Tag Archives: ASU

Nanoparticles in baby formula

Needle-like particles of hydroxyapatite found in infant formula by ASU researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Needle-like particles of hydroxyapatite found in infant formula by ASU [Arizona State University] researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Nanowerk is featuring an essay about hydroxyapatite nanoparticles in baby formula written by Dr. Andrew Maynard in a May 17, 2016 news item (Note: A link has been removed),

There’s a lot of stuff you’d expect to find in baby formula: proteins, carbs, vitamins, essential minerals. But parents probably wouldn’t anticipate finding extremely small, needle-like particles. Yet this is exactly what a team of scientists here at Arizona State University [ASU] recently discovered.

The research, commissioned and published by Friends of the Earth (FoE) – an environmental advocacy group – analyzed six commonly available off-the-shelf baby formulas (liquid and powder) and found nanometer-scale needle-like particles in three of them. The particles were made of hydroxyapatite – a poorly soluble calcium-rich mineral. Manufacturers use it to regulate acidity in some foods, and it’s also available as a dietary supplement.

Andrew’s May 17, 2016 essay first appeared on The Conversation website,

Looking at these particles at super-high magnification, it’s hard not to feel a little anxious about feeding them to a baby. They appear sharp and dangerous – not the sort of thing that has any place around infants. …

… questions like “should infants be ingesting them?” make a lot of sense. However, as is so often the case, the answers are not quite so straightforward.

Andrew begins by explaining about calcium and hydroxyapatite (from The Conversation),

Calcium is an essential part of a growing infant’s diet, and is a legally required component in formula. But not necessarily in the form of hydroxyapatite nanoparticles.

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system.

He then discusses size and shape, which are important at the nanoscale,

Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.

These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.

Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Currently, hydroxyapatite is considered safe at the macroscale by the US Food and Drug Administration (FDA). However, the agency has indicated that nanoscale versions of safe materials such as hydroxyapatite may not be safe food additives. From Andrew’s May 17, 2016 essay,

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system. Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Putting particle size to one side for a moment, hydroxyapatite is classified by the US Food and Drug Administration (FDA) as “Generally Regarded As Safe.” That means it considers the material safe for use in food products – at least in a non-nano form. However, the agency has raised concerns that nanoscale versions of food ingredients may not be as safe as their larger counterparts.Some manufacturers may be interested in the potential benefits of “nanosizing” – such as increasing the uptake of vitamins and minerals, or altering the physical, textural and sensory properties of foods. But because decreasing particle size may also affect product safety, the FDA indicates that intentionally nanosizing already regulated food ingredients could require regulatory reevaluation.In other words, even though non-nanoscale hydroxyapatite is “Generally Regarded As Safe,” according to the FDA, the safety of any nanoscale form of the substance would need to be reevaluated before being added to food products.Despite this size-safety relationship, the FDA confirmed to me that the agency is unaware of any food substance intentionally engineered at the nanoscale that has enough generally available safety data to determine it should be “Generally Regarded As Safe.”Casting further uncertainty on the use of nanoscale hydroxyapatite in food, a 2015 report from the European Scientific Committee on Consumer Safety (SCCS) suggests there may be some cause for concern when it comes to this particular nanomaterial.Prompted by the use of nanoscale hydroxyapatite in dental products to strengthen teeth (which they consider “cosmetic products”), the SCCS reviewed published research on the material’s potential to cause harm. Their conclusion?

The available information indicates that nano-hydroxyapatite in needle-shaped form is of concern in relation to potential toxicity. Therefore, needle-shaped nano-hydroxyapatite should not be used in cosmetic products.

This recommendation was based on a handful of studies, none of which involved exposing people to the substance. Researchers injected hydroxyapatite needles directly into the bloodstream of rats. Others exposed cells outside the body to the material and observed the effects. In each case, there were tantalizing hints that the small particles interfered in some way with normal biological functions. But the results were insufficient to indicate whether the effects were meaningful in people.

As Andrew also notes in his essay, none of the studies examined by the SCCS OEuropean Scientific Committee on Consumer Safety) looked at what happens to nano-hydroxyapatite once it enters your gut and that is what the researchers at Arizona State University were considering (from the May 17, 2016 essay),

The good news is that, according to preliminary studies from ASU researchers, hydroxyapatite needles don’t last long in the digestive system.

This research is still being reviewed for publication. But early indications are that as soon as the needle-like nanoparticles hit the highly acidic fluid in the stomach, they begin to dissolve. So fast in fact, that by the time they leave the stomach – an exceedingly hostile environment – they are no longer the nanoparticles they started out as.

These findings make sense since we know hydroxyapatite dissolves in acids, and small particles typically dissolve faster than larger ones. So maybe nanoscale hydroxyapatite needles in food are safer than they sound.

