Tag Archives: Atlantic Canada Opportunities Agency (ACOA)

University of New Brunswick (Canada), ‘sun in a can’, and buckyballs

Cutting the cost for making solar cells could be a step in the right direction for more widespread adoption. At any rate, that seems to be the motivation for Dr. Felipe Chibante of the University of New Brunswick  and his team as they’ve worked for the past three years or so on cutting production costs for fullerenes (also known as, buckminsterfullerenes, C60, and buckyballs). From a Dec. 23, 2015 article by Michael Tutton for Canadian Press,

A heating system so powerful it gave its creator a sunburn from three metres away is being developed by a New Brunswick engineering professor as a method to sharply reduce the costs of making the carbon used in some solar cells.

Felipe Chibante says his “sun in a can” method of warming carbon at more than 5,000 degrees Celsius helps create the stable carbon 60 needed in more flexible forms of photovoltaic panels.

Tutton includes some technical explanations in his article,

Chibante and senior students at the University of New Brunswick created the system to heat baseball-sized lumps of plasma — a form of matter composed of positively charged gas particles and free-floating negatively charged electrons — at his home and later in a campus lab.

According to a May 22, 2012 University of New Brunswick news release received funding of almost $1.5M from the Atlantic Canada Opportunities Agency for his work with fullerenes,

Dr. Felipe Chibante, associate professor in UNB’s department of chemical engineering, and his team at the Applied Nanotechnology Lab received nearly $1.5 million to lower the cost of fullerenes, which is the molecular form of pure carbon and is a critical ingredient for the plastic solar cell market.

Dr. Chibante and the collaborators on the project have developed fundamental synthesis methods that will be integrated in a unique plasma reactor to result in a price reduction of 50-75 per cent.

Dr. Chibante and his work were also featured in a June 10, 2013 news item on CBC (Canadian Broadcasting Corporation) news online,

Judges with the New Brunswick Innovation Fund like the idea and recently awarded Chibante $460,000 to continue his research at the university’s Fredericton campus.

Chibante has a long history of working with fullerenes — carbon molecules that can store the sun’s energy. He was part of the research team that discovered fullerenes in 1985 [the three main researchers at Rice University, Texas, received Nobel Prizes for the work].

He says they can be added to liquid, spread over plastic and shingles and marketed as a cheaper way to convert sunlight into electricity.

“What we’re trying to do in New Brunswick with the science research and innovation is we’re really trying to get the maximum bang for the buck,” said Chibante.

As it stands, fullerenes cost about $15,000 per kilogram. Chibante hopes to lower the cost by a factor of 10.

The foundation investment brings Chibante’s research funding to about $6.2 million.

Not everyone is entirely sold on this approach to encouraging solar energy adoption (from the CBC news item),

The owner of Urban Pioneer, a Fredericton [New Brunswick] company that sells alternative energy products, likes the concept, but doubts there’s much of a market in New Brunswick.

“We have conventional solar panels right now and they’re not that popular,” said Tony Craft.

“So I can’t imagine, like, when you throw something completely brand new into it, I don’t know how people are going to respond to that even, so it may be a very tough sell,” he said.

Getting back to Chibante’s breakthrough (from Tutton’s Dec. 23, 2015 article),

The 52-year-old researcher says he first set up the system to operate in his garage.

He installed optical filters to watch the melting process but said the light from the plasma was so intense that he later noticed a sunburn on his neck.

The plasma is placed inside a container that can contain and cool the extremely hot material without exposing it to the air.

The conversion technology has the advantage of not using solvents and doesn’t produce the carbon dioxide that other baking systems use, says Chibante.

He says the next stage is finding commercial partners who can help his team further develop the system, which was originally designed and patented by French researcher Laurent Fulcheri.

Chibante said he doesn’t believe the carbon-based, thin-film solar cells will displace the silicon-based cells because they capture less energy.

But he nonetheless sees a future for the more flexible sheets of solar cells.

“You can make fibres, you can make photovoltaic threads and you get into wearable, portable forms of power that makes it more ubiquitous rather than having to carry a big, rigid structure,” he said.

The researcher says the agreement earlier this month [Nov. 30 – Dec. 12, 2015] in Paris among 200 countries to begin reducing the use of fossil fuels and slow global warming may help his work.

By the way,  Chibante estimates production costs for fullerenes, when using his system, would be less that $50/kilogram for what is now the highest priced component of carbon-based solar cells.

There is another researcher in Canada who works in the field of solar energy, Dr. Ted Sargent at the University of Toronto (Ontario). He largely focuses on harvesting solar energy by using quantum dots. I last featured Sargent’s quantum dot work in a Dec. 9, 2014 posting.

