Tag Archives: art/science

Quantum; the dance performance about physics in Vancouver, Canada (2 of 2)

Gilles Jobin kindly made time to talk about his arts residency at CERN (European Particle Physics Laboratory) prior to the performances of Quantum (a dance piece resulting from the residency) from Oct. 16 -18, 2014 at Vancouver’s Dance Centre.

Jobin was the first individual to be selected as an artist-in-residence for three months in the CERN/Geneva programme (there is another artist-in-residence programme at the laboratory which is the CERN/Ars Electronica programme). Both these artist-in-residence programmes were announced in the same year, 2011. (You can find out more about the CERN artist-in-residence programmes on the Collide@CERN webpage,

As a main strategy of CERN’s Cultural Policy for Engaging with the Arts, Collide@CERN is a 3-year artist’s residency programme initiated by Arts@CERN in 2011.

By bringing world-class artists and scientists together in a free exchange of ideas, the Collide@CERN residency programme explores elements even more elusive than the Higgs boson: human ingenuity, creativity and imagination.

See below for more information about the Collide@CERN artist residency programmes:

Collide@CERN Geneva Residency

Prix Ars Electronica Collide@CERN Residency

The Collide@CERN prize – an open call to artists working in different art forms to win a fully funded residency – will be awarded annually in two strands (Collide@CERN Geneva and Prix Ars Electronica Collide@CERN) until 2013. It comprises prize money and a residency grant for up to 3 months at CERN.

The winning artists will interact and engage with CERN scientists in order to take their artistic work to new creative dimensions.

The awards are made following two annual international open calls and the jury comprises the cultural partners as well as representatives from Arts@CERN, including scientists.

Planned engagement with artists at CERN is a relatively new concept according to an August 4, 2011 CERN press release,

Today CERN1 launches its cultural policy for engaging with the arts. Called ‘Great Arts for Great Science’, this new cultural policy has a central strategy – a selection process for arts engagement at the level of one of the world’s leading research organizations.

“This puts CERN’s engagement with the arts on a similar level as the excellence of its science,” said Ariane Koek, CERN’s cultural specialist.

CERN’s newly appointed Cultural Board for the Arts will be the advisers and guardians of quality. It is made up of renowned cultural leaders in the arts from CERN’s host-state countries: Beatrix Ruf, Director of the Kunsthalle Zurich; Serge Dorny, Director General of the Lyon Opera House; Franck Madlener, Director of the music institute IRCAM in Paris. Geneva and CERN are represented by Christoph Bollman of ArtbyGenève and Michael Doser, an antimatter scientist. Membership of the board is an honorary position that will change every three years.

The Cultural Board will select one or two art projects a year to receive a CERN letter of approval, enabling these projects to seek external funding for their particle-physics inspired work. This will also build up an international portfolio of CERN-inspired work over the years to come, in conjunction with the Collide@CERN (link sends e-mail) Artists Residency Programme, details of which will be announced in the coming month.

To date, Jobin is the only choreographer to become, so to speak, a member of the CERN community. It was a position that was treated like a job. Jobin went to his office at CERN every day for three months to research particle physics. He had two science advisors, Nicholas Chanon and Michael Doser to help him gain an understanding of the physics being studied in the facility. Here’s Jobin describing his first experiences at CERN (from Jobin’s Collide Nov. 13, 2012 posting),

When I first arrived at Cern, I was captivated by the place and overwhelmed by the hugeness of the subject: Partical [sic] physics… And I had some serious catch up to do… Impressed by the two introduction days in which I had the opportunity to meet many different scientists, Ariane Koeck told me “not to panic” and “to spend my first month following my instinct and not my head…”. …

I found out about the 4 fundamental forces and the fact that gravity was the weakest of all the forces. For a contemporary dancer formed basically around the question of gravity and “groundness” that came as a total shock! I was not a “pile of stuff”, but particles bound together by the strong force and “floating” on the surface of the earth… Me, the earth, you readers, the LHC flying at incredible speed through space, without any of us, (including the physicists!) noticing anything…  Stardust flying into space… I was baffled…

Jobin was required deliver two public lectures, one at the beginning of his residency and the other at the end, as well as, a series of ‘interventions’. He instituted four ‘interventions’, one each in CERN’s library, data centre, anti-matter hall, and cafeteria. Here’s an image and a description of what Jobin was attempting with his library intervention (from his Nov. 13, 2012 posting),

CERN library dance intervention Credit: Gilles Jobin

CERN library dance intervention Credit: Gilles Jobin

 My idea was to “melt” our bodies into the timeline of the library. Like time chameleons, we were to adapt our movements and presence to the quiet and studious atmosphere of the library and be practically unnoticed. My postulate was to imagine that the perception of time is relative; there was a special texture to “time” inside the library. How long is an afternoon in a library? Never ending or passing by too quickly? It is a shared space, with the unique density you can feel in studious atmosphere and its user’s different virtual timelines. We melted into the element of the library and as we guessed, our “unusual” presence and actions did not create conflicts with our surroundings and the students at work. It was a bit like entering slowly into water and becoming part of the element without disturbing its balance. The time hypothesis worked… I wanted to do more site specific interventions in Cern because I was learning things differently. Some understanding was going through my body. Being in action into the labs…

It was only after the residency was completed that he started work on Quantum (producing a dance piece was not a requirement of the residency). After the residency, he did bring his science advisors, Chanon and Doser to his studio and brought his studio to CERN. Jobin managed to get rehearsal time in one of the halls that is 100 metres directly above the large hadron collider (LHC) during the time period when scientists were working to confirm the existence of the Higgs Boson). There were a number of announcements ‘confirming’ the Higgs. They started in July 2012 and continued, as scientists refined their tests, to March 2013 (Wikipedia entry)  when a definitive statement was issued. The definitive statement was recently followed with more confirmation as a June, 25, 2014 article by Amir Aczel for Discover declares Confirmed: That Was Definitely the Higgs Boson Found at LHC [large hadron collider].

As scientists continue to check and doublecheck, Jobin presented Quantum in October 2013 for the first time in public, fittingly, at CERN (from Jobin’s Oct. 3, 2013 blog posting),

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

Jobin was greatly influenced by encounters at CERN with Julius von Bismarck who won the 2012 Prix Ars Electronica Collide@CERN Residency and with his science advisors, Dosen and Chanon. Surprisingly, Jobin was also deeply influenced by Richard Feynman (American physicist; 1918 – 1988). “I loved his approach and his humour,” says Jobin while referring to a book Feynman wrote, then adding,  “I used Feynman diagrams, learning to draw them for my research and for my choreographic work on Quantum.”

For those unfamiliar with Feynman diagrams, from the Wikipedia entry (Note: Links have been removed),

In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions describing the behavior of subatomic particles. The scheme is named for its inventor, American physicist Richard Feynman, and was first introduced in 1948. The interaction of sub-atomic particles can be complex and difficult to understand intuitively, and the Feynman diagrams allow for a simple visualization of what would otherwise be a rather arcane and abstract formula.

