard decided to shutter the center.

The decision came as a shock to the research community, and it was widely interpreted as a sign of waning interest in primate research in the United States. While the national primate centers have been important hubs of research on HIV, Zika, Ebola, and other diseases, they have also come under intense public scrutiny. Animal-rights groups like the Humane Society of the United States have sent investigators to work undercover in the labs, and the media has reported on monkey deaths in grisly detail. Harvard officially made its decision to close for “financial” reasons. But the announcement also came after the high-profile deaths of four monkeys from improper handling between 2010 and 2012. The deaths sparked a backlash; demonstrators showed up at the gates. The university gave itself two years to wind down their primate work, officially closing the center in 2015.

“They screwed themselves,” Michael Halassa, the MIT neuroscientist who spoke at Feng’s symposium, told me in Shenzhen. Wei-Dong Yao, another one of the speakers, chimed in, noting that just two years later CRISPR has created a new wave of interest in primate research. Yao was one of the researchers at Harvard’s primate center before it closed; he now runs a lab at SUNY Upstate Medical University that uses genetically engineered mouse and human stem cells, and he had come to Shenzhen to talk about restarting his addiction research on primates.

Here’s comes the competition (from Zhang’s article; Note: Links have been removed),

While the U.S. government’s biomedical research budget has been largely flat, both national and local governments in China are eager to raise their international scientific profiles, and they are shoveling money into research. A long-rumored, government-sponsored China Brain Project is supposed to give neuroscience research, and primate models in particular, a big funding boost. Chinese scientists may command larger salaries, too: Thanks to funding from the Shenzhen local government, a new principal investigator returning from overseas can get 3 million yuan—almost half a million U.S. dollars—over his or her first five years. China is even finding success in attracting foreign researchers from top U.S. institutions like Yale.

In the past few years, China has seen a miniature explosion of genetic engineering in monkeys. In Kunming, Shanghai, and Guangzhou, scientists have created monkeys engineered to show signs of Parkinson’s, Duchenne muscular dystrophy, autism, and more. And Feng’s group is not even the only one in China to have created Shank3 monkeys. Another group—a collaboration primarily between researchers at Emory University and scientists in China—has done the same.

Chinese scientists’ enthusiasm for CRISPR also extends to studies of humans, which are moving much more quickly, and in some cases under less oversight, than in the West. The first studies to edit human embryos and first clinical trials for cancer therapies using CRISPR have all happened in China. [emphases mine]

Some ethical issues are also covered (from Zhang’s article),

Parents with severely epileptic children had asked him if it would be possible to study the condition in a monkey. Feng told them what he thought would be technically possible. “But I also said, ‘I’m not sure I want to generate a model like this,’” he recalled. Maybe if there were a drug to control the monkeys’ seizures, he said: “I cannot see them seizure all the time.”

But is it ethical, he continued, to let these babies die without doing anything? Is it ethical to generate thousands or millions of mutant mice for studies of brain disorders, even when you know they will not elucidate much about human conditions?

Primates should only be used if other models do not work, says Feng, and only if a clear path forward is identified. The first step in his work, he says, is to use the Shank3 monkeys to identify the changes the mutations cause in the brain. Then, researchers might use that information to find targets for drugs, which could be tested in the same monkeys. He’s talking with the Oregon National Primate Research Center about carrying out similar work in the United States. ….[Note: I have a three-part series about CRISPR and germline editing* in the US, precipitated by research coming out of Oregon, Part 1, which links to the other parts, is here.]

Zhang’s June 8, 2018 article is excellent and I highly recommend reading it.

I touched on the topic of xenotransplanttaion in a commentary on a book about the science  of the television series, Orphan Black in a January 31,2018 posting (Note: A chimera is what you use to incubate a ‘human’ organ for transplantation or, more accurately, xenotransplantation),

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

The end

I am very excited to see Piccinini’s work come to Vancouver. There have been a number of wonderful art and art/science installations and discussions here but this is the first one (I believe) to tackle the emerging gene editing technologies and the issues they raise. (It also fits in rather nicely with the 200th anniversary of the publication of Mary Shelley’s Frankenstein which continues to raise issues and stimulate discussion.)

In addition to the ethical issues raised in Zhang’s article, there are some other philosophical questions:

  • what does it mean to be human
  • if we are going to edit genes to create hybrid human/animals, what are they and how do they fit into our current animal/human schema
  • are you still human if you’ve had an organ transplant where the organ was incubated in a pig

There are also going to be legal issues. In addition to any questions about legal status, there are also fights about intellectual property such as the one involving Harvard & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley (March 15, 2017 posting)..

While I’m thrilled about the Piccinini installation, it should be noted the issues raised by other artworks hosted in this version of the Biennale are important. Happily, they have been broached here in Vancouver before and I suspect this will result in more nuanced  ‘conversations’ than are possible when a ‘new’ issue is introduced.

Bravo 2018 – 2020 Vancouver Biennale!

* Germline editing is when your gene editing will affect subsequent generations as opposed to editing out a mutated gene for the lifetime of a single individual.

Art/sci and CRISPR links

This art/science posting may prove of some interest:

The connectedness of living things: an art/sci project in Saskatchewan: evolutionary biology (February 16, 2018)

A selection of my CRISPR posts:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning (August 15, 2017)

NOTE: An introductory CRISPR video describing how CRISPR/Cas9 works was embedded in part1.

Why don’t you CRISPR yourself? (January 25, 2018)

Editing the genome with CRISPR ((clustered regularly interspaced short palindromic repeats)-carrying nanoparticles (January 26, 2018)

Immune to CRISPR? (April 10, 2018)

Curiosity Collider event: May 16, 2018 and exhibit: June 8 – 22, 2018 in Vancouver (Canada)

I have two bits of news from the Curiosity Collider folks. One event is part of their regular Collider Cafe series and the other is a special event.

Collider Cafe: Art. Science. Chronicles.

From the Curiosity Collider May 16, 2018 event page,

Collider Cafe: Art. Science. Chronicles.

Map Unavailable

Date/Time
Date(s) – 16/05/2018
8:00 pm – 9:30 pm

Location
Café Deux Soleils

 

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet. Discover. Connect. Create.

Are you curious? Join us at “Collider Cafe: Art. Science. Chronicles.” to explore how art and science intersect in the exploration of curiosity.

  • Armin Mortazavi (science cartoonist): Scientooning Adventures
  • Cheryl Hamilton (conceptual artist): Image Analysis – inspirations from cancer research
  • Kayla Glynn (science communicator and researcher): True, Personal Stories About Science
  • Marlene Swidzinski (comedian, humorist, and technical writer/editor): Travelling at the Speed of Oy / That Joke Would Kill at a Physics Convention
  • Rachel Rozanski (artist): In Between Tides

The event starts promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Visit our Facebook page to let us know you are coming, and see event updates and speaker profiles.

Interstitial

This upcoming exhibit was first mentioned here in a March 27, 2018 posting in the context of a call for submissions. I’m glad to see they have moved onto the exhibit phase, from the Curiosity Collider ‘Interstitial’ event page,

Interstitial: Science Innovations by Canadian Women

Date/Time
Date(s) – 08/06/2018 – 22/06/2018
12:00 pm – 5:00 pm

Location
Beaumont Gallery

 

Interstitial: Science Innovations by Canadian Women is an exhibition with events in June 2018, showcasing 2D work by female artists featuring women in Science, Technology, Engineering, and Mathematics (STEM, or STEAM when Arts is included). Our approach intends to challenge the public as to how they think of women in STEM. What does it take for a woman to be “in” with the science community?

The importance of storytelling, and using art in the dissemination of scientific information, has grown in the past few years. The Sci/Art and STEAM movements have rapidly gained momentum. Creative outlets are critical to sharing science and stories of science, and to connecting with people on an personal level. We are establishing new connections in the community, and presenting women in STEM through a different experience.

