Tag Archives: asbestos

Nanotechnology analogies and policy

There’s a two part essay titled, Regulating Nanotechnology Via Analogy (part 1, Feb. 12, 2013 and part 2, Feb. 18, 2013), by Patrick McCray on his Leaping Robot blog that is well worth reading if you are interested in the impact analogies can have on policymaking.

Before launching into the analogies, here’s a bit about Patrick McCray from the Welcome page to his website, (Note: A link has been removed),

As a professor in the History Department of the University of California, Santa Barbara and a co-founder of the Center for Nanotechnology in Society, my work focuses on different technological and scientific communities and their interactions with the public and policy makers. For the past ten years or so, I’ve been especially interested in the historical development of so-called “emerging technologies,” whenever they emerged.

I hope you enjoy wandering around my web site. The section of it that changes most often is my Leaping Robot blog. I update this every few weeks or so with an extended reflection or essay about science and technology, past and future.

In part 1 (Feb. 12, 2013) of the essay, McCray states (Note: Links and footnotes have been removed),

[Blogger’s note: This post is adapted from a talk I gave in March 2012 at the annual Business History Conference; it draws on research done by Roger Eardley-Pryor, an almost-finished graduate student I’m advising at UCSB [University of California at Santa Barbara], and me. I’m posting it here with his permission. This is the first of a two-part essay…some of the images come from slides we put together for the talk.]

Over the last decade, a range of actors – scientists, policy makers, and activists – have used  historical analogies to suggest different ways that risks associated with nanotechnology – especially those concerned with potential environmental implications – might be minimized. Some of these analogies make sense…others, while perhaps effective, are based on a less than ideal reading of history.

Analogies have been used before as tools to evaluate new technologies. In 1965, NASA requested comparisons between the American railroad of the 19th century and the space program. In response, MIT historian Bruce Mazlish wrote a classic article that analyzed the utility and limitations of historical analogies. Analogies, he explained, function as both model and myth. Mythically, they offer meaning and emotional security through an original archetype of familiar knowledge. Analogies also furnish models for understanding by construing either a structural or a functional relationship. As such, analogies function as devices of anticipation which what today is fashionably called “anticipatory governance.”They also can serve as a useful tool for risk experts.

McCray goes on to cover some of the early discourse on nanotechnology, the players, and early analogies. While the focus is on the US, the discourse reflects many if not all of the concerns being expressed internationally.

In part 2 posted on Feb. 18, 2013 McCray mentions four of the main analogies used with regard to nanotechnology and risk (Note: Footnotes have been removed),

Example #1 – Genetically Modified Organisms

In April 2003, Prof. Vicki Colvin testified before Congress. A chemist at Rice University, Colvin also directed that school’s Center for Biological and Environmental Nanotechnology. This “emerging technology,” Colvin said, had a considerable “wow index.” However, Colvin warned, every promising new technology came with concerns that could drive it from “wow into yuck and ultimately into bankrupt.” To make her point, Colvin compared nanotech to recent experiences researchers and industry had experienced with genetically modified organisms. Colvin’s analogy – “wow to yuck” – made an effective sound bite. But it also conflated two very different histories of two specific emerging technologies.

While some lessons from GMOs are appropriate for controlling the development of nanotechnology, the analogy doesn’t prove watertight. Unlike GMOs, nanotechnology does not always involve biological materials. And genetic engineering in general, never enjoyed any sort of unalloyed “wow” period. There was “yuck” from the outset. Criticism accompanied GMOs from the very start. Furthermore, giant agribusiness firms prospered handsomely even after the public’s widespread negative reactions to their products.  Lastly, living organisms – especially those associated with food – designed for broad release into the environment were almost guaranteed to generate concerns and protests. Rhetorically, the GMO analogy was powerful…but a deeper analysis clearly suggests there were more differences than similarities.