This doesn’t mean that the nano-needles are completely off the hook, as some of them may get past the stomach intact and reach more vulnerable parts of the gut. But the findings do suggest these ultra-small needle-like particles could be an effective source of dietary calcium – possibly more so than larger or less needle-like particles that may not dissolve as quickly.

Intriguingly, recent research has indicated that calcium phosphate nanoparticles form naturally in our stomachs and go on to be an important part of our immune system. It’s possible that rapidly dissolving hydroxyapatite nano-needles are actually a boon, providing raw material for these natural and essential nanoparticles.

While it’s comforting to know that preliminary research suggests that the hydroxyapatite nanoparticles are likely safe for use in food products, Andrew points out that more needs to be done to insure safety (from the May 17, 2016 essay),

And yet, even if these needle-like hydroxyapatite nanoparticles in infant formula are ultimately a good thing, the FoE report raises a number of unresolved questions. Did the manufacturers knowingly add the nanoparticles to their products? How are they and the FDA ensuring the products’ safety? Do consumers have a right to know when they’re feeding their babies nanoparticles?

Whether the manufacturers knowingly added these particles to their formula is not clear. At this point, it’s not even clear why they might have been added, as hydroxyapatite does not appear to be a substantial source of calcium in most formula. …

And regardless of the benefits and risks of nanoparticles in infant formula, parents have a right to know what’s in the products they’re feeding their children. In Europe, food ingredients must be legally labeled if they are nanoscale. In the U.S., there is no such requirement, leaving American parents to feel somewhat left in the dark by producers, the FDA and policy makers.

As far as I’m aware, the Canadian situation is much the same as the US. If the material is considered safe at the macroscale, there is no requirement to indicate that a nanoscale version of the material is in the product.

I encourage you to read Andrew’s essay in its entirety. As for the FoE report (Nanoparticles in baby formula: Tiny new ingredients are a big concern), that is here.

Frankenstein and Switzerland in 2016

The Frankenstein Bicentennial celebration is in process as various events and projects are now being launched. In a Nov. 12, 2015 posting I made mention of the Frankenstein Bicentennial Project 1818-2018 at Arizona State University (ASU; scroll down about 15% of the way),

… the Transmedia Museum (Frankenstein Bicentennial Project 1818-2018).  This project is being hosted by Arizona State University. From the project homepage,

No work of literature has done more to shape the way people imagine science and its moral consequences than Frankenstein; or The Modern Prometheus, Mary Shelley’s enduring tale of creation and responsibility. The novel’s themes and tropes—such as the complex dynamic between creator and creation—continue to resonate with contemporary audiences. Frankenstein continues to influence the way we confront emerging technologies, conceptualize the process of scientific research, imagine the motivations and ethical struggles of scientists, and weigh the benefits of innovation with its unforeseen pitfalls.

The Frankenstein Bicentennial Project will infuse science and engineering endeavors with considerations of ethics. It will use the power of storytelling and art to shape processes of innovation and empower public appraisal of techno-scientific research and creation. It will offer humanists and artists a new set of concerns around research, public policy, and the ramifications of exploration and invention. And it will inspire new scientific and technological advances inspired by Shelley’s exploration of our inspiring and terrifying ability to bring new life into the world. Frankenstein represents a landmark fusion of science, ethics, and literary expression.

The bicentennial provides an opportunity for vivid reflection on how science is culturally framed and understood by the public, as well as our ethical limitations and responsibility for nurturing the products of our creativity. It is also a moment to unveil new scientific and technological marvels, especially in the areas of synthetic biology and artificial intelligence. Engaging with Frankenstein allows scholars and educators, artists and writers, and the public at large to consider the history of scientific invention, reflect on contemporary research, and question the future of our technological society. Acting as a network hub for the bicentennial celebration, ASU will encourage and coordinate collaboration across institutions and among diverse groups worldwide.

2016 Frankenstein events

Now, there’s an exhibition in Switzerland where Frankenstein was ‘born’ according to a May 12, 2016 news item on phys.org,

Frankenstein, the story of a scientist who brings to life a cadaver and causes his own downfall, has for two centuries given voice to anxiety surrounding the unrelenting advance of science.

To mark the 200 years since England’s Mary Shelley first imagined the ultimate horror story during a visit to a frigid, rain-drenched Switzerland, an exhibit opens in Geneva Friday called “Frankenstein, Creation of Darkness”.

In the dimly-lit, expansive basement at the Martin Bodmer Foundation, a long row of glass cases holds 15 hand-written, yellowed pages from a notebook where Shelley in 1816 wrote the first version of what is considered a masterpiece of romantic literature.