There’s also an engaging Feb. 14, 2010 post by Flip Tanedo on Quantum Diaries with this title, Let’s draw Feynman diagrams! and there’s this paper, by David Kaiser on the Massachusetts Institute of Technology website, Physics and Feynman’s Diagrams; In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics. In the spirit of Richard Feynman, both the Tanedo post and Kaiser paper are quite readable. Also, here’s an example (simplified) of what a diagram (from the Quantum Diaries website) can look like,

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

Getting back to Quantum (dance), Jobin describes this choreography as a type of collaboration where the dancers have responsibility for the overall look and feel of the piece. (For more details, Jobin describes his ‘momement generators’ in the radio interview embedded in part 1 of this piece on Quantum.)

In common with most contemporary dance pieces, there is no narrative structure or narrative element to the piece although Jobin does note that there is one bit that could be described as a ‘Higgs moment’ where a dancer is held still by his or her feet, signifying the Higgs boson giving mass to the universe.

As to why Vancouver, Canada is being treated to a performance of Quantum, Jobin has this to say, “When I knew the company was traveling to New York City and then San Francisco, I contacted my friend and colleague, Mirna Zagar, who I met at a Croatian Dance Week Festival that she founded and produces every year.”  She’s also the executive director for Vancouver’s Dance Centre. “After that it was easy.”

Performances are Oct. 16 – 18, 2014 at 8 pm with a Post-show artist talkback on October 17, 2014.

Compagnie Gilles Jobin

$30/$22 students, seniors, CADA members/$20 Dance Centre members
Buy tickets online or call Tickets Tonight: 604.684.2787 (service charges apply to telephone bookings)

You can find part 1 of this piece about Quantum in my Oct. 15, 2014 posting. which includes a video, a listing of the rest of the 2014 tour stops, a link to an interview featuring Jobin and his science advisor, Michael Doser, on a US radio show, and more.

Finally, company dancers are posting video interviews (the What’s Up project mentioned in part 1) with dancers they meet in the cities where the tour is stopping will be looking for someone or multiple someones in Vancouver. These are random acts of interviewing within the context of the city’s dance community.

Vancouver’s Georgia Straight has featured an Oct. 15, 2014 article by Janet Smith about Jobin and his particle physics inspiration for Quantum.

The Higgs boson on its own has inspired other creativity as noted in my Aug. 1, 2012 posting (Playing and singing the Higgs Boson).

As noted in my Oct. 8, 2013 post, Peter Higgs (UK) after whom the particle was named  and François Englert (Belgium) were both awarded the 2013 Nobel Prize in Physics for their contributions to the theory of the Higgs boson and its role in the universe.

Quantum; an upcoming dance performance in Vancouver, Canada (1 of 2)

Oct. 16 – 18, 2014 are the Vancouver (Canada) dates when you can catch Compagnie Gilles Jobin performing its piece, Quantum, based on choreographer Gilles Jobin’s residency CERN (Europe’s particle physics laboratory). The Vancouver stop is part of a world tour which seems to have started in New York City (US) and San Francisco (US).

News flash: There is a special lecture by Gilles Jobin at TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics at 11 am on Oct. 15, 2014 in the auditorium. Instructions for getting to TRIUMF can be found here.

Back to the tour, here’s what the dance company has planned for the rest of October and November (Chile is Chili, Brazil is Brésil, Switzerland is Suisse and Peru is Pérou in French), from the gillesjobin.com Tour webpage,

- 21 octobre
QUANTUM
Festival Danzalborde – Centro Cultural Matucana 100 – Santiago de Chile – Chili

– 23 octobre
QUANTUM
Festival Danzalborde – Parque Cultural de Valparaiso, Valparaiso – Chili

– 26 octobre
QUANTUM
Bienal Internacional de dança do Ceará – Fortaleza – Brésil

– 29 et 30 octobre
En collaboration avec swissnex Brésil au Forum Internacional de dança FID, Centro Cultural Banco do Brasil – Belo Horizonte – Brésil

– 2 novembre
En collaboration avec swissnex Brésil au Festival Panorama, Teatro Carlos Gomes – Rio de Janeiro – Brésil

– Du 6 au 9 novembre
QUANTUM
Arsenic – Lausanne – Suisse

– Du 13 au 15 novembre
A+B=X
Arsenic – Lausanne – Suisse

– 21 et 22 novembre
QUANTUM
Festival de Artes Escenicas de Lima FAEL – Teatro Municipal, Lima – Pérou

As ambitious as this touring programme seems, it can’t be any more ambitious than trying to represent modern physics in dance. Here’s more about Quantum from the (Vancouver) Dance Centre’s events page,

Art and science collide in QUANTUM, the result of Gilles Jobin’s artistic residency at the largest particle physics laboratory in the world – CERN in Geneva, where he worked with scientists to investigate principles of matter, gravity, time and space in relation to the body. Six dancers power through densely textured, sculptural choreography, to evoke the subtle balance of forces that shape our world. Illuminated by Julius von Bismarck’s light-activated kinetic installation built from industrial lamps, and accompanied by an electronic score by Carla Scaletti which incorporates data from the Large Hadron Collider, QUANTUM epitomizes the adventurous, searching spirit of artistic and scientific inquiry.

Response to the performances in New York City were interesting, that is to say, not rapturous but intriguing nonetheless. From an Oct. 3, 2014 review by Gia Kourlas for the New York Times,

Performed Thursday night [Oct. 2, 2014] at the Fishman Space at BAM Fisher — and included in the French Institute Alliance Française’s Crossing the Line festival — this spare 45-minute work is a duet of movement and light. Instead of dramaturges, there are scientific advisers. Jean-Paul Lespagnard’s jumpsuits reimagine particles as a densely patterned uniform of green, purple and white. (They’re cute in a space-camp kind of way.) Carla Scaletti’s crackling, shimmering score incorporates data from the Large Hadron Collider, CERN’s powerful particle accelerator.

But in “Quantum,” translating scientific ideas, however loosely, into dance vocabulary is where the trouble starts. A lunge is still a lunge.

Robert P Crease in an Oct. 7, 2014 posting (for Physics World on the Institute of Physics website) about one of the performances in New York City revealed something about his relationship to art/science and about Gilles Jobin’s work,

I’m fascinated by the interactions between science and culture, which is what led me to the Brooklyn Academy of Music (BAM), which was hosting the US première of a dance piece called Quantum that had previously debuted where it had been created, at CERN. …

I ran into Gilles Jobin, who had choreographed Quantum during an artist’s residency at CERN. I asked him the following question: “If a fellow choreographer who knew nothing about the piece were to watch it, is there anything in the movement or structure of the work that might cause that person to say ‘That choreographer must have spent several months at a physics lab!’?” Gilles paused, then said “No.” The influence of the laboratory environment, he said, was in inspiring him to come up with certain kinds of what he called “movement generators”, or inspirations for the dancers to create their own movements. “For instance, all those symmetries – like ghost symmetries – that I didn’t even know existed!” he said. I asked him why he had chosen the work’s title. “I considered other names,” he said. “Basically, Quantum was just a convenient tag that referred to the context – the CERN laboratory environment – in which I had created the work.”