McCray offers three more examples of analogies used to describe nanotechnology: asbestos, (radioactive) fallout, and Recombinant DNA which he dissects and concludes are not the best analogies to be using before offering this thought,

So — If historical analogies teach can teach us anything about the potential regulation of nano and other emerging technologies, they indicate the need to take a little risk in forming socially and politically constructed definitions of nano. These definitions should be based not just on science but rather mirror the complex and messy realm of research, policy, and application. No single analogy fits all cases but an ensemble of several (properly chosen, of course) can suggest possible regulatory options.

I recommend reading both parts of McCray’s essay in full. It’s a timely piece especially in light of a Feb. 28, 2013 article by Daniel Hurst for Australian website, theage.com.au, where a union leader raises health fears about nanotechnology by using the response to asbestos health concerns as the analogy,

Union leader Paul Howes has likened nanotechnology to asbestos, calling for more research to ease fears that the growing use of fine particles could endanger manufacturing workers.

”I don’t want to make the mistake that my predecessors made by not worrying about asbestos,” the Australian Workers Union secretary said.

I have covered the topic of carbon nanotubes and asbestos many times, one of the  latest being this Jan. 16, 2013 posting. Not all carbon nanotubes act like asbestos; the long carbon nanotubes present the problems.

The yin and the yang of carbon nanotubes and toxicity

 

Illustration courtesy of the University College of London (UCL). Downloaded from http://www.ucl.ac.uk/news/news-articles/0113/130115-chemistry-resolves-toxic-concerns-about-carbon-nanotubes

Illustration courtesy of the University College of London (UCL). Downloaded from http://www.ucl.ac.uk/news/news-articles/0113/130115-chemistry-resolves-toxic-concerns-about-carbon-nanotubes

Researchers at the University College of London (UCL), France’s Centre national de la recherche scientifique (CNRS), and Italy’s University of Trieste have determined that carbon nanotube toxicity issues can be addressed be reducing their length and treating them chemically. From the Jan. 15,2013 news item on ScienceDaily,

In a new study, published January 15 [2013] in the journal Angewandte Chemie, evidence is provided that the asbestos-like reactivity and pathogenicity reported for long, pristine nanotubes can be completely alleviated if their surface is modified and their effective length is reduced as a result of chemical treatment.

First atomically described in the 1990s, carbon nanotubes are sheets of carbon atoms rolled up into hollow tubes just a few nanometres in diameter. Engineered carbon nanotubes can be chemically modified, with the addition of chemotherapeutic drugs, fluorescent tags or nucleic acids — opening up applications in cancer and gene therapy.

Furthermore, these chemically modified carbon nanotubes can pierce the cell membrane, acting as a kind of ‘nano-needle’, allowing the possibility of efficient transport of therapeutic and diagnostic agents directly into the cytoplasm of cells.

Among their downsides however, have been concerns about their safety profile. One of the most serious concerns, highlighted in 2008, involves the carcinogenic risk from the exposure and persistence of such fibres in the body. Some studies indicate that when long untreated carbon nanotubes are injected to the abdominal cavity of mice they can induce unwanted responses resembling those associated with exposure to certain asbestos fibres.

In this paper, the authors describe two different reactions which ask if any chemical modification can render the nanotubes non-toxic. They conclude that not all chemical treatments alleviate the toxicity risks associated with the material. Only those reactions that are able to render carbon nanotubes short and stably suspended in biological fluids without aggregation are able to result in safe, risk-free material.

Here’s a citation and link for this latest  research, from the ScienceDaily news item where you can also read the lead researcher’s comments about carbon nanotubes, safety, and unreasonable proposals to halt production,

Hanene Ali-Boucetta, Antonio Nunes, Raquel Sainz, M. Antonia Herrero, Bowen Tian, Maurizio Prato, Alberto Bianco, Kostas Kostarelos. Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201207664

The article is behind a paywall. I have mentioned long carbon nanotubes and their resemblance to asbestos fibres in several posts. The  Oct. 26, 2009 posting [scroll down about 1/3 of the way] highlights research which took place after the study where mice had carbon nanotubes injected into their bellies; in this second piece of research they inhaled the nanotubes.