This exhibition and associated events are created by women, feature women, and highlight the achievements of women in STEM. We seek to encourage girls and young women to see themselves as eligible for the opportunities available in STEAM industries, to connect with them beyond what is written in the books or taught in school. We present women as capable participants within the STEAM community. It is important that as women, we tell our own stories, support, and celebrate each other.

This event is curated by Larissa Blokhuis, Exhibitions Director, Curiosity Collider.

Opening Night: June 8, 2018 from 7pm till late

Art+Science Workshops on June 9 / 16. More information to come.

Artists

Cheryl Hamilton (oil paint on wood panel)

Cheryl Hamilton is a conceptual artist with a penchant for visual ingenuity.  A stickler for perfection, Cheryl imbues her design work with a kineticism inspired by her education as an animator at Vancouver’s Emily Carr Institute.  Her recent training in the techniques of glass blowing at Alberta’s Red Deer College and Pilchuck Glass School coupled with her metal-working expertise now enable her to animate light and colour within her monumental steel structures.  Cheryl also draws and paints and exhibits internationally. Her goal as an artist is to render an accessible beauty that withstands the test of time.

Ele Willoughby (linocut prints (water based inks) on Japanese paper)

Artist Ele Willoughby is a modern Renaissance woman.  After pursuing her doctorate in physics, she built her portfolio while working as an ocean-going marine geophysicist by day and printmaker by night.  Her hand-pulled block prints reflect her love of science and the natural world with a hint of humour and whimsy. Many of her works focus on the history of science and scientists.  She also makes interactive multimedia work, incorporating colour-changing or electrically conductive inks and electronics, which straddle the art/science divide. She lives and works in Toronto with her husband, and young son.

Paige Blumer (digital painting with photoshop printed on canvas)

Paige was born in Montreal Quebec where she had a competing passion for art and science.  She chose to pursue science and graduated with a bachelor’s degree in Kinesiology. Upon graduation, she decided to follow her yearning to pursue art, specifically cartoons, and applied to the Art Fundamentals program at Sheridan College in Ontario.  It was there that she developed a love for illustration. A professor told her that there were five specialized graduate programs in North America where she could combine her art skills with her passion for health and the human body. It took three years for her to polish her portfolio and finally get accepted into the Biomedical Visualization program at the University of Illinois at Chicago.

In Chicago, she learned how to visually represent health and scientific concepts through traditional, digital, and technical media. She get to use these skills everyday at the University of British Columbia where she is a Biomedical Visualization Specialist in the Faculty of Medicine.  She loves telling the stories of the human body at a physiological level and this affinity is inspiring me to write a graphic novel about the life of two red blood cells.

Acknowledgement

We would like to thank eng.cite and WWEST for their generous support for this exhibition and associated events.

There you have it.

Santiago Ramón y Cajal and the butterflies of the soul

The Cajal exhibit of drawings was here in Vancouver (Canada) this last fall (2017) and I still carry the memory of that glorious experience (see my Sept. 11, 2017 posting for more about the show and associated events). It seems Cajal’s drawings had a similar response in New York city, from a January 18, 2018 article by Roberta Smith for the New York Times,

It’s not often that you look at an exhibition with the help of the very apparatus that is its subject. But so it is with “The Beautiful Brain: The Drawings of Santiago Ramón y Cajal” at the Grey Art Gallery at New York University, one of the most unusual, ravishing exhibitions of the season.

The show finished its run on March 31, 2018 and is now on its way to the Massachusetts Institute of Technology (MIT) in Boston, Massachusetts for its opening on May 3, 2018. It looks like they have an exciting lineup of events to go along with the exhibit (from MIT’s The Beautiful Brain: The Drawings of Santiago Ramón y Cajal exhibit and event page),

SUMMER PROGRAMS

ONGOING

Spotlight Tours
Explorations led by local and Spanish scientists, artists, and entrepreneurs who will share their unique perspectives on particular aspects of the exhibition. (2:00 pm on select Tuesdays and Saturdays)

Tue, May 8 – Mark Harnett, Fred and Carole Middleton Career Development Professor at MIT and McGovern Institute Investigator Sat, May 26 – Marion Boulicault, MIT Graduate Student and Neuroethics Fellow in the Center for Sensorimotor Neural Engineering Tue, June 5 – Kelsey Allen, Graduate researcher, MIT Center for Brains, Minds, and Machines Sat, Jun 23 – Francisco Martin-Martinez, Research Scientist in MIT’s Laboratory for Atomistic & Molecular Mechanics and President of the Spanish Foundation for Science and Technology Jul 21 – Alex Gomez-Marin, Principal Investigator of the Behavior of Organisms Laboratory in the Instituto de Neurociencias, Spain Tue, Jul 31– Julie Pryor, Director of Communications at the McGovern Institute for Brain Research at MIT Tue, Aug 28 – Satrajit Ghosh, Principal Research Scientist at the McGovern Institute for Brain Research at MIT, Assistant Professor in the Department of Otolaryngology at Harvard Medical School, and faculty member in the Speech and Hearing Biosciences and Technology program in the Harvard Division of Medical Sciences

Idea Hub
Drop in and explore expansion microscopy in our maker-space.

Visualizing Science Workshop
Experiential learning with micro-scale biological images. (pre-registration required)

Gallery Demonstrations
Researchers share the latest on neural anatomy, signal transmission, and modern imaging techniques.

EVENTS

Teen Science Café: Mindful Matters
MIT researchers studying the brain share their mind-blowing findings.

Neuron Paint Night
Create a painting of cerebral cortex neurons and learn about the EyeWire citizen science game.

Cerebral Cinema Series
Hear from researchers and then compare real science to depictions on the big screen.

Brainy Trivia
Test your brain power in a night of science trivia and short, snappy research talks.

Come back to see our exciting lineup for the fall!

If you don’t have a chance to see the show or if you’d like a preview, I encourage you to read Smith’s article as it has embedded several Cajal drawings and rendered them exceptionally well.

For those who like a little contemporary (and related) science with their art, there’s a March 30, 2018 Harvard Medical Schoo (HMS)l news release by Kevin Jang (also on EurekAlert), Note: All links save one have been removed,

Drawing of the cells of the chick cerebellum by Santiago Ramón y Cajal, from “Estructura de los centros nerviosos de las aves,” Madrid, circa 1905

 

Modern neuroscience, for all its complexity, can trace its roots directly to a series of pen-and-paper sketches rendered by Nobel laureate Santiago Ramón y Cajal in the late 19th and early 20th centuries.

His observations and drawings exposed the previously hidden composition of the brain, revealing neuronal cell bodies and delicate projections that connect individual neurons together into intricate networks.

As he explored the nervous systems of various organisms under his microscope, a natural question arose: What makes a human brain different from the brain of any other species?

At least part of the answer, Ramón y Cajal hypothesized, lay in a specific class of neuron—one found in a dazzling variety of shapes and patterns of connectivity, and present in higher proportions in the human brain than in the brains of other species. He dubbed them the “butterflies of the soul.”

Known as interneurons, these cells play critical roles in transmitting information between sensory and motor neurons, and, when defective, have been linked to diseases such as schizophrenia, autism and intellectual disability.

Despite more than a century of study, however, it remains unclear why interneurons are so diverse and what specific functions the different subtypes carry out.

Now, in a study published in the March 22 [2018] issue of Nature, researchers from Harvard Medical School, New York Genome Center, New York University and the Broad Institute of MIT and Harvard have detailed for the first time how interneurons emerge and diversify in the brain.

Using single-cell analysis—a technology that allows scientists to track cellular behavior one cell at a time—the team traced the lineage of interneurons from their earliest precursor states to their mature forms in mice. The researchers identified key genetic programs that determine the fate of developing interneurons, as well as when these programs are switched on or off.

The findings serve as a guide for efforts to shed light on interneuron function and may help inform new treatment strategies for disorders involving their dysfunction, the authors said.