Jobin and Michael Doser (Senior research physicist at CERN) talked to Ira Flatow host of US National Public Radio’s (NPR) Science Friday programme in an Oct. 3, 2014 broadcast which is available as a podcast on the Dance and Physics Collide in ‘Quantum’ webpage. It’s fascinating to hear both the choreographer and one of the CERN scientists discussing Jobin’s arts residency and how they had to learn to talk to each other.

NPR also produced a short video highlighting moments from one of the performances and showcasing Jobin’s commentary,

Produced by Alexa Lim, Associate Producer (NPR, Science Friday)

The Dance Centre (Vancouver) has an Oct. 7, 2014 post featuring Jobin on its blog,

How did you get involved with dance?

I wanted to be an actor and thought it was a good idea to take dance classes. Later, back at acting classes I realized how comfortable I was with movement and uncomfortable with words. I must admit that I was a teenager at the time and the large majority of girls in the dance classes was also a great motivation…

Have you always been interested in science?

I was an arty kid that did not have any interest in science. I was raised in an artistic family – my father was a geometrical painter – I thought science was not for me. Art, literature, “soft” science, theatre, that was my thing. It was only at the age of 48, in one of the greatest laboratories there is, that I started to see that I could become “science able”. I realized that particle physics was not only about math, but also had great philosophical questions: that I could get the general sense of what was going down there and follow with passion the discovery. Science is like contemporary art, you need to find the door, but when you get in you can take everything on and make up your own mind about it without being a specialist or a geek.

If you didn’t have a career in dance, what might you be doing?

Ski instructor!

Adding their own measure of excitement to this world tour of Quantum, the company’s dancers are producing videos of interviews with choreographers and dancers local to the city the company is visiting (from the What’s Up project page or the gillesjobin.com website),

WHAT’S UP est un projet des danseurs de la Cie Gilles Jobin : Catarina Barbosa, Ruth Childs, Susana Panadés Díaz, Bruno Cezario, Stanislas Charré et Denis Terrasse .

Dans chaque ville visitée pendant la tournée mondiale de QUANTUM, ils partent à la rencontre des danseurs/chorégraphes pour connaître le contexte de la danse contemporaine locale et partager leurs différentes réalités.

Retrouvez ici toutes les interviews

The latest interview is an Oct. 10, 2014 video (approximate 2 mins.) focusing on Katherine Hawthorne who in addition to being a dancer trained as a physicist.

Part 2 is based on an interview I had with Gilles Jobin on Tuesday, Oct. 14, 2014 an hour or so after his and his company’s flight landed in Vancouver.

Fun Palaces for artists, scientists, and everyone in the UK, Oct. 4 – 5, 2014

The Fun Palace project is a celebration of UK theatre visionary and director, Joan Littlewood’s centenary in Oct. 2014. Stella Duffy, one of the project organizer’s provides some  insight into why Littlewood is considered an important influence, the origin of the ‘Fun Palace’, and the genesis of the upcoming celebration in a Sept. 18, 2013 posting on the Guardian newspaper website (Note: Links have been removed),,

In January, at Improbable’s annual Devoted and Disgruntled event, I called one session: “Who wants to do something for Joan Littlewood’s centenary in October 2014, that isn’t another revival of Oh! What a Lovely War?”

Oh! What a Lovely War, which Joan developed, is brilliant, but with the first world war anniversary next year, there will be many revivals and Joan was more than a director. She was one of the few British directors (before or since) to work fully with an ensemble, from training to performance. She made “immersive” theatre long before immersive was cool. She kick-started improvisation in the UK. She was political, formidable, inspiring, and far ahead of her time.

In 1961, Joan and the architect Cedric Price came up with the idea of the fun palace. Their blueprint says:

“Choose what you want to do – or watch someone else doing it. Learn how to handle tools, paint, babies, machinery, or just listen to your favourite tune. Dance, talk or be lifted up to where you can see how other people make things work. Sit out over space with a drink and tune in to what’s happening elsewhere in the city. Try starting a riot or beginning a painting – or just lie back and stare at the sky.”

An idea descended from pleasure gardens, the fun palace was designed to link arts and sciences, entertainment and education, in a space welcoming to all – especially children and young people.

A year later, the idea has not only taken root, it has grown. Here’s more about Fun Palaces from co-organizers Stella Duffy and Sarah-Jane Rawlings in a Sept. 25, 2014 interview with Eleanor Turney of The Space (a digital arts museum in the UK ).

At Devoted&Disgruntled in 2013, Stella Duffy called a session asking if anyone wanted to do “a thing” to celebrate Joan Littlewood’s centenary. It quickly became apparent that the “thing” was going to be reviving Littlewood’s idea of a ‘Fun Palace’, a community-run, free space for people to explore the arts and sciences. Several people responded, a small GfA grant followed and Fun Palaces snowballed, as more and more people got involved, and Duffy and Sarah-Jane Rawlings started to articulate exactly what they wanted the project to be. This was followed by an Arts Council England Exceptional Award – which Duffy describes as “astonishing… It’s all becoming real now, but it’s still astonishing to me that they gave us this grant. I’m not the kind of person who always gets funding, but this is too fucking good an idea. Also, it’s not about us. It’s about the whole thing, which they [ACE] quite bravely saw.”

Rawlings continues: “The idea has developed so much, it’s always changing, we’re learning all the time. Our relationship with the site that The Space is making has changed – it’s now really key to how all of this develops. If we don’t get any money next year, [Fun Palaces] can still can go forward, because at the centre of it is this communication tool. It’s about people talking to each other, about showing their art on it, being able to say ‘I am making a Fun Palace,’ being able to access other avenues. It’s absolutely huge.”

“My favourite new phrase is ‘equality of online presence’,’ says Duffy, ‘and the point is that everyone has the same platform. It’s got nothing to do with what an organisation’s own resources are; on this site, everyone’s got the same profile, the same start, which is amazing.” The site, which The Space has commissioned, offers a page to each of the participating Fun Palaces: “You can put photos on it, videos, art work, links etc.,’ explains Rawlings. Over the weekend and in the run-up to it, says Duffy, “there’ll be a scrolling banner which has the Instagram and Twitter feeds. It’s not just about the weekend itself, it’s about the process. Some of the organisations that have never shown their process before have started sharing photos, writing blogs, talking about their process. The idea is, during the weekend when lots of people are sharing, that the scrolling banner will pull through the Instragram feed and it’ll look ‘live’ with stuff happening all the time. And afterwards, it’s not getting archived and put away – we’ll make a collage of the photos, and an infographic of stats from the weekend, which will ‘hold’ 2014, but it’s also all ready for people to sign up for 2015.”

The emphasis in this interview is on the project’s digital presence which is understandable given that the interview is being conducted by someone associated with a digital arts museum but there are many real life ‘Fun Palaces’ designed for this coming weekend, Oct. 4 – 5, 2014.