Atlantic Canada’s Lamda Guard signs deal to test nanocomposite windshield film with Airbus

This story comes from Nova Scotia although you wouldn’t know it if you’d only read the June 5, 2014 news item on Azonano,

Lamda Guard, a company based in Atlantic Canada, has signed an agreement with leading aircraft manufacturer Airbus to test a breakthrough innovation designed to deflect unwanted bright light or laser sources from impacting jetliner flight paths, and causing pilot disorientation or injury.

A June 4, 2014 news release (either from Lamda Guard.com or MTI [metamaterial.com]; Note: More about the multiple webspaces later] and there’s a PDF version here), which originated the news item, provides a little more information about the technology and the perspectives from various stakeholders

Lamda Guard’s innovative thin films utilize metamaterial technology on cockpit windscreens to selectively block and control light coming from any angle even at the highest power levels. “Today marks a milestone in optical applications of nano-composites,” said George Palikaras, President and CEO of Lamda Guard. “Through our collaboration with Airbus we are working to introduce our metamaterial technology, for the first time, as a solution to laser interference in the aviation industry.” The announcement today comes within weeks of the release of an FBI [US Federal Bureau of Investigation] report citing 3,960 aircraft laser strikes in the US in 2013 according to the Federal Aviation Authority (FAA).

Senior Vice President of Innovation Yann Barbaux stated: “At Airbus, we are always on the lookout for new ideas coming from innovative SMEs [small to medium enterprises], such as Lamda Guard. We are very pleased to explore together the potential application of this solution to our aircraft, for the benefit of our customers.”

Over the past year Lamda Guard has been working with the research community at the University of Moncton and the University of New Brunswick, as well as stakeholders, investors and funders to highlight the benefits of nano-composites. The Atlantic Canada Opportunities Agency (ACOA) in particular has played an important role in Lamda Guard’s research and development efforts. In 2012, ACOA assisted Lamda Guard with technology commercialization and recently upgraded its contribution to $500,000 to further assist the company in developing and manufacturing its products for the aviation industry.

The Lamda Guard Airbus partnership marks the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

I tried to find more information about the technology and tracked down this tiny bit, from the What are MetaMaterials? webpage on the MTI website,

A metamaterial typically consists of a multitude of structured unit cells that are comprised of multiple individual elements, which are referred to as meta-atoms. The individual elements are assembled from conventional microscopic materials such as metals and/or plastics, which are arranged in periodic patterns.

MTI’s precisely designed structures are developed with proprietary algorithms, producing a new generation of optical products that are built in state-of-the-art thin film nano-fabrication labs. MTI’s proprietary software accurately predicts the desired design pattern to generate a unique material that meets customer specifications. MTI’s sleek designs mean manufacturers can reduce their cost of materials significantly while increasing performance, e.g. by increasing the light output of an LED bulb or increasing the absorption of light in a solar panel.

Multiple webspaces and presences

While Lamda Guard has a .com presence, you will find yourself on the metamaterial.com website in the Lamda Guard webspace (I suppose you could also call it a subsite) once you start clicking for more information.  In fact, MTI owns three Lamda companies as per this description from the Our Company webpage on the MTI (metamaterial.com) website (Note: Links have been removed),

MTI is an advanced materials and systems engineering company developing and commercializing innovative optical solutions. The company’s core team has over 200 years of combined experience at the forefront of the design and implementation of metamaterials, making MTI a pioneer in bridging the gap between the theoretical and the possible.

MTI specializes in metamaterials, nanotechnology, theoretical and computational electromagnetics. The company’s in-house expertise enables the rapid development of a wide array of metamaterial applications, covering a diverse range of markets.

MTI’s technologies are adaptable and can be custom-designed to suit an industry manufacturer’s specifications allowing for scalability and rapid prototyping with minimum overheads. MTI provides access to world class nano-composite research and development, including specialty, as well as customized, products and licensing of its proprietary solutions to customers ranging from government to private companies.

MTI has three wholly owned subsidiaries:

Lamda Guard Inc. which develops advanced filters to block out selected parts of the light spectrum, protecting the eyes from lasers or other sources of hazardous light.

Lamda Solar Inc. products increase the efficiency of solar panel cells by absorbing more light.

Lamda Lux Inc. technology increases the delivered lumens and reduces the cost of thermal management of LED lighting.

Interestingly, the Lamda Guard Management team‘s (in the Lamda Guard webspace) Chief Science Officer, Dr. Themos Kallos, and Chief Intellectual Property Officer, Dr. Quinton Fivelman, both appear to reside in the UK (assuming I looked at the correct LinkedIn profiles).  Coincidentally, MTI’s contact page lists the company’s headquarters as being in Nova Scotia but Sales, Research and Development would seem to be located in the UK.

Presumably, this company is maximizing its access to government grants and tax incentives in both the UK and Canada. The deal with the Airbus suggests that this has been a successful strategy possibly leading to commercialized technology and, hopefully, jobs.