“We knew more than 100 years ago that this huge diversity of morphologically interesting cells existed in the brain, but their specific individual roles in brain function are still largely unclear,” said co-senior author Gordon Fishell, HMS professor of neurobiology and a faculty member at the Stanley Center for Psychiatric Research at the Broad.

“Our study provides a road map for understanding how and when distinct interneuron subtypes develop, giving us unprecedented insight into the biology of these cells,” he said. “We can now investigate interneuron properties as they emerge, unlock how these important cells function and perhaps even intervene when they fail to develop correctly in neuropsychiatric disease.”

A hippocampal interneuron. Image: Biosciences Imaging Gp, Soton, Wellcome Trust via Creative CommonsA hippocampal interneuron. Image: Biosciences Imaging Gp, Soton, Wellcome Trust via Creative Commons

Origins and Fates

In collaboration with co-senior author Rahul Satija, core faculty member of the New York Genome Center, Fishell and colleagues analyzed brain regions in developing mice known to contain precursor cells that give rise to interneurons.

Using Drop-seq, a single-cell sequencing technique created by researchers at HMS and the Broad, the team profiled gene expression in thousands of individual cells at multiple time points.

This approach overcomes a major limitation in past research, which could analyze only the average activity of mixtures of many different cells.

In the current study, the team found that the precursor state of all interneurons had similar gene expression patterns despite originating in three separate brain regions and giving rise to 14 or more interneuron subtypes alone—a number still under debate as researchers learn more about these cells.

“Mature interneuron subtypes exhibit incredible diversity. Their morphology and patterns of connectivity and activity are so different from each other, but our results show that the first steps in their maturation are remarkably similar,” said Satija, who is also an assistant professor of biology at New York University.

“They share a common developmental trajectory at the earliest stages, but the seeds of what will cause them to diverge later—a handful of genes—are present from the beginning,” Satija said.

As they profiled cells at later stages in development, the team observed the initial emergence of four interneuron “cardinal” classes, which give rise to distinct fates. Cells were committed to these fates even in the early embryo. By developing a novel computational strategy to link precursors with adult subtypes, the researchers identified individual genes that were switched on and off when cells began to diversify.

For example, they found that the gene Mef2c—mutations of which are linked to Alzheimer’s disease, schizophrenia and neurodevelopmental disorders in humans—is an early embryonic marker for a specific interneuron subtype known as Pvalb neurons. When they deleted Mef2c in animal models, Pvalb neurons failed to develop.

These early genes likely orchestrate the execution of subsequent genetic subroutines, such as ones that guide interneuron subtypes as they migrate to different locations in the brain and ones that help form unique connection patterns with other neural cell types, the authors said.

The identification of these genes and their temporal activity now provide researchers with specific targets to investigate the precise functions of interneurons, as well as how neurons diversify in general, according to the authors.

“One of the goals of this project was to address an incredibly fascinating developmental biology question, which is how individual progenitor cells decide between different neuronal fates,” Satija said. “In addition to these early markers of interneuron divergence, we found numerous additional genes that increase in expression, many dramatically, at later time points.”

The association of some of these genes with neuropsychiatric diseases promises to provide a better understanding of these disorders and the development of therapeutic strategies to treat them, a particularly important notion given the paucity of new treatments, the authors said.

Over the past 50 years, there have been no fundamentally new classes of neuropsychiatric drugs, only newer versions of old drugs, the researchers pointed out.

“Our repertoire is no better than it was in the 1970s,” Fishell said.

“Neuropsychiatric diseases likely reflect the dysfunction of very specific cell types. Our study puts forward a clear picture of what cells to look at as we work to shed light on the mechanisms that underlie these disorders,” Fishell said. “What we will find remains to be seen, but we have new, strong hypotheses that we can now test.”

As a resource for the research community, the study data and software are open-source and freely accessible online.

A gallery of the drawings of Santiago Ramón y Cajal is currently on display in New York City, and will open at the MIT Museum in Boston in May 2018.

Christian Mayer, Christoph Hafemeister and Rachel Bandler served as co-lead authors on the study.

This work was supported by the National Institutes of Health (R01 NS074972, R01 NS081297, MH071679-12, DP2-HG-009623, F30MH114462, T32GM007308, F31NS103398), the European Molecular Biology Organization, the National Science Foundation and the Simons Foundation.

Here’s link to and a citation for the paper,

Developmental diversification of cortical inhibitory interneurons by Christian Mayer, Christoph Hafemeister, Rachel C. Bandler, Robert Machold, Renata Batista Brito, Xavier Jaglin, Kathryn Allaway, Andrew Butler, Gord Fishell, & Rahul Satija. Nature volume 555, pages 457–462 (22 March 2018) doi:10.1038/nature25999 Published: 05 March 2018

This paper is behind a paywall.

Emergence in Toronto and Ottawa and brains in Vancouver (Canada): three April 2018 events

April 2018 is shaping up to be quite the month where art/sci events are concerned. I just published a March 27, 2018 posting titled ‘Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)‘ and I’ve now received news about more happenings in Toronto and Ottawa.  Plus, there’s a science-themed meeting organized by ARPICO (Society of Italian Researchers &; Professionals in Western Canada) featuring brains and brain imaging in Vancouver.

Toronto’s and Ottawa’s Emergence

There’s an art/sci exhibit opening, from a March 27, 2018 Art/Sci Salon announcement (received via email),

You are invited!

FaceBook event:

The Oakwood Village Library and Arts Centre event:

341 Oakwood Avenue, Toronto, ON  M6E 2W1

I check the library webpage listed in the above and found this artist’s statement,

Artist / Scientist Statement [Stephen Morris]

I am interested in self-organized, emergent patterns and textures. I make images of patterns both from the natural world and of experiments in my laboratory in the Department of Physics at the University of Toronto. Patterns naturally attract casual attention but are also the subject of serious scientific research. Some things just evolve all by themselves into strikingly regular shapes and textures. Why? These shapes emerge spontaneously from a dynamic process of growing, folding, cracking, wrinkling, branching, flowing and other kinds of morphological development. My photos are informed by the scientific aesthetic of nonlinear physics, and celebrate the subtle interplay of order and complexity in emergent patterns. They are a kind of “Scientific Folk Art” of the science of Emergence.

While the official opening is April 5, 2018, the event itself runs from April 1 – 30, 2018.

Next, there’s another March 27, 2018 announcement (received via email) from the Art/Sci Salon but this one concerns a series of talks about ’emergence’, Note: Some of the event information was a little difficult to decipher so I’ve added a note to the relevant section).

What is Emergent Form?

Nature teems with self-organized forms that seem to spring spontaneously from the smooth background of things, by mechanisms that are not always apparent. Think of rippled sand on a beach or regular stripes in the clouds.  Plants, insects and animals exhibit spirals and spots and stripes in an exuberant riot of colours.  Fluid flows in amazingly regular swirls and eddies.  The emergence of form is ubiquitous, and presents a challenge and an inspiration to both artists and scientists. In mathematics, patterns appear as solutions of the nonlinear partial differential equations in the continuum limit of classical physics, chemistry and biology. In the arts and humanities, “emergent form” addresses the entangled ways in which humans, plants animals, microorganisms inevitably co-exist in the universe; the way that human intervention and natural transformation can generate new landscapes and new forms of life.

With Emergent Form, we want to question the idea of a fixed world.

For us, Emergent Form is not just a series of natural and human phenomena too complicated to understand, measure or predict, but also a concept to help us identify ways in which we can come to term with, and embrace their complexity as a source of inspiration.

Join us in Toronto and Ottawa for a series of interdisciplinary discussions, performances and exhibitions on Emergent Form on Apr 10, 11, 12 (Toronto) and Apr. 14 [2018] (Ottawa).