The idea for her “miserable monster” came when at just 18 she and her future husband, English poet Percy Bysshe Shelley, went to a summer home—the Villa Diodati—rented by literary great Lord Byron on the outskirts of Geneva.

The current private owners of the picturesque manor overlooking Lake Geneva will also open their lush gardens to guided tours during the nearby exhibit which runs to October 9 [May 13 – Oct. 9, 2016].

While the spot today is lovely, with pink and purple lilacs spilling from the terraces and gravel walkways winding through rose-covered arches, in the summer of 1816 the atmosphere was more somber.

A massive eruption from the Tambora volcano in Indonesia wreaked havoc with the global climate that year, and a weather report for Geneva in June on display at the exhibit mentions “not a single leaf” had yet appeared on the oak trees.

To pass the time, poet Lord Byron challenged the band of literary bohemians gathered at the villa to each invent a ghost story, resulting in several famous pieces of writing.

English doctor and author John Polidori came up with the idea for “The Vampyre”, which was published three years later and is considered to have pioneered the romantic vampyre genre, including works like Bram Stoker’s “Dracula”.

That book figures among a multitude of first editions at the Geneva exhibit, including three of Mary Shelley’s “Frankenstein, or the Modern Prometheus”—the most famous story to emerge from the competition.

Here’s a description of the exhibit, from the Martin Bodmer Foundation’s Frankenstein webpage,

To celebrate the 200th anniversary of the writing of this historically influential work of literature, the Martin Bodmer Foundation presents a major exhibition on the origins of Frankenstein, the perspectives it opens and the questions it raises.

A best seller since its first publication in 1818, Mary Shelley’s novel continues to demand attention. The questions it raises remain at the heart of literary and philosophical concerns: the ethics of science, climate change, the technologisation of the human body, the unconscious, human otherness, the plight of the homeless and the dispossessed.

The exposition Frankenstein: Creation of Darkness recreates the beginnings of the novel in its first manuscript and printed forms, along with paintings and engravings that evoke the world of 1816. A variety of literary and scientific works are presented as sources of the novel’s ideas. While exploring the novel’s origins, the exhibition also evokes the social and scientific themes of the novel that remain important in our own day.

For what it’s worth, I have come across analyses which suggest science and technology may not have been the primary concern at the time. There are interpretations which suggest issues around childbirth (very dangerous until modern times) and fear of disfigurement and disfigured individuals. What makes Frankenstein and the book so fascinating is how flexible interpretations can be. (For more about Frankenstein and flexibility, read Susan Tyler Hitchcock’s 2009 book, Frankenstein: a cultural history.)

There’s one more upcoming Frankenstein event, from The Frankenstein Bicentennial announcement webpage,

On June 14 and 15, 2016, the Brocher Foundation, Arizona State University, Duke University, and the University of Lausanne will host “Frankenstein’s Shadow,” a symposium in Geneva, Switzerland to commemorate the origin of Frankenstein and assess its influence in different times and cultures, particularly its resonance in debates about public policy governing biotechnology and medicine. These dates place the symposium almost exactly 200 years after Mary Shelley initially conceived the idea for Frankenstein on June 16, 1816, and in almost exactly the same geographical location on the shores of Lake Geneva.

If you’re interested in details such as the programme schedule, there’s this PDF,

Frankenstein¹s_ShadowConference

Enjoy!

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

Managing risks in a world of converging technology (the fourth industrial revolution)

Finally there’s an answer to the question: What (!!!) is the fourth industrial revolution? (I took a guess [wrongish] in my Nov. 20, 2015 post about a special presentation at the 2016 World Economic Forum’s IdeasLab.)

Andrew Maynard in a Dec. 3, 2015 think piece (also called a ‘thesis’) for Nature Nanotechnology answers the question,

… an approach that focuses on combining technologies such as additive manufacturing, automation, digital services and the Internet of Things, and … is part of a growing movement towards exploiting the convergence between emerging technologies. This technological convergence is increasingly being referred to as the ‘fourth industrial revolution’, and like its predecessors, it promises to transform the ways we live and the environments we live in. (While there is no universal agreement on what constitutes an ‘industrial revolution’, proponents of the fourth industrial revolution suggest that the first involved harnessing steam power to mechanize production; the second, the use of electricity in mass production; and the third, the use of electronics and information technology to automate production.)

In anticipation of the the 2016 World Economic Forum (WEF), which has the fourth industrial revolution as its theme, Andrew  explains how he sees the situation we are sliding into (from Andrew Maynard’s think piece),

As more people get closer to gaining access to increasingly powerful converging technologies, a complex risk landscape is emerging that lies dangerously far beyond the ken of current regulations and governance frameworks. As a result, we are in danger of creating a global ‘wild west’ of technology innovation, where our good intentions may be among the first casualties.