You can find the Fun Palace website here and if you should choose to create a Fun Palace, the organizers have provided this nugget of information/inspiration on the FAQs (frequently asked questions) page amongst many other nuggets on the website,

How do I find people in arts and science to make a Fun Palace with me?

Go beyond the usual suspects: the people who make school dinners know about the science of cooking, the person who mends your car knows a lot about the science of mechanics; your local librarian knows about arts and sciences and where to find out more.

Think about where you might be able to approach people in your locality: makerspaces, tech meet-ups, universities, schools, children’s centres, theatres, arts spaces, galleries, museums, music venues, community centres, co-working spaces. Places where people are meeting and sharing regularly, or where there’s a strong grassroots support network.

Also, you can talk to other members of the Fun Palace community on our Discussion Boards. If you’re stuck for ideas, then contact our Digital Champion Hannah on [email protected] (she works part time).  

Remember that even if there isn’t a Fun Palace near you in real life, there will be an online version.

For anyone interested in The Space, it was first featured here in a June 16, 2014 posting.

Science for your imagination

David Bruggeman over on his Pasco Phronesis has two postings which highlight different approaches to communicating about science. His Aug. 31, 2014 posting features audio plays (Note: Links have been removed),

L.A. Theatre Works makes a large number of their works available via audio. Its Relativity series (H/T Scirens) is a collection of (at this writing) 25 plays with science and technology either as themes and/or as forces driving the action of the play. You’re certainly familiar with War of the Worlds, and you may have heard of the plays Arcadia and Copenhagen. The science covered in these plays is from a number of different fields, and some works will try to engage the audience on the social implications of how science is conducted. The casts have many familiar faces as well. …

You can find the Relativity Series website here where the home page features these (amongst others),

COMPLETENESS

Jason Ritter and Mandy Siegfried star in a new play about love between gun-shy young scientists.

BREAKING THE CODE

The story of Alan Turing, an early pioneer in computer science, and his struggle to live authentically while serving his country.

THE DOCTOR’S DILEMMA

A respected physician must choose between the lives of two terminally ill men in George Bernard Shaw’s sharp-tongued satire of the medical profession.

THE EXPLORERS CLUB

It’s London, 1879, and the members of the Explorers Club must confront their most lethal threat yet: the admission of a woman into their scientific ranks.

THE GREAT TENNESSEE MONKEY TRIAL

The Scopes Monkey Trial of 1925 comes to life as William Jennings Bryan and Clarence Darrow square off over human evolution and the divide between faith and science.

PHOTOGRAPH 51

Miriam Margolyes stars as Rosalind Franklin, whose work led directly to the discovery of the DNA “double helix.”

DOCTOR CERBERUS

A teenage misfit is coming of age in the comforting glow of late-night horror movies. But when reality begins to intrude on his fantasy world, he realizes that hiding in the closet is no longer an option.

David’s Aug. 26, 2014 posting features Hieroglyph, a project from Arizona State University’s (ASU) Center for Science and the Imagination (Note: A link has been removed),

Next month [Sept. 2014] William Morrow will release Hieroglyph, a collection of science fiction short stories edited by the Director of the Center for Science and the Imagination at Arizona State University.  The name of the collection is taken from a theory advanced by science fiction writer Neil [Neal] Stephenson, and a larger writing project of which this book is a part.  The Hieroglyph Theory describes the kind of science fiction that can motivate scientists and engineers to create a future.  A Hieroglyph story provides a complete picture of the future, with a compelling innovation as part of that future.  An example would be the Asimov model of robotics.

Heiroglyph was first mentioned here in a May 7, 2013 posting,

The item which moved me to publish today (May 7, 2013), Can Science Fiction Writers Inspire The World To Save Itself?, by Ariel Schwartz concerns the Hieroglyph project at Arizona State University,

Humanity’s lack of a positive vision for the future can be blamed in part on an engineering culture that’s more focused on incrementalism (and VC funding) than big ideas. But maybe science fiction writers should share some of the blame. That’s the idea that came out of a conversation in 2011 between science fiction author Neal Stephenson and Michael Crow, the president of Arizona State University.

If science fiction inspires scientists and engineers to create new things–Stephenson believes it can–then more visionary, realistic sci-fi stories can help create a better future. Hence the Hieroglyph experiment, launched this month as a collaborative website for researchers and writers. Many of the stories created on the platform will go into a HarperCollins anthology of fiction and non-fiction, set to be published in 2014.

As it turns out, William Morrow Books is a a HarperCollins imprint. You can read a bit more about the book and preview some of the contents from the Scribd.com Hieroglyph webpage which includes this table of contents (much better looking in the Scribd version),

CONTENTS
FOREWORD—
LAWRENCE M. KRAUSS vii
PREFACE: INNOVATION STARVATION—NEAL STEPHENSON xiii
ACKNOWLEDGMENTS xxi
INTRODUCTION: A BLUEPRINT FOR BETTER DREAMS—ED FINN AND KATHRYN CRAMER xxiii
ATMOSPHÆRA INCOGNITA—NEAL STEPHENSON 1
GIRL IN WAVE : WAVE IN GIRL—KATHLEEN ANN GOONAN 38
BY THE TIME WE GET TO ARIZONA—MADELINE ASHBY 74
THE MAN WHO SOLD THE MOON—CORY DOCTOROW 98
JOHNNY APPLEDRONE VS. THE FAA—LEE KONSTANTINOU 182
DEGREES OF FREEDOM—KARL SCHROEDER 206
TWO SCENARIOS FOR THE FUTURE OF SOLAR ENERGY—ANNALEE NEWITZ 243
A HOTEL IN ANTARCTICA—GEOFFREY A. LANDIS 254
PERIAPSIS—JAMES L. CAMBIAS 283
THE MAN WHO SOLD THE STARS—GREGORY BENFORD 307
ENTANGLEMENT—VANDANA SINGH 352
ELEPHANT ANGELS—BRENDA COOPER 398
COVENANT—ELIZABETH BEAR 421
QUANTUM TELEPATHY—RUDY RUCKER 436
TRANSITION GENERATION—DAVID BRIN 466
THE DAY IT ALL ENDED—CHARLIE JANE ANDERS 477
TALL TOWER—BRUCE STERLING 489
SCIENCE AND SCIENCE FICTION: AN INTERVIEW WITH PAUL DAVIES 515
ABOUT THE EDITORS 526
ABOUT THE CONTRIBUTORS 527

Good on the organizers for being able to follow through on their promise to have something published by HarperCollins in 2014.

This book is not ASU’s Center for Science and the Imagination’s only activity. In November 2014, Margaret Atwood, an internationally known Canadian novelist, will visit the center (from the center’s home page),

Internationally renowned novelist and environmental activist Margaret Atwood will visit Arizona State University this November to discuss the relationship between art and science, and the importance of creative writing and imagination for addressing social and environmental challenges.