This series is the result of a collaboration among several parties. Each event of the series is different and has its dedicated RSVP 

Tue. Apr 10 The Fields Institute, 222 College Street

Emergent form: an interdisciplinary concept 6:00-8:00 pm Pier Luigi Capucci, Accademia di Belle Arti Urbino. Founder and director, Noemalab*, Charles Sowers, Independent artist and exhibit designer, the Exploratorium, Stephen Morris, Professor of of Physics University of Toronto, Ron Wild, smART Maps

CLICK HERE FOR MORE AND TO RSVP

Wed. Apr 11 The Fields Institute6:00-8:00 pm

Anatomy of an Interconnected SystemA Performative Lecture with Margherita Pevere, Aalto University, Helsinki

CLICK HERE FOR MORE AND TO RSVP

Thu. Apr 12 (Note: I believe that from 5 – 6 pm, you’re invited to see Pevere’s exhibit and then proceed to Luella Massey Studio Theatre for performances)

5:00 pm  Cabinets in the Koffler Student Centre [I believe this is at the University of Toronto] Anatomy of an Interconnected System An exhibition by Margherita Pevere

6:00 pm Luella Massey Studio Theatre, 4 Glen Morris Ave., Toronto biopoetriX – conFiGURing AI

6:00-8:00 pm Performance: 

6:00pm Performance “Corpus Nil. A Ritual of Birth for a Modified Body” conceived and performed by Marco Donnarumma

6.30pm LAB dance: Blitz media posters on labs in the arts, sciences and engineering

7.10pm Panel: Performing AI, hybrid media and humans in/as technologyMarco Donnarumma, Doug van Nort (Dispersion Lab, York U.), Jane Tingley (Stratford User Research & Gameful Experiences Lab –SURGE-, U of Waterloo), Angela Schoellig (Dynamic Systems Lab, U of T)

Panel animators: Antje Budde (Digital Dramaturgy Lab) and Roberta Buiani (ArtSci Salon)

8.15pm Reception at the Italian Cultural Institute, 496 Huron St, Toronto

CLICK HERE FOR MORE AND TO RSVP

Ottawa. Sat. Apr. 14 National Arts Centre, 1 Elgin Street11:00 am-1:00 pm

Emergent Form and complex phenomenaA creative panel discussion and surprise demonstrationsWith Pier Luigi Capucci, Margherita Pevere, Marco Donnarumma, Stephen Morris

CLICK HERE FOR MORE AND TO RSVP

This event would not be possible without the support of The Fields Institute for Research in Mathematical Science, The Italian Embassy, the Centre for Drama, Theatre and Performance Studies at the University of Toronto, the Digital Dramaturgy Lab, and the Istituto Italiano di Cultura. Many thanks to our community partner BYOR (Bring your own Robot)

I wonder if some of the funding from Italy is in support of Italian Research in World Day. This is the inaugural year for the event, which will be held annually on April 15.

Vancouver’s brains

The Society of Italian Researchers and Professionals in Western Canada (ARPICO) is hosting an event in Vancouver (from a March 22, 2018 ARICO announcement received via email),

Our second speaking event of the year, in collaboration with the Consulate General of Italy in Vancouver, has been scheduled for Wednesday, April 11th, 2018 at the Roundhouse Community Centre. Professor Vesna Sossi’s talk will be examining how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. You can read a summary of Prof. Sossi’s lecture as well as her short professional biography at the bottom of this message.

This event is organized in collaboration with the Consulate General of Italy in Vancouver to celebrate the newly instituted Italian Research in the World Day, as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. You can read more on our website event page.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

  • 6:45 pm – Doors Open
  • 7:00 pm – Lecture by Prof. Vesna Sossi
  • ~8:00 pm – Q & A Period
  • Mingling & Refreshments until about 9:30 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.


Imaging: A Window into the Brain

Brain illness, comprising neurological disorders, mental illness and addiction, is considered the major health challenge in the 21st century with a socio-economic cost greater than cancer and cardiovascular disease combined. There are at least three unique challenges hampering brain disease management: relative inaccessibility, disease onset often preceding the onset of clinical symptoms by many years and overlap between clinical and pathological symptoms that makes accurate disease identification often difficult. This talk will give examples of how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. Emphasis will be placed on the interplay between scientific discoveries and instrumentation and data analysis development as exemplified by the current understanding of the brain function as comprised by interactions between connectivity networks and neurochemistry and advancement in multi-modal imaging such as simultaneous PET and magnetic resonance imaging (MRI).

Vesna Sossi is a Professor in the University of British Columbia (UBC) Physics and Astronomy Department and at the UBC Djavad Mowafaghian Center for Brain Health. She directs the UBC Positron Emission Tomography (PET) imaging centre, which is known for its use of imaging as applied to neurodegeneration with emphasis on Parkinson’s disease. Her main areas of interest comprise development of imaging methods to enhance the investigation of neurochemical mechanisms that lead to an increased risk of Parkinson’s disease (PD) and mechanisms that contribute to treatment-related complications. She uses PET imaging to explore how alterations of the different neurotransmitter systems contribute to different trajectories of disease progression. Her other areas of interest are PET image analysis, instrumentation and multi-modal, multi-parameter data analysis. She published more than 180 peer review papers, is funded by several granting agencies, including the Michael J Fox Foundation, and sits on several national and international review panels.


WHEN: Wednesday, April 11th, 2018 at 7:00pm (doors open at 6:45pm)
WHERE: Roundhouse Community Centre, Room B – 181 Roundhouse Mews, Vancouver, BC, V6Z 2W3
RSVP: Please RSVP at EventBrite (https://imaging-a-window-into-the-brain.eventbrite.ca) or email info@arpico.ca


Tickets are Needed

  • Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.
  • All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

You can find directions for the Roundhouse Community Centre here

I have one idle question. What’s going to happen these groups if Canadians change their use of  Facebook or abandon the platform as they are threatening to do in the face of Cambridge Analytica’s use of their data? A March 25, 2018 article on huffingtonpost.ca outlines the latest about Canadians’ reaction to the Cambridge Analytical news according to an Angus Reid poll,

A survey by Angus Reid Institute suggests 73 per cent of Canadian Facebook users say they will make changes, while 27 per cent say it will be “business as usual.”

Nearly a quarter (23 per cent) said they would use Facebook less in the future, and 41 per cent of users said they would check and/or change their privacy settings.

The survey also found that one in 10 say they plan to abandon the platform, at least temporarily.

Facebook has been under fire for its ability to protect user privacy after Cambridge Analytica was accused of lifting the Facebook profiles of more than 50 million users without their permission.

There you have it.

*Well, a bit more information about one of the “Emergent’ speakers was received in an April 4, 2018 ArtSci Salon email announcement,

Do make sure to check out Pier Luigi Capucci’s EU-based (but with international breadth) Noemalab platform. https://noemalab.eu/ since the mid-nineties, this platform has been an important node of information for New Media Art and the relation between the arts and science.

noemalab’s blog regularly hosts reviews of events and conferences occurring around the world, including  the Subtle Technologies Festival between 2007 and 2014. you can search its archives here http://blogs.noemalab.eu/

Capucci has been writing several reflections on emergent forms of Life and theorized what he called the “third life”. See a recent essay https://noemalab.eu/memo/events/evolutionary-creativity-the-inner-life-and-meaning-of-art/ here is a picture which I would love him to explain during Emergent Form. Intrigued? come listen to him!

Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)

There are a couple of events coming up in April and an opportunity to submit your work for inclusion in a Curiosity Collider event or two. There’s also a Science Writers and Communicators conference being held from April 12 – 15, 2018. All of this is happening in Vancouver, Canada.

Curiosity Collider events, etc.

Colliding with the Quantum

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

MOA [Museum of Anthropology] Night Shift: Quantum Futures

In the quantum realm, what is observable and what is not? What happens when we mix art and science? 

Join us at UBC Museum of Anthropology on the evening of April 5 [2018] and immerse yourself in quantum physics through dance, spoken word, projection sculpture, virtual reality, and hands-on activities.