There are many other examples where converging technologies are increasing the gap between what we can do and our understanding of how to do it responsibly. The convergence between robotics, nanotechnology and cognitive augmentation, for instance, and that between artificial intelligence, gene editing and maker communities both push us into uncertain territory. Yet despite the vulnerabilities inherent with fast-evolving technological capabilities that are tightly coupled, complex and poorly regulated, we lack even the beginnings of national or international conceptual frameworks to think about responsible decision-making and responsive governance.

He also lists some recommendations,

Fostering effective multi-stakeholder dialogues.

Encouraging actionable empathy.

Providing educational opportunities for current and future stakeholders.

Developing next-generation foresight capabilities.

Transforming approaches to risk.

Investing in public–private partnerships.

Andrew concludes with this,

… The good news is that, in fields such as nanotechnology and synthetic biology, we have already begun to develop the skills to do this — albeit in a small way. We now need to learn how to scale up our efforts, so that our convergence in working together to build a better future mirrors the convergence of the technologies that will help achieve this.

It’s always a pleasure to read Andrew’s work as it’s thoughtful. I was surprised (since Andrew is a physicist by training) and happy to see the recommendation for “actionable empathy.”

Although, I don’t always agree with him on this occasion I don’t have any particular disagreements but I think that including a recommendation or two to cover the certainty we will get something wrong and have to work quickly to right things would be a good idea.  I’m thinking primarily of governments which are notoriously slow to respond with legislation for new developments and equally slow to change that legislation when the situation changes.

The technological environment Andrew is describing is dynamic, that is fast-moving and changing at a pace we have yet to properly conceptualize. Governments will need to change so they can respond in an agile fashion. My suggestion is:

Develop policy task forces that can be convened in hours and given the authority to respond to an immediate situation with oversight after the fact

Getting back to Andrew Maynard, you can find his think piece in its entirety via this link and citation,

Navigating the fourth industrial revolution by Andrew D. Maynard. Nature Nanotechnology 10, 1005–1006 (2015) doi:10.1038/nnano.2015.286 Published online 03 December 2015

This paper is behind a paywall.

$81M for US National Nanotechnology Coordinated Infrastructure (NNCI)

Academics, small business, and industry researchers are the big winners in a US National Science Foundation bonanza according to a Sept. 16, 2015 news item on Nanowerk,

To advance research in nanoscale science, engineering and technology, the National Science Foundation (NSF) will provide a total of $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI sites will provide researchers from academia, government, and companies large and small with access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering and technology.

A Sept. 16, 2015 NSF news release provides a brief history of US nanotechnology infrastructures and describes this latest effort in slightly more detail (Note: Links have been removed),

The NNCI framework builds on the National Nanotechnology Infrastructure Network (NNIN), which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

“NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said Pramod Khargonekar, assistant director for engineering. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

The awards are up to five years and range from $500,000 to $1.6 million each per year. Nine of the sites have at least one regional partner institution. These 16 sites are located in 15 states and involve 27 universities across the nation.

Through a fiscal year 2016 competition, one of the newly awarded sites will be chosen to coordinate the facilities. This coordinating office will enhance the sites’ impact as a national nanotechnology infrastructure and establish a web portal to link the individual facilities’ websites to provide a unified entry point to the user community of overall capabilities, tools and instrumentation. The office will also help to coordinate and disseminate best practices for national-level education and outreach programs across sites.

New NNCI awards:

Mid-Atlantic Nanotechnology Hub for Research, Education and Innovation, University of Pennsylvania with partner Community College of Philadelphia, principal investigator (PI): Mark Allen
Texas Nanofabrication Facility, University of Texas at Austin, PI: Sanjay Banerjee

Northwest Nanotechnology Infrastructure, University of Washington with partner Oregon State University, PI: Karl Bohringer

Southeastern Nanotechnology Infrastructure Corridor, Georgia Institute of Technology with partners North Carolina A&T State University and University of North Carolina-Greensboro, PI: Oliver Brand

Midwest Nano Infrastructure Corridor, University of  Minnesota Twin Cities with partner North Dakota State University, PI: Stephen Campbell

Montana Nanotechnology Facility, Montana State University with partner Carlton College, PI: David Dickensheets
Soft and Hybrid Nanotechnology Experimental Resource,

Northwestern University with partner University of Chicago, PI: Vinayak Dravid

The Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Polytechnic Institute and State University, PI: Michael Hochella

North Carolina Research Triangle Nanotechnology Network, North Carolina State University with partners Duke University and University of North Carolina-Chapel Hill, PI: Jacob Jones

San Diego Nanotechnology Infrastructure, University of California, San Diego, PI: Yu-Hwa Lo