Atwood’s visit will mark the launch of the Imagination and Climate Futures Initiative, a new collaborative venture at ASU among the Rob and Melani Walton Sustainability Solutions Initiatives, the Center for Science and the Imagination and the Virginia G. Piper Center for Creative Writing. Atwood, author of the MaddAddam trilogy of novels that have become central to the emerging literary genre of climate fiction, or “CliFi,” will offer the inaugural lecture for the initiative on Nov. 5.

“We are proud to welcome Margaret Atwood, one of the world’s most celebrated living writers, to ASU and engage her in these discussions around climate, science and creative writing,” said Jewell Parker Rhodes, founding artistic director for the Virginia G. Piper Center for Creative Writing and the Piper Endowed Chair at Arizona State University. “A poet, novelist, literary critic and essayist, Ms. Atwood epitomizes the creative and professional excellence our students aspire to achieve.”

Focusing in particular on CliFi, the Imagination and Climate Futures Initiative will explore how imaginative skills can be harnessed to create solutions to climate challenges, and question whether and how creative writing can affect political decisions and behavior by influencing our social, political and scientific imagination.

“ASU is a leader in exploring how creativity and the imagination drive the arts, sciences, engineering and humanities,” said Ed Finn, director of the Center for Science and the Imagination. “The Imagination and Climate Futures Initiative will use the thriving CliFi genre to ask the hard questions about our cultural relationship to climate change and offer compelling visions for sustainable futures.”

The multidisciplinary Initiative will bring together researchers, artists, writers, decision-makers and the public to engage in research projects, teaching activities and events at ASU and beyond. The three ASU programs behind the Imagination and Climate Futures Initiative have a track record for academic and public engagement around innovative programs, including the Sustainability Solutions Festival; Emerge; and the Desert Nights, Rising Stars Writers Conference.

“Imagining how the future could unfold in a climatically changing world is key to making good policy and governance decisions today,” said Manjana Milkoreit, a postdoctoral fellow with the Walton Sustainability Solutions Initiatives. “We need to know more about the nature of imagination, its relationship to scientific knowledge and the effect of cultural phenomena such as CliFi on our imaginative capabilities and, ultimately, our collective ability to create a safe and prosperous future.”

Kind of odd they don’t mention Atwood’s Canadian, eh?

There’s lots more on the page which features news bits and articles, as well as, event information. Coincidentally, another Canuck (assuming he retains his citizenship after several years in the US) visited the center on June 7, 2014 to participate in an event billed as ‘An evening with Nathan Fillion and friends;; serenity [Joss Whedon’s tv series and movie], softwire, and science of science fiction’. A June 21, 2014 piece (on the center home page) by Joey Eschrich describes the night in some detail,

Nathan Fillion may very well be the friendliest, most unpretentious spaceship captain, mystery-solving author and science fiction heartthrob in the known universe. The “ruggedly handsome” star of TV’s “Castle” was the delight of fans as he headlined a fundraiser on the Arizona State University campus in Tempe, June 7 [2014].

The “Serenity, Softwire, and the Science of Science Fiction” event, benefiting the ASU Department of English and advertised as an “intimate evening for a small group of 50 people,” included considerable face-time with Fillion, who in-person proved surprisingly similar to the witty, charming and compassionate characters he plays on television and in film.

Starring with Fillion in the ASU evening’s festivities were science fiction author PJ Haarsma (a close friend of Fillion’s) along with ASU professors Ed Finn, director of the Center for Science and the Imagination; Peter Goggin, a literacy expert in the Department of English and senior scholar with the Global Institute of Sustainability; and School of Earth and Space Exploration faculty Jim Bell, an astronomer, and Sara Imari Walker, an astrobiologist. In addition to the Department of English, sponsors included ASU’s College of Liberal Arts and Sciences and Center for Science and the Imagination.

The event began with each panelist explaining how he or she arrived at his or her respective careers, and whether science or science fiction played a role in that journey. All panelists pointed to reading and imagining as formational to their senses of themselves and their places in life.

A number of big questions were posed to the panelists: “What is the likelihood of life on other planets?” and “What is the physical practicality of traveling to other planets?” ASU scientists Bell and Walker deftly fielded these complex planetary inquiries, while Goggin and Finn explained how the intersection of science and humanities – embodied in science fiction books and film – encouraged children and scholars alike to think creatively about the future. Attendees reported that they found the conversation “intellectually stimulating and thought-provoking as well as fun and entertaining.”

During the ensuing discussion, Haarsma and Fillion bantered back and forth comically, as we are told they often do in real life, at one point raising the group’s awareness of the mission they have shared for many years: promoting reading in the lives of young people. The two founded the Kids Need to Read Foundation, which provides books to underserved schools and libraries. Fillion, the son of retired English teachers, attended Concordia University of Alberta [no], where he was a member of the Kappa Alpha Society, an organization that emphasizes literature and debate. His brother, Jeff, is a highly respected school principal. Fillion’s story about the importance of books and reading in his childhood home was a rare moment of seriousness for the actor.

The most delightful aspect of the evening, according to guests, was the good nature of Fillion himself, who arrived with Haarsma earlier than expected and stayed later than scheduled. Fillion spent several minutes with each individual or group of friends, laughing with them, using their phone cameras to snap group “selfies” and showing a genuine interest in getting to know them.

Audience members each received copies of science fiction books: Haarsma’s teen novel, “Softwire: Virus on Orbis I,” and the Tomorrow Project science fiction anthology “Cautions, Dreams & Curiosities,” which was co-produced by the Center for Science and the Imagination with Intel and the Society for Science & the Public. Guests presented their new books and assorted other items to Fillion and Haarsma for autographing and a bit more conversation before the evening came to a close. It was then time for Fillion to head back downtown to his hotel, but not before one cadre of friends “asked him to take one last group shot of us at the end of the night, to which he replied with a smile, ‘I thought you’d never ask.’”

Oops! Concordia University is in the province of Québec not Alberta which is home to the University of Calgary and the University of Alberta.

The evening with Nathan Fillion and friends was a fundraiser, participants were charged $250 each for one of 50 seats at the event, which means they raised $12,500 minus any expenses incurred. Good for them!

For anyone unfamiliar with P.J. Haarsma’s oeuvre, there’s this Wikipedia entry for The Softwire.

Cloud and molecular aesthetics; an art/science conference features a bionanotechnology speaker

Here’s a notice from a June 19, 2014 from OCR (Operational and Curatorial Research in Art Design Science and Technology) organization newsletter highlighting an upcoming conference in Istanbul, Turkey, which includes a nanotechnology speaker,

Lanfranco Aceti, the founder of OCR; Edward Colless Head of Critical and Theoretical Studies and Paul Thomas, Program Director of Fine Art at COFA, are the lead chairs and organizers of the conference Cloud & Molecular Aesthetics from June 26 to 28, 2014, at the Pera Museum.

We invite you to three stimulating days that explores new perspectives and evolutions in contemporary art were acclaimed professionals including curators,historians, creative arts practitioners, critics and theorists consider transdisciplinary imaging relating to the theme of cloud, dispersal, infinitesimally small and molecular aesthetics. The conference is free and open to all. The program is available here.