This event is curated by Curiosity Collider Art-Science Foundation with collaborations from UBC Physics & Astronomy and Stewart Blusson Quantum Matter Institute.

Let us know you are coming on Facebook | See list of participating artists/scientists

For anyone who needs directions, clicking on this UBC Museum of Anthropology link for Getting Here should help.

I wanted a few more details about the event and found them on Curiosity Collider’s Night Shift webpage,

Doors/Bar/Art & Science Activities 6 pm | Live Show 7:30 pm | Entry with museum admission ($10; free for UBC students & staff, Indigenous peoples, children under 6, and MOA Members)| Family Friendly

This event is curated by Curiosity Collider Creative Managing Director Char Hoyt.

The artwork gathered together for this event is a delightful blending of some of the most famous theories in Quantum Mechanics with both traditional and new artistic practices. When science is filtered through a creative expression it can both inspire and reveal new ways of seeing and understanding the concepts within. Our performers have crafted thoughtful experiences through dance, spoken word, sound, and light, that express the weirdness of the quantum realm and how it is reflected in our daily lives. We have also worked closely with scientists to develop hands-on activities that embody the same principles to create experiences that engage your creativity in understanding the quantum world. We encourage you to interact with the artists and scientists and let their work guide you through the quantum realm.

Participating artists and scientists

Most of these folks are associated with the Quantum Matter Institute.

Call for submissions

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

Call for Submissions:
Women in STEM Exhibition

Interstitial: Science Innovations by Canadian Women is a two-week exhibition (June 1-14) and events showcasing work by female artists featuring women in STEM. We are looking for one more 2D artist/illustrator to join the exhibition and will accept existing work. Deadline April 6. To submit, visit our website.

This exhibition is funded by the Westcoast Women in Engineering, Science and Technology (WWEST) and eng-cite.

#Sciart & #Scicomm at Science World on April 12, 2018 (a Science Writers and Communicators of Canada [SWCC] reception)

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

#Sciart & #Scicomm at Science World

On April 12, Curiosity Collider is bringing art+science to the Science Writers and Communications of Canada Annual Conference here in Vancouver. The public evening event will include performances and activities by Curiosity Collider, Science Slam, Beaker Head (Alberta) [sic], and SFU (Simon Fraser University) Faculty of Applied Science. We will also be hosting a silent auction to showcase local #sciart and support future art+science project, including our annual exhibition SPARK!

Get your tickets now! | Let us know you are coming on Facebook

I found more information about this event at something called allevents.in/vancouver,

SciComm Social with SWCC and STAN

Science Writers and Communicators of Canada (SWCC) and Science Technology Awareness Network (STAN) are hosting their annual conferences in Vancouver in April. This joint reception event featuring #scicomm and #sciart is free for conference delegates and also open to the public … . [emphasis mine]

Friends, family, and fans of science communication & communicators welcome!

This evening event will include performances and activities from:
* Beakerhead – Power Point Karaoke, hosted by Banff SciComm/Beakerhead alumni: A deck of slides is provided. Brave participants, who have never seen the slides before, improvise the talk. Hilarity ensues, egged on by an enthusiastic audience.
* Curiosity Collider – #sciart silent auction, stage performances, and art installation
* SFU Applied Sciences – interactive technology exhibits
* Science Slam Canada – Whether it’s a talk, a poem, a song, a dance, or something completely unexpected, the possibilities are endless. Our only two rules? Five minute slams, and no slideshows allowed!

Get your tickets – available until April 10! This is a 19+ event. Performances starting at 7:30, doors at 7 pm.

Weirdly, no mention is made of the cost. Tickets are $25. for anyone who’s not attending the conference and you can register for and purchase your ticket here. As for location, this event is being held at Science World at Telus World of Science (known locally as Science World), here’s where you find directions for how to get to Science World.

Science Writers and Communicators Conference in Vancouver from April 12 – 15, 2018

Before getting to the costs here a couple of peeks at the programme. First, there’s a March 25, 2018 posting on the SWCC blog by Ashley EM Miller about one of the conference sessions,

Art can be a way to engage the public with science through the the simple fact that novelty sparks curiosity. Artists in the emerging field of sci-art utilize science concepts, methods, principles and information within their practice. Their art, along with the work of science illustrators, can facilitate a deeper emotional connection to science, particularly in those who don’t regularly pay attention or feel welcome.

However, using artwork in science communication is not as simple as inserting a picture into a body of text and referencing the artist in MLA style.

For those coming from the sciences, citing your sources, as laborious as that may be, is a given. While that is fine for incorporating  information, that isn’t always adequate for artwork. In the art world, artists know how to ask other artists to use their work. If a scientist or science communicator does not have an “in” with the art community, they may not know where to find legal information about using art.


Anyone interested in using artwork in their science communication practice, should attend the upcoming SWCC conference’s professional development session “On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. The panel discussion will be moderated by Theresa Liao of Curiosity Collider and Sarah Louadi of Voirelia, both of whom are intimately familiar with combining art and science in their respective organizations. Sarah and Theresa will lead a much-needed conversation about the benefits and best practices of partnerships between artists and science communicators.


The session boasts a well-rounded panel. Attendees will gain insights on aspects of the art world with panelists Kate Campbell, a science illustrator, and Steven J. Barnes, a psychologist and artist. Legal and ethical considerations will be provided by Lawrence Chan, an intellectual property lawyer, and April Britski, the National Executive Director of Canadian Artists’ Representation/Le Front des artistes canadiens (CARFAC). For those unfamiliar, CARFAC is a federal organization that acts as a voice for visual artists in Canada and outlines minimum fee guidelines among other things.

Science communicators and bloggers will certainly benefit from the session, particularly early-career freelancers. When working independently, there are no organizational policies and procedures in place for you to follow. It means that you have to check everything yourself, and this session will give you a crash course of what to look for in artist collaborations, what to ask and how to ask it. Even researchers will benefit from the discussion, by learning about the opportunities for working with science illustrators and about what to expect.


On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. will take place at 3:15 pm on Saturday April 14th as part of the conference’s concurrent Professional Development sessions. …

There’s a programme schedule for the 2018 conference here and it includes both an “At a glance’ version and a more fulsome description of the various sessions such as these,

THURSDAY APRIL 12

Act your Science – Interactive Improvisation Training

10:00 am – 12:00 pm Innovation Lab

Come and share a taste of a communication program developed by Jeff Dunn, in collaboration with SWCC, the Loose Moose Theatre in Calgary and the University of Calgary. The goal of this presentation is to provide a taste of how improvisation can be used to improve communication skills in science fields. This hands-on exercise will help participants build capacity to communicate science to various audiences by learning how to fail gracefully in public (to help reduce presentation anxiety), how to connect with your audience and how to recognize and use status in personal interactions.

The full program is 10hrs of training, in this shorter session, we will sample the program in a fun interactive environment. Be prepared to release your inner thespian. Space is limited to 20 people

Jeff Dunn has been a research scientist in brain and imaging for over 30 years. He has a strong interest in mentoring science trainees to broaden their career skills and has recently been developing programs to improve science communication. One class, gaining traction, is “Act your Science”, a custom designed course using improvisation to improving science communication skills for science trainees. He is an alumni of the Banff Science Communication program where he first experienced improvisation training for science. He has held a Canada Research Chair and has Directed the Experimental Imaging Centre at the University of Calgary since 2004. He has over 150 science publications in diverse journals ranging from Polar Biology to the Journal of Neurotrauma. He has supervised scores of graduate students and taught on subjects including MRI, optical imaging and brain physiology at altitude. His imaging research currently includes multiple sclerosis, brain cancer and concussion.

Video Booth: How I SciComm – go ahead and tell all, we want to know! 