Stanford Site, Stanford University, PI: Kathryn Moler

Cornell Nanoscale Science and Technology Facility, Cornell University, PI: Daniel Ralph

Nebraska Nanoscale Facility, University of Nebraska-Lincoln, PI: David Sellmyer

Nanotechnology Collaborative Infrastructure Southwest, Arizona State University with partners Maricopa County Community College District and Science Foundation Arizona, PI: Trevor Thornton

The Kentucky Multi-scale Manufacturing and Nano Integration Node, University of Louisville with partner University of Kentucky, PI: Kevin Walsh

The Center for Nanoscale Systems at Harvard University, Harvard University, PI: Robert Westervelt

The universities are trumpeting this latest nanotechnology funding,

NSF-funded network set to help businesses, educators pursue nanotechnology innovation (North Carolina State University, Duke University, and University of North Carolina at Chapel Hill)

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network

ASU [Arizona State University] chosen to lead national nanotechnology site

UChicago, Northwestern awarded $5 million nanotechnology infrastructure grant

That is a lot of excitement.

Not origami but kirigami-inspired foldable batteries

Origami is not noted for its stretchy qualities, a shortcoming according to a June 16, 2015 news item on Azonano,

Origami, the centuries-old Japanese paper-folding art, has inspired recent designs for flexible energy-storage technology. But energy-storage device architecture based on origami patterns has so far been able to yield batteries that can change only from simple folded to unfolded positions. They can flex, but not actually stretch.

Now an Arizona State University [ASU] research team has overcome the limitation by using a variation of origami, called kirigami, as a design template for batteries that can be stretched to more than 150 percent of their original size and still maintain full functionality.

A June 15, 2015 ASU news release, which originated the news item, provides a few more details about the kirigami-influenced batteries (Note: A link has been removed),

A paper published on June 11 [2015] in the research journal Scientific Reports describes how the team developed kirigami-based lithium-ion batteries using a combination of folds and cuts to create patterns that enable a significant increase in stretchability.

The kirigami-based prototype battery was sewn into an elastic wristband that was attached to a smart watch. The battery fully powered the watch and its functions – including playing video – as the band was being stretched.

“This type of battery could potentially be used to replace the bulky and rigid batteries that are limiting the development of compact wearable electronic devices,” Jiang said.

Such stretchable batteries could even be integrated into fabrics – including those used for clothing, he said.

The researchers have provided a video demonstrating the kirigami-inspired battery in action,

Here’s a link to and a citation for the paper,

Kirigami-based stretchable lithium-ion batteries by Zeming Song, Xu Wang, Cheng Lv, Yonghao An, Mengbing Liang, Teng Ma, David He, Ying-Jie Zheng, Shi-Qing Huang, Hongyu Yu & Hanqing Jiang. Scientific Reports 5, Article number: 10988 doi:10.1038/srep10988 Published 11 June 2015

This is an open access paper.

According to the ASU news release, the team published a previous paper on origami-inspired batteries and some of the problems associated with them (Note: Links have been removed),

An earlier paper in the research journal Nature Communications by Jiang and some of his research team members and other colleagues provides an in-depth look at progress and obstacles in the development of origami-based lithium-ion batteries.

The paper explains technical challenges in flexible-battery development that Jiang says his team’s kirigami-based devices are helping to solve.

Read more about the team’s recent progress and the potential applications of stretchable batteries in Popular Mechanics, the Christian Science Monitor, Yahoo News and the Daily Mail.

Here’s a link to and a citation for the team’s earlier paper,

Origami lithium-ion batteries by Zeming Song, Teng Ma,    Rui Tang, Qian Cheng, Xu Wang, Deepakshyam Krishnaraju, Rahul Panat, Candace K. Chan, Hongyu Yu, & Hanqing Jiang. Nature Communications 5, Article number: 3140 doi:10.1038/ncomms4140 Published 28 January 2014

This paper is behind a paywall but there is a free preview available via ReadCube Access.

On a related note, Dexter Johnson has written up Binghamton University research into paper-based origami batteries powered by the respiration of bacteria in a June 16, 2015 posting on his Nanoclast blog.

Could engineered nanoparticles be behind rise in obesity and metabolic disorders?

The researchers haven’t published a study and they have used fruit flies as their testing mechanism (animal models) so, it’s a little difficult (futile) to analyze the work at this stage but it is intriguing. A June 9, 2015 news item on Azonano announces a research collaboration  designed to examine the impact engineered nanoparticles have on the gut and the gut microbiome,

Researchers at Binghamton University believe understanding nano particles’ ability to influence our metabolic processing may be integral to mediating metabolic disorders and obesity, both of which are on the rise and have been linked to processed foods.