ETA Jan. 21, 2013: Dexter Johnson gives context and commentary about this latest research into long multiwalled nanotubes (MWNTs) which he sums up as the answer to this question “What if you kept the MWNTs short?”  in a Jan. 18, 2013 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website)

Health science writing? Australian writer accuses gym equipment of killing you through nanotechnology

Toby McCasker’s Sept. 30, 2012 article for news.com.au  is one of the more peculiar pieces I’ve seen about nanotechnology and its dangers. From the article,

Is gym equipment killing you?

THE nanofibres that make up sports and gym equipment just might be doing you more harm than good.

McCasker then blesses us with this wonderful, wonderful passage where he explains his concern,

Why is this (maybe) bad? Nanotechnology sounds awesome, after all. Very cyberpunk. Inject them into your dude piston and become a thrumming love-machine, all that. [emphases mine] They’re maybe bad because researchers from the University of Edinburgh in the UK have just discovered that some nanofibres bear a resemblance to asbestos fibres, which can cause lung cancer.

You can’t inject nanotechnology. Since it’s a field of study,  it would be the equivalent of injecting biology or quantum mechanics.

As for nanotechnology being cyberpunk, here’s how Cyberpunk is defined  in The Free Dictionary,

Noun   1.         cyberpunk – a programmer who breaks into computer systems in order to steal or change or destroy information as a form of cyber-terrorism

cyber-terrorist, hacker

act of terrorism, terrorism, terrorist act – the calculated use of violence (or the threat of violence) against civilians in order to attain goals that are political or religious or ideological in nature; this is done through intimidation or coercion or instilling fear

coder, computer programmer, programmer, software engineer – a person who designs and writes and tests computer programs

terrorist – a radical who employs terror as a political weapon; usually organizes with other terrorists in small cells; often uses religion as a cover for terrorist activities

2.         cyberpunk – a writer of science fiction set in a lawless subculture of an oppressive society dominated by computer technology

author, writer – writes (books or stories or articles or the like) professionally (for pay)

3.         cyberpunk – a genre of fast-paced science fiction involving oppressive futuristic computerized societies

science fiction – literary fantasy involving the imagined impact of science on society

The closest definition that fits McCasker’s usage is this description (the passage by Lawrence Person) of cyberpunk, a post-modern science fiction genre, in Wikipedia,

Cyberpunk plots often center on a conflict among hackers, artificial intelligences, and megacorporations, and tend to be set in a near-future Earth, rather than the far-future settings or galactic vistas found in novels such as Isaac Asimov’s Foundation or Frank Herbert’s Dune. The settings are usually post-industrial dystopias but tend to be marked by extraordinary cultural ferment and the use of technology in ways never anticipated by its creators (“the street finds its own uses for things”). Much of the genre’s atmosphere echoes film noir, and written works in the genre often use techniques from detective fiction.

“Classic cyberpunk characters were marginalized, alienated loners who lived on the edge of society in generally dystopic futures where daily life was impacted by rapid technological change, an ubiquitous datasphere of computerized information, and invasive modification of the human body.” – Lawrence Person

It’s the part about “invasive modification of the human body” which seems closest to McCasker’s ” inject them into your dude piston”  (dude piston is my new favourite phrase).

As for the reference to nanofibres, McCasker is correct. There are carbon nanotubes that resemble asbestos fibres and there is concern for anyone who may ingest them. As far as I know, the people at greatest risk would be workers who are exposed to the carbon nanotubes directly. I have not heard of anyone getting sick because of their golf clubs where carbon nanotubes are often used to make them lighter and stronger.

The research (mentioned in my Aug. 22, 2012 posting)  at the University of Edinburgh that McCasker cites is important because it adds to a body of substantive research work on this issue regarding carbon nanotubes, asbestos, and the possibility of mesothelioma and bears no mention of gym equipment.

It’s the length, not the size that matters with nanofibres such as carbon nanotubes

The Aug. 22, 2012 news item on Nanowerk by way of Feedzilla features some research at the University of Edinburgh which determined that short nanofibres do not have the same effect on lung cells as longer fibres do. From the news item, here’s a description of why this research was undertaken

Nanofibres, which can be made from a range of materials including carbon, are about 1,000 times smaller than the width of a human hair and can reach the lung cavity when inhaled.