 Available 10:am – 2:30pm: Exploration Lab

A camera team will be on hand to help you record and upload your 1 minute video about who you are, and how you do your science communications. Here are some questions for you to think about:

1. Who are you?

2. How do you do your science communications?

3. What’s your favourite science trivia? What’s something cool you learned when researching a storyWhat’s your favourite jargon? What’s a word you had to memorizing pronunciation or spelling for a story

A Community of Innovators: 50 Years of TRIUMF

2:30 -3:30 pm  Science Theatre

 

Ask TRIUMF’s spirited founders and emeriti about the humble beginnings of Canada’s particle accelerator centre and you will invariably hear: “This used to be just a big pile of dirt.” You could imagine TRIUMF’s founding members five decades ago standing at the edge of the empty lot nestled between the forest and the sea, contemplating possibilities. But not even TRIUMF’s founders could have imagined the twists and turns of the lab’s 50-year journey, nor the impact that the lab would have on the people of Canada and the world.

Today, on that same 12.8-acre plot of land, TRIUMF houses world-leading research and technology, and fuels Canada’s collective imagination for the future of particle and nuclear physics and accelerator science. Join TRIUMF’s Director Jonathan Bagger and colleagues for an exploration of TRIUMF’s origins, impacts, and possibilities – a story of collaboration that over five decades celebrates a multifaceted community and growing family of 20 Canadian member universities and partners from around the world. www.triumf50.com  @TRIUMFlab

FRIDAY, APRIL 13 

Frontiers in SciComm Policy & Practice

Canada 2067 – Building a national vision for STEM learning

10:30 Room 1900

Canada 2067 is an ambitious initiative to develop a national vision and goals for youth learning in science, technology, engineering and math (STEM). Significant and scalable changes in education can be achieved by aligning efforts towards shared goals that support all children and youth in Canada.  A draft framework has been developed that builds on research into global policy, broad-based public input, five youth summits, consultation with millennials and a national leadership conference. It calls for action by diverse stakeholders including students, educators, parents, community organizations, industry and all levels of governments.  In this workshop, participants will learn about the initiative and discuss the inherent challenges of catalyzing education change in Canada. Participants will also review the framework and provide feedback that will be incorporated into the final version of the Canada 2067 framework. Input into the design of phase 2 will also be encouraged.

Bonnie Schmidt, C.M., Ph.D.

Founder and President, Let’s Talk Science

Dr. Bonnie Schmidt is the founder and president of Let’s Talk Science, a national charitable organization that helps Canadian youth prepare for future careers and citizenship roles by supporting their engagement in science, technology, engineering and math (STEM). Annually, Let’s Talk Science is accessed by more than 40% of schools in over 1,700 communities, impacting nearly 1 million youth. More than 3,500 volunteers at 45 post-secondary sites form our world-class outreach network. Bonnie currently serves as Chair of the National Leadership Taskforce on Education & Skills for the Information and Communications Technology Council (ICTC) and is on the Board of Governors of the University of Ontario Institute of Technology (UOIT). She was named a Member of the Order of Canada in 2015 and has received an Honorary Doctorate (Ryerson University), the Purvis Memorial Award (Chemical Institute of Canada), Community Service Award (Life Sciences Ontario), and a Queen’s Diamond Jubilee Award. @BMSchmidt

Infographics: Worth a Thousand Words with Kate Broadly and Sonya Odsen

1:15 Room 1520

Infographics have become a popular way to present results to non-specialist audiences, and they are a very effective tool for sharing science on social platforms. Infographics are more likely to be shared online, where they increase engagement with scientific content on platforms like Twitter.

No art skills? No problem! This session will guide you through the process of creating your own infographic, from crafting your story to telling that story visually, and will include strategies to design effective visuals without having to draw (unless you want to!). Topics will include developing your key messages, making your visuals functional rather than decorative, tips for giving your visuals a professional edge, and the best software options for each artistic skill level. Our goal is to empower you to create a visually-pleasing infographic regardless of your art or drawing experience. At the end of this active session, you will have a draft of your own unique infographic ready to be made digital.

The skills you develop during this session will be readily transferable to other visual media, such as talks, posters, or even creating visuals for blog posts.

Kate Broadley

Sonya Odsen

Kate Broadley and Sonya Odsen are Science Communicators with Fuse Consulting. Located in Edmonton, Alberta, Fuse is dedicated to communicating cutting-edge research to different audiences in creative and innovative ways. Their ultimate goal is to bring knowledge to life and empower audiences to apply that knowledge in policy, conservation, research, and their day-to-day lives. Every day, Kate and Sonya tackle complex topics and transform them for specific audiences through writing and design. Infographics are one of their favourite tools for conveying information in fun and accessible ways. Their past and current design projects include interpretive signage for Nature Conservancy Canada, twitter-optimized visual abstracts for the Applied Conservation Ecology lab at the University of Alberta, and a series of science-inspired holiday cards. You can see examples of their work at http://www.fuseconsulting.ca/see-our-work/. Kate and Sonya are also ecologists by training, each holding an M.Sc. from the University of Alberta.

Should this excite your interest,  get going as registration ends March 29, 2018. Here are the rates and the registration link is at the end,

Everyone is Welcome

RATES

Early Bird Registration

SWCC Members: $300

Non-members: $400

Regular Registration 

SWCC Members: $400

  Non-members: $500

Student Rates

SWCC student members: $150

Non-member students: $200

Beakerhead Course: $500

(includes day rate + course fee)

Day Rate: $150

Victoria Half Day Rate: $75

Snorkel Safari: snorkeler $120

Snorkel Safari: ride along $90

Social Evening, April 12

  TELUS Science World, 7:00-10:00pm additional single event tickets: $25.00 (limited)

DATES

EARLY BIRD REGISTRATION OPENS: MONDAY, FEBRUARY 5, 2018

EARLY BIRD REGISTRATION CLOSES: FRIDAY MARCH 9, 2018

REGISTRATION FINAL DEADLINE: THURSDAY MARCH 29, 2018

Conference Dates

April 12, TELUS Science World with STAN

April 13 & 14, SFU Harbour Centre

April 15, Vancouver tours & Victoria day Royal BC Museum

Travel and Accommodation information is available here

Register Here

Have fun!

Canada’s ‘Smart Cities’ will need new technology (5G wireless) and, maybe, graphene

I recently published [March 20, 2018] a piece on ‘smart cities’ both an art/science event in Toronto and a Canadian government initiative without mentioning the necessity of new technology to support all of the grand plans. On that note, it seems the Canadian federal government and two provincial (Québec and Ontario) governments are prepared to invest in one of the necessary ‘new’ technologies, 5G wireless. The Canadian Broadcasting Corporation’s (CBC) Shawn Benjamin reports about Canada’s 5G plans in suitably breathless (even in text only) tones of excitement in a March 19, 2018 article,

The federal, Ontario and Quebec governments say they will spend $200 million to help fund research into 5G wireless technology, the next-generation networks with download speeds 100 times faster than current ones can handle.

The so-called “5G corridor,” known as ENCQOR, will see tech companies such as Ericsson, Ciena Canada, Thales Canada, IBM and CGI kick in another $200 million to develop facilities to get the project up and running.

The idea is to set up a network of linked research facilities and laboratories that these companies — and as many as 1,000 more across Canada — will be able to use to test products and services that run on 5G networks.

Benjamin’s description of 5G is focused on what it will make possible in the future,

If you think things are moving too fast, buckle up, because a new 5G cellular network is just around the corner and it promises to transform our lives by connecting nearly everything to a new, much faster, reliable wireless network.

The first networks won’t be operational for at least a few years, but technology and telecom companies around the world are already planning to spend billions to make sure they aren’t left behind, says Lawrence Surtees, a communications analyst with the research firm IDC.

The new 5G is no tentative baby step toward the future. Rather, as Surtees puts it, “the move from 4G to 5G is a quantum leap.”