Anthony Fiumera, associate professor of biological sciences, and Gretchen Mahler, assistant professor of biomedical engineering, are collaborating on a research project funded by a Binghamton University Transdisciplinary Areas of Excellence (TAE) grant to discover the role ingested nanoparticles play in the physiology and function of the gut and gut microbiome.

A June 8, 2015 Binghamton University news release, which originated the news item, describes the reasoning behind the research,

The gut microbiome is the population of microbes living within the human intestine, consisting of tens of trillions of microorganisms (including at least 1,000 different species of known bacteria). Nanoparticles, which are often added to processed foods to enhance texture and color, have been linked to changes in gut function. As processed foods become more common elements of our diet, there has been a significant increase in concentrations of these particles found in the human body.

Fiumera works in vivo with fruit flies while Mahler works in vitro using a 3-D cell-culture model of the gastrointestinal (GI) tract to understand how ingesting nanoparticles influences glucose processing and the gut microbiome. By using complementary research methods, the researchers have helped advance each other’s understanding of nanoparticles.

Using fruit flies, Fiumera looks at the effects of nanoparticles on development, physiology and biochemical composition, as well as the microbial community in the GI tract of the fly. The fly model offers two advantages: 1) research can be done on a wide range of traits that might be altered by changes in metabolism and 2) the metabolic processes within the fly are similar to those in humans. Fiumera also aims to investigate which genes are associated with responses to the nanoparticles, which ultimately may help us understand why individuals react differently to nanoparticles.

For this project, Mahler expanded her GI tract model to include a commensal intestinal bacterial species and used the model to determine a more detailed mechanism of the role of nanoparticle exposure on gut bacteria and intestinal function. Early results have shown that nanoparticle ingestion alters glucose absorption, and that the presence of beneficial gut bacteria eliminates these effects.

Mahler was already investigating nanoparticles when she reached out to Fiumera and proposed they combine their respective expertise. With the help of undergraduate students Gabriella Shull and John Fountain and graduate student Jonathan Richter, Fiumera and Mahler have begun to uncover some effects of ingesting nanoparticles. Since they are using realistic, low concentrations of nanoparticles, the effects are slight, but eventually may be additive.

The most interesting aspect of this research (to me) is the notion that the impact may be additive. In short, you might be able to tolerate a few more nanoparticles in your gut but as more engineered nanoparticles become part of our food and drink (including water) and your gut receives more and more that tolerance may no longer possible.

There is increasing concern about engineered nanoparticles as they cycle through environment and the US Environmental Protection Agency (EPA) funded a programed by Arizona State University (ASU), LCnano Network (part of the EPA’s larger Life Cycle of Nanomaterials project). You can find out more about the ASU program in my April 8, 2014 post (scroll down about 50% of the way).

Getting back to Binghamton, I look forward to hearing more about the research as it progresses.

Electrifying DNA (deoxyribonucleic acid)

All kinds of things have electrical charges including DNA (deoxyribonucleic acid) according to an April 15, 2015 news item on Azonano,

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University’s Biodesign Institute, explore the ways in which electrical charges move along DNA bases affixed to a pair of electrodes.

Their work reveals a new mechanism of charge transport that differs from the two recognized patterns in which charge either tunnels or hops along bases of the DNA chain.

An April 13, 2015 Arizona State University (ASU) news release (also on EurekAlert and dated April 14, 2015), which originated the news item, explains why this ‘blue sky’ research may prove important in the future,

Researchers predict that foundational work of this kind will have important implications in the design of a new generation of functional DNA-based electronic devices as well as providing new insights into health risks associated with transport-related damage to DNA.

Oxidative damage is believed to play a role in the initiation and progression of cancer. It is also implicated in neurodegenerative disorders like Alzheimer’s, Huntington’s disease and Parkinson’s disease and a range of other human afflictions.

An electron’s movements plays an important role in your body’s chemical reactions (from the news release),

The transfer of electrons is often regarded as the simplest form of chemical reaction, but nevertheless plays a critical role in a broad range of life-sustaining processes, including respiration and photosynthesis.

Charge transport can also produce negative effects on living systems, particularly through the process of oxidative stress, which causes damage to DNA and has been invoked in a broad range of diseases.

“When DNA is exposed to UV light, there’s a chance one of the bases– such as guanine–gets oxidized, meaning that it loses an electron,” Tao says. (Guanine is easier to oxidize than the other three bases, cytosine, thymine, and adenine, making it the most important base for charge transport.)

In some cases, the DNA damage is repaired when an electron migrates from another portion of the DNA strand to replace the missing one. DNA repair is a ceaseless, ongoing process, though a gradual loss of repair efficiency over time is one factor in the aging process. Oxidation randomly damages both RNA and DNA, which can interfere with normal cellular metabolism.