This may lead to a cancer known as mesothelioma, which is known to be caused by breathing in asbestos fibres, which are similar to nanofibres.

I wrote about research at Brown University which explained why some fibres get stuck in lung cells in a Sept. 22, 2011 posting titled, Why asbestos and carbon nanotubes are so dangerous to cells. The short answer is: if the tip is rounded, the cell mistakes the fibre for a sphere and, in error, it attempts to absorb it. Here’s some speculation on my part about what the results might mean (from my Sept. 22, 2011 posting),

The whole thing has me wondering about long vs. short carbon nanotubes. Does this mean that short carbon nanotubes can be ingested successfully? If so, at what point does short become too long to ingest?

The University of Edinburgh Aug. 22, 2012 news release provides answer to last year’s  speculation about length,

The University study found that lung cells were not affected by short fibres that were less than five-thousandths of a millimetre long.

However, longer fibres can reach the lung cavity, where they become stuck and cause disease.

We knew that long fibres, compared with shorter fibres, could cause tumours but until now we did not know the cut-off length at which this happened. Knowing the length beyond which the tiny fibres can cause disease is important in ensuring that safe fibres are made in the future as well as helping to understand the current risk from asbestos and other fibres, [said] Ken Donaldson, Professor of Respiratory Toxicology.

Sometimes, I surprise myself. I think I’ll take a moment to bask. … Done now!

Here’s my final thought, while this research suggests short length nanofibres won’t cause mesothelioma, this doesn’t rule out  other potential problems. So, let’s celebrate this new finding and then get back to investigating nanofibres and their impact on health.

The latest in bulletproof vests: carbon nanotubes

Amendment II; An American Combat Apparel Company as it bills itself on Facebook, is offering new bulletproof body armour utilizing RynoHide, a carbon nanotube composite. From the April 26, 2012 news item on Nanowerk,

RynoHide™, the world’s first Carbon Nanotube compound for ballistic and shrapnel resistant products is now available to the personal protection equipment industry and the general public. On the cutting edge of scientific innovation, RynoHide is lighter than any other compound on the market, yet provide greater user protection from back-face deformation of projectiles. Designed to meet the needs of all military and law enforcement operations, RynoHide is also affordable for public consumers.

Here’s a 2 min. video where RynoHide’s bulletstopping capabilities are demonstrated,

Since carbon nanotubes have been compared to asbestos and there is research which indicates that they behave like asbestos fibres when inhaled (my Sept. 22, 2011 posting), I’d be a little nervous about the fibres which are spewed when the bullet hits the composite. It’s possible that these carbon nanotubes are encapsulated and are not released into the environment when a bullet or projectile hits the material but I have looked around on the Amendment II company website and was not able to find any information about safety and carbon nanotubes.

Perhaps in the excitement they forgot to include any details about the carbon nanotubes, how they are integrated into the composite, and the safety testing. The April 26, 2012 news item highlights one of the product’s big advantages,

Traditional armor is designed to stop projectiles moving thousands of feet per second from penetration and back-face deformation. Back-face deformation is the bulge that occurs in the back of the armor from a projectile hitting the front without passing completely though. Traditional armor is designed to minimize these threats by using 20 to 30 layers of a high tensile strength synthetic aramid, such as Kevlar.

The acceptable back-face deformation limit for body armor, as set by the National Institute of Justice, is 44mm, or nearly two inches. RynoHide helps body armor achieve a back-face deformation level in the low 30’s, without increasing the weight of the armor.

Less back-face deformation means less hurt on the body.

“That’s a huge advantage for the user of the armor if they get hit,” says R.G. Craig, President of Amendment II. “It could be the difference between a stay in the hospital or simply going home at the end of the day to your family.” Such protection is achieved without compromise in comfort and convenience.

The product was developed at the University of Utah’s Nano Institute in partnership with Amendment II.