In a downtown Toronto soundstage, Alan Smithson recently demonstrated a few virtual reality and augmented reality projects that his company MetaVRse is working on.

The potential for VR and AR technology is endless, he said, in large part for its potential to help hurdle some of the walls we are already seeing with current networks.

Virtual Reality technology on the market today is continually increasing things like frame rates and screen resolutions in a constant quest to make their devices even more lifelike.

… They [current 4G networks] can’t handle the load. But 5G can do so easily, Smithson said, so much so that the current era of bulky augmented reality headsets could be replaced buy a pair of normal looking glasses.

In a 5G world, those internet-connected glasses will automatically recognize everyone you meet, and possibly be able to overlay their name in your field of vision, along with a link to their online profile. …

Benjamin also mentions ‘smart cities’,

In a University of Toronto laboratory, Professor Alberto Leon-Garcia researches connected vehicles and smart power grids. “My passion right now is enabling smart cities — making smart cities a reality — and that means having much more immediate and detailed sense of the environment,” he said.

Faster 5G networks will assist his projects in many ways, by giving planners more, instant data on things like traffic patterns, energy consumption, variou carbon footprints and much more.

Leon-Garcia points to a brightly lit map of Toronto [image embedded in Benjamin’s article] in his office, and explains that every dot of light represents a sensor transmitting real time data.

Currently, the network is hooked up to things like city buses, traffic cameras and the city-owned fleet of shared bicycles. He currently has thousands of data points feeding him info on his map, but in a 5G world, the network will support about a million sensors per square kilometre.

Very exciting but where is all this data going? What computers will be processing the information? Where are these sensors located? Benjamin does not venture into those waters nor does The Economist in a February 13, 2018 article about 5G, the Olympic Games in Pyeonchang, South Korea, but the magazine does note another barrier to 5G implementation,

“FASTER, higher, stronger,” goes the Olympic motto. So it is only appropriate that the next generation of wireless technology, “5G” for short, should get its first showcase at the Winter Olympics  under way in Pyeongchang, South Korea. Once fully developed, it is supposed to offer download speeds of at least 20 gigabits per second (4G manages about half that at best) and response times (“latency”) of below 1 millisecond. So the new networks will be able to transfer a high-resolution movie in two seconds and respond to requests in less than a hundredth of the time it takes to blink an eye. But 5G is not just about faster and swifter wireless connections.

The technology is meant to enable all sorts of new services. One such would offer virtual- or augmented-reality experiences. At the Olympics, for example, many contestants are being followed by 360-degree video cameras. At special venues sports fans can don virtual-reality goggles to put themselves right into the action. But 5G is also supposed to become the connective tissue for the internet of things, to link anything from smartphones to wireless sensors and industrial robots to self-driving cars. This will be made possible by a technique called “network slicing”, which allows operators quickly to create bespoke networks that give each set of devices exactly the connectivity they need.

Despite its versatility, it is not clear how quickly 5G will take off. The biggest brake will be economic. [emphasis mine] When the GSMA, an industry group, last year asked 750 telecoms bosses about the most salient impediment to delivering 5G, more than half cited the lack of a clear business case. People may want more bandwidth, but they are not willing to pay for it—an attitude even the lure of the fanciest virtual-reality applications may not change. …

That may not be the only brake, Dexter Johnson in a March 19, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), covers some of the others (Note: Links have been removed),

Graphene has been heralded as a “wonder material” for well over a decade now, and 5G has been marketed as the next big thing for at least the past five years. Analysts have suggested that 5G could be the golden ticket to virtual reality and artificial intelligence, and promised that graphene could improve technologies within electronics and optoelectronics.

But proponents of both graphene and 5G have also been accused of stirring up hype. There now seems to be a rising sense within industry circles that these glowing technological prospects will not come anytime soon.

At Mobile World Congress (MWC) in Barcelona last month [February 2018], some misgivings for these long promised technologies may have been put to rest, though, thanks in large part to each other.

In a meeting at MWC with Jari Kinaret, a professor at Chalmers University in Sweden and director of the Graphene Flagship, I took a guided tour around the Pavilion to see some of the technologies poised to have an impact on the development of 5G.

Being invited back to the MWC for three years is a pretty clear indication of how important graphene is to those who are trying to raise the fortunes of 5G. But just how important became more obvious to me in an interview with Frank Koppens, the leader of the quantum nano-optoelectronic group at Institute of Photonic Sciences (ICFO) just outside of Barcelona, last year.

He said: “5G cannot just scale. Some new technology is needed. And that’s why we have several companies in the Graphene Flagship that are putting a lot of pressure on us to address this issue.”

In a collaboration led by CNIT—a consortium of Italian universities and national laboratories focused on communication technologies—researchers from AMO GmbH, Ericsson, Nokia Bell Labs, and Imec have developed graphene-based photodetectors and modulators capable of receiving and transmitting optical data faster than ever before.

The aim of all this speed for transmitting data is to support the ultrafast data streams with extreme bandwidth that will be part of 5G. In fact, at another section during MWC, Ericsson was presenting the switching of a 100 Gigabits per second (Gbps) channel based on the technology.

“The fact that Ericsson is demonstrating another version of this technology demonstrates that from Ericsson’s point of view, this is no longer just research” said Kinaret.

It’s no mystery why the big mobile companies are jumping on this technology. Not only does it provide high-speed data transmission, but it also does it 10 times more efficiently than silicon or doped silicon devices, and will eventually do it more cheaply than those devices, according to Vito Sorianello, senior researcher at CNIT.

Interestingly, Ericsson is one of the tech companies mentioned with regard to Canada’s 5G project, ENCQOR and Sweden’s Chalmers University, as Dexter Johnson notes, is the lead institution for the Graphene Flagship.. One other fact to note, Canada’s resources include graphite mines with ‘premium’ flakes for producing graphene. Canada’s graphite mines are located (as far as I know) in only two Canadian provinces, Ontario and Québec, which also happen to be pitching money into ENCQOR. My March 21, 2018 posting describes the latest entry into the Canadian graphite mining stakes.

As for the questions I posed about processing power, etc. It seems the South Koreans have found answers of some kind but it’s hard to evaluate as I haven’t found any additional information about 5G and its implementation in South Korea. If anyone has answers, please feel free to leave them in the ‘comments’. Thank you.

smARTcities SALON in Vaughan, Ontario, Canada on March 22, 2018

Thank goodness for the March 15, 2018 notice from the Art/Sci Salon in Toronto (received via email) announcing an event on smart cities being held in the nearby city of Vaughan (it borders Toronto to the north). It’s led me on quite the chase as I’ve delved into a reference to Smart City projects taking place across the country and the results follow after this bit about the event.

smARTcities SALON

From the announcement,

SMARTCITIES SALON

Smart City projects are currently underway across the country, including
Google SideWalk at Toronto Harbourfront. Canada’s first Smart Hospital
is currently under construction in the City of Vaughan. It’s an example
of the city working towards building a reputation as one of the world’s
leading Smart Cities, by adopting new technologies consistent with
priorities defined by citizen collaboration.

Hon. Maurizio Bevilacqua, P.C., Mayor chairs the Smart City Advisory
Task Force leading historic transformation in Vaughan. Working to become
a Smart City is a chance to encourage civic engagement, accelerate
economic growth, and generate efficiencies. His opening address will
outline some of the priorities and opportunities that our panel will
discuss.

PANELISTS

Lilian Radovac, PhD., Assistant Professor, Institute of Communication,
Culture, Information & Technology, University of Toronto. Lilian is a
historian of urban sounds and cultures and has a critical interest in
SmartCity initiatives in two of the cities she has called home: New York
City and Toronto..

Oren Berkovich is the CEO of Singularity University in Canada, an
educational institution and a global network of experts and
entrepreneurs that work together on solving the world’s biggest
challenges. As a catalyst for long-term growth Oren spends his time
connecting people with ideas to facilitate strategic conversations about
the future.