The conference keynotes are Professor Anne Balsamo, Dean of the School of Media Studies at The New School, Dr. Ljiljana Fruk co-author of Molecular Aesthetics, Dr. Jussi Parikka who authored Insect Media: An Archaeology of Animals and Technology; and Prof. Darren Tofts author of Alephbet: Essays on Ghost-writing, Nutshells & Infinite Space.

The notice doesn’t mention the most interesting aspect (for me, anyway) of Dr. Ljiljana Fruk’s work. Here’s more from her OCR Cloud and Molecular Aesthetics Keynote bio page,

Dr. Fruk is a scientist and lecturer at Karlsruhe Institute of Technology, Germany working on the development of photosensitive bio nano hybrid systems to be used in the design of new catalysts, artificial enzymes and biosensors for nanomedicinal applications. [emphases mine] She studied chemistry at University of Zagreb and continued to pursue her PhD at the University of Strathclyde in Glasgow, where she worked on the development of advanced tools for DNA detection. After award of Humboldt Fellowship and Marie Curie International Incoming Fellowship she conducted a postdoctoral research on artificial enzyme catalysts at the University of Dortmund in Germany. Since 2009 she leads her own research group and is also active in exploring the interface of art and science, in particular the cultural and societal impact of new technologies such as nanotechnology and synthetic biology. Besides number of scientific activities, she was also a co-organizer of the first symposium on Molecular Aesthetics (2011), 3D interactive exhibition on Molecules that Changed the World, and together with artist Peter Weibel, a co-editor of Molecular Aesthetic book (2013).

The official title for the conference is this: ‘The Third International Conference on Transdisciplinary Imaging at the Intersections of Art, Science and Culture’ although the organizers seem to be using the theme, Cloud and Molecular Aesthetics, as an easy way to refer to it. You can still register for the conference here: http://ocradst.org/cloudandmolecularaesthetics/registration/

I last mentioned the OCR in a March 24, 2014 posting about a call for papers for a conference on sound curation.

Scientific A, B, Cs

Thanks to John Brownlee and his May 15, 2014 article on Fast Company about a fascinating project which marries typography/lettering  (the artist refers to her work as ‘lettering’) with scientific inventions (Note: A link has been removed),

If you’ve ever wondered how a Faraday circuit, a steam engine, or a cyclotron works, this is the typeface for you.

A glossary of the 26 inventions that have most changed the world have been turned into a literal ABCs, thanks to a new typeface by New Delhi design student Khyati Trehan.

Trehan has placed some of the material for her project, The Beauty of Scientific Diagrams on Behance (an online portfolio),

The project aims to explore scientific diagrams and take form integration to more complex territories. It looks at experimenting with typography, lettering and illustration, paying tribute to the history of science.

Since making the perfect match between the letter and the diagram was such a task, choosing the invention or the discovery was hardly up to me but dependent on what I could find (double coincidence of wants). I couldn’t find appropriate diagrams that looked like the letters they needed to be morphed into for P, X and Q.

Also, blogsfeaturing this project have been calling this a typeface for some reason but in no way is it a typeface. [emphasis mine] It’s lettering. Making a typeface is a completely different ball game and in my opinion, is much much harder.

Purchase prints at http://society6.com/KhyatiTrehan

Here’s one image from the sampling she offers in her online portfolio,

Downloaded from http://www.behance.net/gallery/The-Beauty-of-Scientific-Diagrams/11833563

Downloaded from http://www.behance.net/gallery/The-Beauty-of-Scientific-Diagrams/11833563

Trehan has also documented The Beauty of Scientific Diagrams project on the ISSUU digital publishing platform where you will find an 84 pp. report in English and links to supporting documentation in English and French.

The Beauty of Scientific Diagrams

A documentation of my 2nd elective done as a student of Graphic Design at the National Institute of Design, Ahmedabad.

The very curious can find more about India’s National Institute of Design here. From the institute’s Right to Information webpage,

The National Institute of Design (NID) is one of the foremost multi-disciplinary institutions in the field of design education, applied research, training, design consultancy services and outreach programmes. NID is a Society registered under the Societies Registration Act,1860 (21 of 1860) and also registered under the Bombay Public Trusts Act, 1950 (29 of 1950) and established in 1961 as an autonomous institution under the Ministry of Industry (now known as the Ministry of Commerce and Industry).

I was quite interested to see that the institute hosted an Indo-French Design Conclave in October 2013,

Indo French Centre for the Promotion of Advanced Research (CEFIPRA) is an autonomous body for bilateral scientific cooperation between India and France, promoting collaborative research in cutting edge science and technology fields.

CEFIPRA in partnership with NID (National institute of Design), Ahmedabad are holding a Design Conclave cutting across disciplines in the design and engineering, on 21st and 22nd October 2013in New Delhi.

This would be a preceding event for the international Technology Summit, New Delhi during 23-24th October 2013 with France as the partner country.

The goal of this conclave is to explore the possibility of Indo-French collaborations in the interface of engineering and design through:

a) Scientific research
b) Design and Technology collaborative Research
c) Student and Faculty mobility
c) Industrial (especially SMEs [small to medium enterprises]) …

This may help to explain the French reference materials informing Trehan’s project.

For the smell of it

Having had a tussle with a fellow student some years ago about what constituted multimedia, I wanted to discuss smell as a possible means of communication and he adamantly disagreed (he won),  these  two items that feature the sense of smell  are of particular interest, especially (tongue firmly in cheek) as one of these items may indicate I was* ahead of my time.

The first is about about a phone-like device that sends scent (from a Feb. 11, 2014 news item on ScienceDaily),

A Paris laboratory under the direction of David Edwards, Michigan Technological University alumnus, has created the oPhone, which will allow odors — oNotes — to be sent, via Bluetooth and smartphone attachments, to oPhones across the state, country or ocean, where the recipient can enjoy American Beauties or any other variety of rose.

It can be sent via email, tweet, or text.

Edwards says the idea started with student designers in his class at Harvard, where he is a professor.

“We invite young students to bring their design dreams,” he says. “We have a different theme each year, and that year it was virtual worlds.”

The all-female team came up with virtual aromas, and he brought two of the students to Paris to work on the project. Normally, he says, there’s a clear end in sight, but with their project no one had a clue who was going to pay for the research or if there was even a market.

A Feb. 11, 2014 Michigan Technological University news release by Dennis Walikainen, which originated the news item, provides more details about the project development and goals,

“We create unique aromatic profiles,” says Blake Armstrong, director of business communications at Vapor Communications, an organization operating out of Le Laboratorie (Le Lab) in Paris. “We put that into the oChip that faithfully renders that smell.”

Edwards said that the initial four chips that will come with the first oPhones can be combined into thousands different odors—produced for 20 to 30 seconds—creating what he calls “an evolution of odor.”

The secret is in accurate scent reproduction, locked in those chips plugged into the devices. Odors are first captured in wax after they are perfected using “The Nose”– an aroma expert at Le Lab, Marlène Staiger — who deconstructs the scents.