Why asbestos and carbon nanotubes are so dangerous to cells

Sphere or spear? Apparently cells can’t tell that an asbestos fibre or long carbon nanotube are spears due to their rounded tips according to researchers at Brown University. From the Sept. 18, 2011 news item on Nanowerk,

Through molecular simulations and experiments, the team reports in Nature Nanotechnology that certain nanomaterials, such as carbon nanotubes, enter cells tip-first and almost always at a 90-degree angle. The orientation ends up fooling the cell; by taking in the rounded tip first, the cell mistakes the particle for a sphere, rather than a long cylinder. By the time the cell realizes the material is too long to be fully ingested, it’s too late.

Here’s a representation of what the scientists mean,

 

Something perpendicular this way comes Cells ingest things by engulfing them. When a long perpendicular fiber comes near, the cell senses only its tip, mistakes it for a sphere, and begins engulfing something too long to handle. Credit: Gao Lab/Brown University

Here’s what happens when a cell encounters a carbon nanotube, asbestos fibre, gold nanowires, and other materials that are long and perpendicular with rounded tips,

Like asbestos fibers, commercially available carbon nanotubes and gold nanowires have rounded tips that often range from 10 to 100 nanometers in diameter. Size is important here; the diameter fits well within the cell’s parameters for what it can handle. Brushing up against the nanotube, special proteins called receptors on the cell spring into action, clustering and bending the membrane wall to wrap the cell around the nanotube tip in a sequence that the authors call “tip recognition.” As this occurs, the nanotube is tipped to a 90-degree angle, which reduces the amount of energy needed for the cell to engulf the particle.

Once the engulfing — endocytosis — begins, there is no turning back. Within minutes, the cell senses it can’t fully engulf the nanostructure and essentially dials 911. “At this stage, it’s too late,” Gao [Huajian Gao] said. “It’s in trouble and calls for help, triggering an immune response that can cause repeated inflammation.”

I gather this is the starting point for mesothelioma. Here’s a description of the process (from the Brown University Sept. 18, 2011 news release,

“We thought the tube was going to lie on the cell membrane to obtain more binding sites. However, our simulations revealed the tube steadily rotating to a high-entry degree, with its tip being fully wrapped,” said Xinghua Shi, first author on the paper who earned his doctorate at Brown and is at the Chinese Academy of Sciences in Beijing. “It is counter-intuitive and is mainly due to the bending energy release as the membrane is wrapping the tube.”

Here’s a video from Brown illustrating the process,

Cells bite off more than they can chew from Brown PAUR on Vimeo.

The whole thing has me wondering about long vs. short carbon nanotubes. Does this mean that short carbon nanotubes can be ingested successfully? If so, at what point does short become too long to ingest? It doesn’t seem like my questions are going to be answered too soon since the team would like to go in this direction (from the Brown news release),

The team would like to study whether nanotubes without rounded tips — or less rigid nanomaterials such as nanoribbons — pose the same dilemma for cells.

“Interestingly, if the rounded tip of a carbon nanotube is cut off (meaning the tube is open and hollow), the tube lies on the cell membrane, instead of entering the cell at a high-degree-angle,” Shi said.

Art conservation and nanotechnology; the science of social networks; carbon nanotubes and possible mesothelioma; Eric Drexler has a few words

It looks like nanotechnology innovations in the field of art conservation may help preserve priceless works for longer and with less damage. The problem as articulated in Michael Berger’s article on Nanowerk is,

“Nowadays, one of the most important problems faced during the cleaning of works of art is the removal of organic materials, mainly acrylic polymers, applied in the past as consolidants or protective coatings,” explains Piero Baglioni, a professor of Physical Chemistry at the University of Florence. “Unfortunately, their application induces a drastic alteration of the interfacial properties of the artwork and leads to increased degradation. These organic materials must therefore be removed.”

Baglioni and his colleagues at the University of Florence have developed “… a micro-emulsion cleaning agent that is designed to dissolve only the organic molecules on the surface of a painting …”

This is a little off Azonano’s usual beat (and mine too) but Rensselaer Polytechnic Institute’s Army Research Laboratory is launching an interdisciplinary research center for the study of social and cognitive networks.  From the news item,

“Rensselaer offers a unique research environment to lead this important new network science center,” said Rensselaer President Shirley Ann Jackson. “We have assembled an outstanding team of researchers, and built powerful new research platforms. The team will work with one of the largest academic supercomputing centers in the world – the Rensselaer Computational Center for Nanotechnology Innovations – and the leading visualization and simulation capabilities within our new Experimental Media and Performing Arts Center. The Center for Social and Cognitive Networks will bring together our world-class scientists in the areas of computer science, cognitive science, physics, Web science, and mathematics in an unprecedented collaboration to investigate all aspects of the ever-changing and global social climate of today.”