Frank Di Palma, the Chief Information Officer for the City of Vaughan,
is a graduate of York University with more than 20 years experience in
IT operations and services. Frank leads the many SmartCity initiatives
already underway at Vaughan City Hall.

Ron Wild, artist and Digital Art/Science Collaborator, will moderate the
discussion.

Audience Participation opportunities will enable attendees to forward
questions for consideration by the panel.

You can register for the smARTcities SALON here on Eventbrite,

Art Exhibition Reception

Following the panel discussion, the audience is invited to view the art exhibition ‘smARTcities; exploring the digital frontier.’ Works commissioned by Vaughan specifically for the exhibition, including the SmartCity Map and SmartHospital Map will be shown as well as other Art/Science-themed works. Many of these ‘maps’ were made by Ron in collaboration with mathematicians, scientists, and medical researchers, some of who will be in attendance. Further examples of Ron’s art can be found HERE

Please click through to buy a FREE ticket so we know how many guests to expect. Thank you.

This event can be reached by taking the subway up the #1 west line to the new Vaughan Metropolitan Centre terminal station. Take the #20 bus to the Vaughan Mills transfer loop; transfer there to the #4/A which will take you to the stop right at City Hall. Free parking is available for those coming by car. Car-pooling and ride-sharing is encouraged. The facility is fully accessible.

Here’s one of Wild’s pieces,

144×96″ triptych, Vaughan, 2018 Artist: mrowade (Ron Wild?)

I’m pretty sure that mrowade is Ron Wild.

Smart Cities, the rest of the country, and Vancouver

Much to my surprise, I covered the ‘Smart Cities’ story in its early (but not earliest) days (and before it was Smart Cities) in two posts: January 30, 2015 and January 27,2016 about the National Research Council of Canada (NRC) and its cities and technology public engagement exercises.

David Vogt in a July 12, 2016 posting on the Urban Opus website provides some catch up information,

Canada’s National Research Council (NRC) has identified Cities of the Future as a game-changing technology and economic opportunity.  Following a national dialogue, an Executive Summit was held in Toronto on March 31, 2016, resulting in an important summary report that will become the seed for Canadian R&D strategy in this sector.

The conclusion so far is that the opportunity for Canada is to muster leadership in the following three areas (in order):

  1. Better Infrastructure and Infrastructure Management
  2. Efficient Transportation; and
  3. Renewable Energy

The National Research Council (NRC) offers a more balanced view of the situation on its “NRC capabilities in smart infrastructure and cities of the future” webpage,

Key opportunities for Canada

North America is one of the most urbanised regions in the world (82 % living in urban areas in 2014).
With growing urbanisation, sustainable development challenges will be increasingly concentrated in cities, requiring technology solutions.
Smart cities are data-driven, relying on broadband and telecommunications, sensors, social media, data collection and integration, automation, analytics and visualization to provide real-time situational analysis.
Most infrastructure will be “smart” by 2030 and transportation systems will be intelligent, adaptive and connected.
Renewable energy, energy storage, power quality and load measurement will contribute to smart grid solutions that are integrated with transportation.
“Green”, sustainable and high-performing construction and infrastructure materials are in demand.

Canadian challenges

High energy use: Transportation accounts for roughly 23% of Canada’s total greenhouse gas emissions, followed closely by the energy consumption of buildings, which accounts for 12% of Canada’s greenhouse gas emissions (Canada’s United Nations Framework Convention on Climate Change report).
Traffic congestion in Canadian cities is increasing, contributing to loss of productivity, increased stress for citizens as well as air and noise pollution.
Canadian cities are susceptible to extreme weather and events related to climate change (e.g., floods, storms).
Changing demographics: aging population (need for accessible transportation options, housing, medical and recreational services) and diverse (immigrant) populations.
Financial and jurisdictional issues: the inability of municipalities (who have primary responsibility) to finance R&D or large-scale solutions without other government assistance.

Opportunities being examined
Living lab

Test bed for smart city technology in order to quantify and demonstrate the benefits of smart cities.
Multiple partnering opportunities (e.g. municipalities, other government organizations, industry associations, universities, social sciences, urban planning).

The integrated city

Efficient transportation: integration of personal mobility and freight movement as key city and inter-city infrastructure.
Efficient and integrated transportation systems linked to city infrastructure.
Planning urban environments for mobility while repurposing redundant infrastructures (converting parking to the food-water-energy nexus) as population shifts away from personal transportation.

FOOD-WATER-ENERGY NEXUS

Sustainable urban bio-cycling.
‎System approach to the development of the technology platforms required to address the nexus.

Key enabling platform technologies
Artificial intelligence

Computer vision and image understanding
Adaptive robots; future robotic platforms for part manufacturing
Understanding human emotions from language
Next generation information extraction using deep learning
Speech recognition
Artificial intelligence to optimize talent management for human resources

Nanomaterials

Nanoelectronics
Nanosensing
Smart materials
Nanocomposites
Self-assembled nanostructures
Nanoimprint
Nanoplasmonic
Nanoclay
Nanocoating

Big data analytics

Predictive equipment maintenance
Energy management
Artificial intelligence for optimizing energy storage and distribution
Understanding and tracking of hazardous chemical elements
Process and design optimization

Printed electronics for Internet of Things

Inks and materials
Printing technologies
Large area, flexible, stretchable, printed electronics components
Applications: sensors for Internet of Things, wearables, antenna, radio-frequency identification tags, smart surfaces, packaging, security, signage

If you’re curious about the government’s plan with regard to implementation, this NRC webpage provides some fascinating insight into their hopes if not the reality. (I have mentioned artificial intelligence and the federal government before in a March 16, 2018 posting about the federal budget and science; scroll down approximately 50% of the way to the subsection titled, Budget 2018: Who’s watching over us? and scan for Michael Karlin’s name.)

As for the current situation, there’s a Smart Cities Challenge taking place. Both Toronto and Vancouver have webpages dedicated to their response to the challenge. (You may want to check your own city’s website to find if it’s participating.)I have a preference for the Toronto page as they immediately state that they’re participating in this challenge and they provide an explanation for what they want from you. Vancouver’s page is by comparison a bit confusing with two videos being immediately presented to the reader and from there too many graphics competing for your attention. They do, however, offer something valuable, links to explanations for smart cities and for the challenge.

Here’s a description of the Smart Cities Challenge (from its webpage),

The Smart Cities Challenge

The Smart Cities Challenge is a pan-Canadian competition open to communities of all sizes, including municipalities, regional governments and Indigenous communities (First Nations, Métis and Inuit). The Challenge encourages communities to adopt a smart cities approach to improve the lives of their residents through innovation, data and connected technology.

  • One prize of up to $50 million open to all communities, regardless of population;
  • Two prizes of up to $10 million open to all communities with populations under 500,000 people; and
  • One prize of up to $5 million open to all communities with populations under 30,000 people.

Infrastructure Canada is engaging Indigenous leaders, communities and organizations to finalize the design of a competition specific to Indigenous communities that will reflect their unique realities and issues. Indigenous communities are also eligible to compete for all the prizes in the current competition.

The Challenge will be an open and transparent process. Communities that submit proposals will also post them online, so that residents and stakeholders can see them. An independent Jury will be appointed to select finalists and winners.

Applications are due by April 24, 2018. Communities interested in participating should visit the
Impact Canada Challenge Platform for the applicant guide and more information.

Finalists will be announced in the Summer of 2018 and winners in Spring 2019 according to the information on the Impact Canada Challenge Platform.

It’s not clear to me if she’s leading Vancouver’s effort to win the Smart Cities Challenge but Jessie Adcock’s (City of Vancouver Chief Digital Officer) Twitter feed certainly features information on the topic and, I suspect, if you’re looking for the most up-to-date information on Vancovuer’s participation, you’re more likely to find it on her feed than on the City of Vancouver’s Smart Cities Challenge webpage.