Radiation damage is also an issue for semiconductor devices, Tao notes–a factor that must be accounted for when electronics are exposed to high-energy particles like X rays, as in applications designed for outer space.

Researchers like Xiang and Tao hope to better understand charge transport through DNA, and the molecule provides a unique testing ground for observation. The length of a DNA molecule and its sequence of 4 nucleotides A, T, C and G can be readily modified and studies have shown that both alterations have an effect on how electrical charge moves through the molecule.

When the loss of an electron or oxidation occurs in DNA bases, a hole is left in place of the electron. This hole carries a positive charge, which can move along the DNA length under the influence of an electrical or magnetic field, just as an electron would. The movement of these positively charged holes along a stretch of DNA is the focus of the current study.

The news release goes on to describe charge transport,

Two primary mechanisms of charge transport have been examined in detail in previous research. Over short distances, an electron displays the properties of a wave, permitting it to pass straight through a DNA molecule. This process is a quantum mechanical effect known as tunneling.

Charge transport in DNA (and other molecules) over longer distances involves the process of hopping. When a charge hops from point to point along the DNA segment, it behaves classically and loses its wavelike properties. The electrical resistance is seen to increases exponentially during tunneling behavior and linearly, during hopping.

By attaching electrodes to the two ends of a DNA molecule, the researchers were able to monitor the passage of charge through the molecule, observing something new: “What we found in this particular paper is that there is an intermediate behavior,” Tao says. “It’s not exactly hopping because the electron still displays some of the wave properties.”

Instead, the holes observed in certain sequences of DNA are delocalized, spread over several base pairs. The effect is neither a linear nor exponential increase in electrical resistance but a periodic oscillation. The phenomenon was shown to be highly sequence dependent, with stacked base pairs of guanine-cytosine causing the observed oscillation.

Control experiments where G bases alternated, rather than occurring in a sequential stack, showed a linear increase in resistance with molecular length, in agreement with conventional hopping behavior.

A further property of DNA is also of importance in considering charge transport. The molecule at room temperature is not like a wire in a conventional electronic device, but rather is a highly dynamic structure, that writhes and fluctuates.

The last bit about writhing and fluctuating makes this work sound fascinating and very challenging.

Here’s a link to and a citation for the paper,

Intermediate tunnelling–hopping regime in DNA charge transport by Limin Xiang, Julio L. Palma, Christopher Bruot, Vladimiro Mujica, Mark A. Ratner, & Nongjian Tao. Nature Chemistry 7, 221–226 (2015) doi:10.1038/nchem.2183 Published online 20 February 2015

This paper is behind a paywall.

More about MUSE, a Canadian company and its brain sensing headband; women and startups; Canadianess

I first wrote about Ariel Garten and her Toronto-based (Canada) company, InteraXon, in a Dec. 5, 2012 posting where I featured a product, MUSE (Muse), then described as a brainwave controller. A March 5, 2015 article by Lydia Dishman for Fast Company provides an update on the product now described as a brainwave-sensing headband and on the company (Note: Links have been removed),

The technology that had captured the imagination of millions was then incorporated to develop a headband called Muse. It sells at retail stores like BestBuy for about $300 and works in conjunction with an app called Calm as a tool to increase focus and reduce stress.

If you always wanted to learn to meditate without those pesky distracting thoughts commandeering your mind, Muse can help by taking you through a brief exercise that translates brainwaves into the sound of wind. Losing focus or getting antsy brings on the gales. Achieving calm rewards you with a flock of birds across your screen.

The company has grown to 50 employees and has raised close to $10 million from investors including Ashton Kutcher. Garten [Ariel Garten, founder and Chief Executive Founder] says they’re about to close on a Series B round, “which will be significant.”

She says that listening plays an important role at InteraXon. Reflecting back on what you think you heard is an exercise she encourages, especially in meetings. When the development team is building a tool, for example, they use their Muses to meditate and focus, which then allows for listening more attentively and nonjudgmentally.

Women and startups

Dishman references gender and high tech financing in her article about Garten,

Garten doesn’t dwell on her status as a woman in a mostly male-dominated sector. That goes for securing funding for the startup too, despite the notorious bias venture-capital investors have against women startup founders.

“I am sure I lost deals because I am a woman, but also because the idea didn’t resonate,” she says, adding, “I’m sure I gained some because I am a woman, so it is unfair to put a blanket statement on it.”

Yet Garten is the only female member of her C-suite, something she says “is just the way it happened.” Casting the net recently to fill the role of chief operating officer [COO], Garten says there weren’t any women in the running, in part because the position required hardware experience as well as knowledge of working with the Chinese.