The center will study the fundamentals of social and cognitive networks and their roles in today’s society and organizations, including the U.S. Army. The goal will be to gain a deeper understanding of these networks and build a firm scientific basis in the field of network science. The work will include research on large social networks, with a focus on networks with mobile agents. An example of a mobile agent is someone who is interacting (e.g., communicating, observing, helping, distracting, interrupting, etc.) with others while moving around the environment.

My suspicion is that the real goal for the work is to exploit the data for military advantage, if possible. Any other benefits would be incidental. Of course, a fair chunk of the technology we enjoy today (for example, tv and the internet) was investigated by the military first.

I’ve mentioned carbon nanotubes and possible toxicology before. Specifically, some carbon nanotubes resemble asbestos fibers and pilot studies have suggested they may behave the same way when ingested by one means or another  into the body. There is a new confirmation of this hypothesis with a study where mice inhaled carbon nanotubes. From the news item on Nanowerk,

Using mice in an animal model study, the researchers set out to determine what happens when multi-walled carbon nanotubes are inhaled. Specifically, researchers wanted to determine whether the nanotubes would be able to reach the pleura, which is the tissue that lines the outside of the lungs and is affected by exposure to certain types of asbestos fibers which cause the cancer mesothelioma. The researchers used inhalation exposure and found that inhaled nanotubes do reach the pleura and cause health effects.

This was one exposure and the mice recovered after three months. More studies will be needed to determine the effects of repeated exposure. This study (Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice by Dr. James Bonner, Dr. Jessica Ryman-Rasmussen, Dr. Arnold Brody, et. al.) can be found in the Oct. 25, 2009 issue of Nature Nanotechnology.

On Friday (Oct. 23, 2009) I mentioned an essay by Chris Toumey on the forthcoming 50th anniversary of Richard Feynman’s seminal talk, There’s plenty of room at the bottom. Today I found a response to the essay by Eric Drexler.  From Drexler’s essay on Nanowerk,

Unfortunately, yesterday’s backward-looking guest article in Nanowerk reinforces the widespread but quite mistaken idea that my views are essentially the opposite of what I’ve stated above, and that those perverse ideas are also those of the Foresight Institute. I cannot speak for that organization, or vice versa, because I left it years ago. Contrary to what the article may suggest, I have no affiliation with the organization whatsoever. Regarding terminology, it is of course entirely appropriate to use the term “nanotechnology” to describe nanoscale technologies. The idea that there is a conflict between progress in the field and future applications of that progress is puzzling. This idea appears to stem from a strange episode that came to a head during the political push for the bill that established and funded the U.S. National Nanotechnology Initiative, an episode in which some leading science spokesmen quite properly rejected a collection of popular fantasies, but quite improperly attributed those fantasies to me. Reading claims by confused enthusiasts and the press that “Drexler says this” or “Drexler says that” is no substitute for reading my journal articles, or the technical analysis in my book, Nanosystems, and in my MIT dissertation). The failure of these leaders to do their homework has had substantial and lingering toxic effects.

(My own focus was on the ‘origin’ story for nanotechnology and not on Drexler’s theories.) If I understand the situation rightly, much of the controversy has its roots in Drexler’s popular book, Engines of Creation. It was written over 20 years ago and struck a note which reverberates to this day. The irony is that there are writers who’d trade places with Drexler in a nano second. Imagine having that kind of impact on society and culture (in the US primarily). The downside as Drexler has discovered is that the idea or story has taken on its own life. For a similar example, take Mary Shelley’s book where Frankenstein is not the monster’s name, it’s the scientist’s name. However, the character took its own life and name.