For example, with coffee, “the most universally recognized aroma,” she replaces words like “citrus” or “berry” with actual scents that will be created by ordering molecules and combining them in different percentages.

In fact, Le Lab is working with Café Coutume, the premier coffee shop in Paris, housing baristas in their building and using oPhones to create full sensory experiences.

“Imagine you are online and want to know what a particular brand of coffee would smell like,” Edwards says. “Or, you are in an actual long line waiting to order. You just tap on the oNote and get the experience.”

The result for Coutume, and all oPhone recipients, is a pure cloud of scent close to the device. Perhaps six inches in diameter, it is released and then disappears, retaining its personal and subtle aura.

And there other sectors that could benefit, Edwards says.

“Fragrance houses, of course, culinary, travel, but also healthcare.”

He cites an example at an exhibition last fall in London when someone with brain damage came forward. He had lost memory, and with it his sense of taste and smell.  The oPhone can help bring that memory back, Edwards says.

“We think there could be help for Alzheimer’s patients, related to the decline and loss of memory and olfactory sensation,” he says.

There is an image accompanying the news release which I believe are variations of the oPhone device,

Sending scents is closer than you think. [downloaded from http://www.mtu.edu/news/stories/2014/february/story102876.html]

Sending scents is closer than you think. [downloaded from http://www.mtu.edu/news/stories/2014/february/story102876.html]

You can find David Edwards’ Paris lab, Le Laboratoire (Le Lab), ici. From Le Lab’s homepage,

Opened since 2007, Le Laboratoire is a contemporary art and design center in central Paris, where artists and designers experiment at frontiers of science. Exhibition of works-in-progress from these experiments are frequently first steps toward larger scale cultural humanitarian and commercial works of art and design.

 

Le Laboratoire was founded in 2007 by David Edwards as the core-cultural lab of the international network, Artscience Labs.

Le Lab also offers a Mar. ?, 2013 news release describing the project then known as The Olfactive Project Or, The Third Dimension Global Communication (English language version ou en français).

The second item is concerned with some research from l’Université de Montréal as a Feb. 11, 2014 news item on ScienceDaily notes,

According to Simona Manescu and Johannes Frasnelli of the University of Montreal’s Department of Psychology, an odour is judged differently depending on whether it is accompanied by a positive or negative description when it is smelled. When associated with a pleasant label, we enjoy the odour more than when it is presented with a negative label. To put it another way, we also smell with our eyes!

This was demonstrated by researchers in a study recently published in the journal Chemical Senses.

A Feb. 11, 2014 Université de Montréal news release, which originated the news item, offers details about the research methodology and the conclusions,

For their study, they recruited 50 participants who were asked to smell the odours of four odorants (essential oil of pine, geraniol, cumin, as well as parmesan cheese). Each odour (administered through a mask) was randomly presented with a positive or negative label displayed on a computer screen. In this way, pine oil was presented either with the label “Pine Needles” or the label “Old Solvent”; geraniol was presented with the label “Fresh Flowers” or “Cheap Perfume”; cumin was presented with the label “Indian Food” or “Dirty Clothes; and finally, parmesan cheese was presented with the label of either the cheese or dried vomit.

The result was that all participants rated the four odours more positively when they were presented with positive labels than when presented with negative labels. Specifically, participants described the odours as pleasant and edible (even those associated with non-food items) when associated with positive labels. Conversely, the same odours were considered unpleasant and inedible when associated with negative labels – even the food odours. “It shows that odour perception is not objective: it is affected by the cognitive interpretation that occurs when one looks at a label,” says Manescu. “Moreover, this is the first time we have been able to influence the edibility perception of an odour, even though the positive and negative labels accompanying the odours showed non-food words,” adds Frasnelli.

Here’s a link to and a citation for the paper,

Now You Like Me, Now You Don’t: Impact of Labels on Odor Perception by  Simona Manescu, Johannes Frasnelli, Franco Lepore, and Jelena Djordjevic. Chem. Senses (2013) doi: 10.1093/chemse/bjt066 First published online: December 13, 2013

This paper is behind a paywall.

* Added ‘I was’ to sentence June 18, 2014. (sigh) Maybe I should spend less time with my tongue in cheek and give more time to my grammar.

Data sonification: listening to your data instead of visualizing it

Representing data though music is how a Jan. 31, 2014 item on the BBC news magazine describes a Voyager 1 & 2 spacecraft duet, data sonification project discussed* in a BBC Radio 4 programme,

Musician and physicist Domenico Vicinanza has described to BBC Radio 4’s Today programme the process of representing information through music, known as “sonification”. [includes a sound clip and interview with Vicinanza]

A Jan. 22, 2014 GÉANT news release describes the project in more detail,

GÉANT, the pan-European data network serving 50 million research and education users at speeds of up to 500Gbps, recently demonstrated its power by sonifying 36 years’ worth of NASA Voyager spacecraft data and converting it into a musical duet.

The project is the work of Domenico Vicinanza, Network Services Product Manager at GÉANT. As a trained musician with a PhD in Physics, he also takes the role of Arts and Humanities Manager, exploring new ways for representing data and discovery through the use of high-speed networks.

“I wanted to compose a musical piece celebrating the Voyager 1 and 2 *together*, so used the same measurements (proton counts from the cosmic ray detector over the last 37 years) from both spacecrafts, at the exactly same point of time, but at several billions of Kms of distance one from the other.

I used different groups of instruments and different sound textures to represent the two spacecrafts, synchronising the measurements taken at the same time.”

The result is an up-tempo string and piano orchestral piece.

You can hear the duet, which has been made available by the folks at GÉANT,

The news release goes on to provide technical details about the composition,

To compose the spacecraft duet, 320,000 measurements were first selected from each spacecraft, at one hour intervals. Then that data was converted into two very long melodies, each comprising 320,000 notes using different sampling frequencies, from a few KHz to 44.1 kHz.

The result of the conversion into waveform, using such a big dataset, created a wide collection of audible sounds, lasting just a few seconds (slightly more than 7 seconds at 44.1kHz) to a few hours (more than 5hours using 1024Hz as a sampling frequency).   A certain number of data points, from a few thousand to 44,100 were each “converted” into 1 second of sound.

Using the grid computing facilities at EGI, GÉANT was able to create the duet live at the NASA booth at Super Computing 2013 using its superfast network to transfer data to/from NASA.

I think this detail from the news release gives one a different perspective on the accomplishment,

Launched in 1977, both Voyager 1 and Voyager 2 are now decommissioned but still recording and sending live data to Earth. They continue to traverse different parts of the universe, billions of kilometres apart. Voyager 1 left our solar system last year.

The research is more than an amusing way to pass the time (from the news release),

While this project was created as a fun, accessible way to demonstrate the benefit of research and education networks to society, data sonification – representing data by means of sound signals – is increasingly used to accelerate scientific discovery; from epilepsy research to deep space discovery.