She did just hire a woman to be senior vice president of sales and marketing, and says, “When we are hiring younger staff, we are gender agnostic.”

I can understand wanting to introduce nuance into the ‘gender bias and tech startup discussion’ by noting that some rejections could have been due to issues with the idea or implementation. But the comment about being the only female in late stage funding as “just the way it happened” suggests she is extraordinarily naïve or willfully blind. Given her followup statement about her hiring practices, I’m inclined to go with willfully blind. It’s hard to believe she couldn’t find any woman with hardware experience and China experience. It seems more likely she needed a male COO to counterbalance a company with a female CEO. As for being gender agnostic where younger staff are concerned, that’s nice but it’s not reassuring as women have been able to get more junior positions. It’s the senior positions such as COO which remain out of reach and, troublingly, Garten seems to have blown off the question with a weak explanation and a glib assurance of equality at the lower levels of the company.

For more about gender, high tech companies, and hiring/promoting practices, you can read a March 5, 2015 article titled, Ellen Pao Trial Reveals the Subtle Sexism of Silicon Valley, by Amanda Marcotte for Slate.

Getting back to MUSE, you can find out more here. You can find out more about InterAxon here. Unusually, there doesn’t seem to be any information about the management team on the website.

Canadianness

I thought it was interesting that InterAxon’s status as a Canada-based company was mentioned nowhere in Dishman’s article. This is in stark contrast to Nancy Owano’s  Dec. 5, 2012 article for phys.org,

A Canadian company is talking about having a window, aka computer screen, into your mind. … InteraXon, a Canadian company, is focused on making a business out of mind-control technology via a headband device, and they are planning to launch this as a $199 brainwave computer controller called Muse. … [emphases mine]

This is not the only recent instance I’ve noticed. My Sept. 1, 2014 posting mentions what was then an upcoming Margaret Atwood event at Arizona State University,

… (from the center’s home page [Note: The center is ASU’s Center for Science and the Imagination]),

Internationally renowned novelist and environmental activist Margaret Atwood will visit Arizona State University this November [2014] to discuss the relationship between art and science, and the importance of creative writing and imagination for addressing social and environmental challenges.

Atwood’s visit will mark the launch of the Imagination and Climate Futures Initiative … Atwood, author of the MaddAddam trilogy of novels that have become central to the emerging literary genre of climate fiction, or “CliFi,” will offer the inaugural lecture for the initiative on Nov. 5.

“We are proud to welcome Margaret Atwood, one of the world’s most celebrated living writers, to ASU and engage her in these discussions around climate, science and creative writing,” …  “A poet, novelist, literary critic and essayist, Ms. Atwood epitomizes the creative and professional excellence our students aspire to achieve.”

There’s not a single mention that she is Canadian there or in a recent posting by Martin Robbins about a word purge from the Oxford Junior Dictionary published by the Guardian science blog network (March 3, 2015 posting). In fact, Atwood was initially described by Robbins as one of Britain’s literary giants. I assume there were howls of anguish once Canadians woke up to read the article since the phrase was later amended to “a number of the Anglosphere’s literary giants.”

The omission of InterAxon’s Canadianness in Dishman’s article for an American online magazine and Atwood’s Canadianness on the Arizona State University website and Martin Robbins’ initial appropriation and later change to the vague-sounding “Anglospere” in his post for the British newspaper, The Guardian, means the bulk of their readers will likely assume InterAxon is American and that Margaret Atwood, depending on where you read about her, is either an American or a Brit.

It’s flattering that others want to grab a little bit of Canada for themselves.

Coda: The Oxford Junior Dictionary and its excision of ‘nature’ words

 

Robbins’ March 3, 2015 posting focused on a heated literary discussion about the excision of these words from the Oxford Junior Dictionary (Note:  A link has been removed),

“The deletions,” according to Robert Macfarlane in another article on Friday, “included acorn, adder, ash, beech, bluebell, buttercup, catkin, conker, cowslip, cygnet, dandelion, fern, hazel, heather, heron, ivy, kingfisher, lark, mistletoe, nectar, newt, otter, pasture and willow. The words taking their places in the new edition included attachment, block-graph, blog, broadband, bullet-point, celebrity, chatroom, committee, cut-and-paste, MP3 player and voice-mail.”

I’m surprised the ‘junior’ dictionary didn’t have “attachment,” “celebrity,” and “committee” prior to the 2007 purge. By the way, it seems no one noticed the purge till recently. Robbins has an interesting take on the issue, one with which I do not entirely agree. I understand needing to purge words but what happens a child reading a classic such as “The Wind in the Willows’ attempts to look up the word ‘willows’?  (Thanks to Susan Baxter who in a private communication pointed out the problems inherent with reading new and/or classic books and not being able to find basic vocabulary.)