I was curious to learn more about how data represented by sound signals is being used to accelerate scientific discovery and sent that question and another to Dr. Vicinanza via Tamsin Henderson of DANTE and received these answers,

(1) How does “representing data by means of sound signals “increasingly accelerate scientific discovery; from epilepsy research to deep space discovery”? In a practical sense how does one do this research? For example, do you sit down and listen to a file and intuit different relationships for the data?

Vision and visual representation is intrinsically limited to three dimensions. We all know how amazing is 3D cinema, but in terms of representation of complex information, this is as far as it gets. There is no 4D or 5D. We live in three dimensions.

Sound, on the other hand, does not have any limitation of this kind. We can continue overlapping sound layers virtually without limits and still retain the capability of recognising and understanding them. Think of an orchestra or a pop band, even if the musicians are playing all together we can actually follow the single instrument line (bass, drum, lead guitar, voice, ….) Sound is then particularly precious when dealing with multi-dimensional data since audification techniques.

In technical terms, auditory perception of complex, structured information could have several advantages in temporal, amplitude, and frequency resolution when compared to visual representations and often opens up possibilities as an alternative or complement to visualisation techniques. Those advantages include the capability of the human ear to detect patterns (detecting regularities), recognise timbres and follow different strands at the same time (i.e. the capability of following different instrument lines). This would offer, in a natural way, the opportunity of rendering different, interdependent variables onto sounds in such a way that a listener could gain relevant insight into the represented information or data.

In particular in the medical context, there have been several investigations using data sonification as a support tool for classification and diagnosis, from working on sonification of medical images to converting EEG to tones, including real-time screening and feedback on EEG signals for epilepsy.

The idea is to use sound to aggregate many “information layers”, many more than any graph or picture can represent and support the physician giving a more comprehensive representation of the situation.

(2) I understand that as you age certain sounds disappear from your hearing, e.g., people over 25 years of age are not be able to hear above 15kHz. (Note: There seems to be some debate as to when these sounds disappear, after 30, after 20, etc.) Wouldn’t this pose an age restriction on the people who could access the research or have I misunderstood what you’re doing?

No, there is actually no sensible reduction in the advantages of sonification with ageing. The only precaution is not to use too high frequencies (above 15 KHz) in the sonification and this is something that can be avoided without limiting the benefits of audification.

It is always good practice not to use excessively high frequencies since they are not always very well and uniformly perceived by everyone.

Our hearing works at its best in the region of KHz (1200Hz-3800Hz)

Thank you Dr. Vicinanza and Tamsin Henderson for this insight into representing data in multiple dimensions using sound and its application in research. And, thank you, too, for sharing a beautiful piece of music.

For the curious, I found some additional information about Dr. Vicinanza and his ‘sound’ work on his Nature Network profile page,

I am a composer, network engineer and researcher. I received my MSc and PhD degrees in Physics and studied piano, percussion and composition.

I worked as a professor of Sound Synthesis, Acoustics and Computer Music (Algorithmic Composition) at Conservatory of Music of Salerno (Italy).

I currently work as a network engineer in DANTE (www.dante.net) and chair the ASTRA project (www.astraproject.org) for the reconstruction of musical instruments by means of computer models on GÉANT and EUMEDCONNECT.

I am also the co-founder and the technical coordinator of the Lost Sound Orchestra project (www.lostsoundsorchestra.org).

Interests

As a composer and researcher I was always fascinated by the richness of the information coming from the Nature. I worked on the introduction of the sonification of seismic signals (in particular coming from active volcanoes) as a scientific tool, co-working with geophysicists and volcanologists.

I also study applications of grid technologies for music and visual arts and as a composer I took part to several concerts, digital arts performances, festivals and webcast.

My other interests include (aside with music) Argentine Tango and watercolors.

Projects

ASTRA (Ancient instruments Sound/Timbre Reconstruction Application)
www.astraproject.org

The ASTRA project is a multi disciplinary project aiming at reconstructing the sound or timbre of ancient instruments (not existing anymore) using archaeological data as fragments from excavations, written descriptions, pictures.

The technique used is the physical modeling synthesis, a complex digital audio rendering technique which allows modeling the time-domain physics of the instrument.

In other words the basic idea is to recreate a model of the musical instrument and produce the sound by simulating its behavior as a mechanical system. The application would produce one or more sounds corresponding to different configurations of the instrument (i.e. the different notes).

Lost Sounds Orchestra
www.lostsoundsorchestra.org

The Lost Sound Orchestra is the ASTRA project orchestra. It is a unique orchestra made by reconstructed ancient instrument coming from the ASTRA research activities. It is the first ensemble in the world composed of only reconstructed instruments of the past. Listening to it is like jumping into the past, in a sound world completely new to our ears.

Since I haven’t had occasion to mention either GÉANT or DANTE previously, here’s more about those organizations and some acknowledgements from the news release,

About GÉANT

GÉANT is the pan-European research and education network that interconnects Europe’s National Research and Education Networks (NRENs). Together we connect over 50 million users at 10,000 institutions across Europe, supporting research in areas such as energy, the environment, space and medicine.

Operating at speeds of up to 500Gbps and reaching over 100 national networks worldwide, GÉANT remains the largest and most advanced research and education network in the world.

Co-funded by the European Commission under the EU’s 7th Research and Development Framework Programme, GÉANT is a flagship e-Infrastructure key to achieving the European Research Area – a seamless and open European space for online research – and assuring world-leading connectivity between Europe and the rest of the world in support of global research collaborations.

The network and associated services comprise the GÉANT (GN3plus) project, a collaborative effort comprising 41 project partners: 38 European NRENs, DANTE, TERENA and NORDUnet (representing the 5 Nordic countries). GÉANT is operated by DANTE on behalf of Europe’s NRENs.

About DANTE

DANTE (Delivery of Advanced Network Technology to Europe) is a non-profit organisation established in 1993 that plans, builds and operates large scale, advanced networks for research and education. On behalf of Europe’s National Research and Education Networks (NRENs), DANTE has built and operates GÉANT, a flagship e-Infrastructure key to achieving the European Research Area.

Working in cooperation with the European Commission and in close partnership with Europe’s NRENs and international networking partners, DANTE remains fundamental to the success of global research collaboration.

DANTE manages research and education (R&E) networking projects serving Europe (GÉANT), the Mediterranean (EUMEDCONNECT), Sub-Saharan Africa (AfricaConnect), Central Asia (CAREN) regions and coordinates Europe-China collaboration (ORIENTplus). DANTE also supports R&E networking organisations in Latin America (RedCLARA), Caribbean (CKLN) and Asia-Pacific (TEIN*CC). For more information, visit www.dante.net

Acknowledgements
NASA National Space Science Data Center and the John Hopkins University Voyager LEPC experiment.
Sonification credits
Mariapaola Sorrentino and Giuseppe La Rocca.

I hope one of these days I’ll have a chance to ask a data visualization expert  whether they think it’s possible to represent multiple dimensions visually and whether or not some types of data are better represented by sound.

* ‘described’ replaced by ‘discussed’ to avoid repetition, Feb. 10, 2014. (Sometimes I’m miffed by my own writing.)