Tag Archives: atoms

Why do objects feel solid when atoms are mostly empty space?

Roger Barlow (professor at University of Huddersfield, UK) has written a Feb. 16, 2017 essay for The Conversation explaining why objects feel solid (Note: A link has been removed),

Chemist John Dalton proposed the theory that all matter and objects are made up of particles called atoms, and this is still accepted by the scientific community, almost two centuries later. Each of these atoms is each made up of an incredibly small nucleus and even smaller electrons, which move around at quite a distance from the centre.

If you imagine a table that is a billion times larger, its atoms would be the size of melons. But even so, the nucleus at the centre would still be far too small to see and so would the electrons as they dance around it. So why don’t our fingers just pass through atoms, and why doesn’t light get through the gaps?

To explain why we must look at the electrons. Unfortunately, much of what we are taught at school is simplified – electrons do not orbit the centre of an atom like planets around the sun, like you may have been taught. Instead, think of electrons like a swarm of bees or birds, where the individual motions are too fast to track, but you still see the shape of the overall swarm.

In fact, electrons dance – there is no better word for it. …

Electrons are like a swarm of birds. John Holmes/Wikimedia Commons, CC BY-SA

Here’s one more excerpt from Barlow’s essay,

So why does a table also feel solid? Many websites will tell you that this is due to the repulsion – that two negatively charged things must repel each other. But this is wrong, and shows you should never trust some things on the internet. It feels solid because of the dancing electrons.

Do enjoy!

An atom without properties?

There’s rather intriguing Swiss research into atoms and so-called Bell Correlations according to an April 21, 2016 news item on ScienceDaily,

The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. Their findings are published in the scientific journal Science.

Everyday objects possess properties independently of each other and regardless of whether we observe them or not. Einstein famously asked whether the moon still exists if no one is there to look at it; we answer with a resounding yes. This apparent certainty does not exist in the realm of small particles. The location, speed or magnetic moment of an atom can be entirely indeterminate and yet still depend greatly on the measurements of other distant atoms.

An April 21, 2016 University of Basel (Switzerland) press release (also on EurekAlert), which originated the news item, provides further explanation,

With the (false) assumption that atoms possess their properties independently of measurements and independently of each other, a so-called Bell inequality can be derived. If it is violated by the results of an experiment, it follows that the properties of the atoms must be interdependent. This is described as Bell correlations between atoms, which also imply that each atom takes on its properties only at the moment of the measurement. Before the measurement, these properties are not only unknown – they do not even exist.

A team of researchers led by professors Nicolas Sangouard and Philipp Treutlein from the University of Basel, along with colleagues from Singapore, have now observed these Bell correlations for the first time in a relatively large system, specifically among 480 atoms in a Bose-Einstein condensate. Earlier experiments showed Bell correlations with a maximum of four light particles or 14 atoms. The results mean that these peculiar quantum effects may also play a role in larger systems.

Large number of interacting particles

In order to observe Bell correlations in systems consisting of many particles, the researchers first had to develop a new method that does not require measuring each particle individually – which would require a level of control beyond what is currently possible. The team succeeded in this task with the help of a Bell inequality that was only recently discovered. The Basel researchers tested their method in the lab with small clouds of ultracold atoms cooled with laser light down to a few billionths of a degree above absolute zero. The atoms in the cloud constantly collide, causing their magnetic moments to become slowly entangled. When this entanglement reaches a certain magnitude, Bell correlations can be detected. Author Roman Schmied explains: “One would expect that random collisions simply cause disorder. Instead, the quantum-mechanical properties become entangled so strongly that they violate classical statistics.”

More specifically, each atom is first brought into a quantum superposition of two states. After the atoms have become entangled through collisions, researchers count how many of the atoms are actually in each of the two states. This division varies randomly between trials. If these variations fall below a certain threshold, it appears as if the atoms have ‘agreed’ on their measurement results; this agreement describes precisely the Bell correlations.

New scientific territory

The work presented, which was funded by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), may open up new possibilities in quantum technology; for example, for generating random numbers or for quantum-secure data transmission. New prospects in basic research open up as well: “Bell correlations in many-particle systems are a largely unexplored field with many open questions – we are entering uncharted territory with our experiments,” says Philipp Treutlein.

Here’s a link to and a citation for the paper,

Bell correlations in a Bose-Einstein condensate by Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard. Science  22 Apr 2016: Vol. 352, Issue 6284, pp. 441-444 DOI: 10.1126/science.aad8665

This paper is behind a paywall.

Chad Mirkin’s periodic table of modified nucleic acid nanoparticles

Chad Mirkin has been pushing his idea for a new periodic table of ‘nanoparticles’ since at least Feb. 2013 (I wrote about this and some of Mirkin’s other work in my Feb. 19, 2013 posting) when he presented it at the 2013 American Association for the Advancement of Science (AAAS) annual meeting in Boston, Massachusetts. From a Feb. 17, 2013 news item on ScienceDaily,

Northwestern University’s Chad A. Mirkin, a leader in nanotechnology research and its application, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build — from the bottom up, just as nature does — new and useful structures.

Mirkin will discuss his research in a session titled “Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New Periodic Table” at the American Association for the Advancement of Science (AAAS) annual meeting in Boston.

“We have a new set of building blocks,” Mirkin said. “Instead of taking what nature gives you, we can control every property of the new material we make. [emphasis mine] We’ve always had this vision of building matter and controlling architecture from the bottom up, and now we’ve shown it can be done.”

Mirkin seems a trifle grandiose; I’m hoping he doesn’t have any grand creation projects that require seven days.

Getting back to the new periodic table, the Feb. 13, 2013 Northwestern University news release by Megan Fellman, which originated the news item,  provides a few more details,

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.
….
Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. “These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease,” Mirkin added.

With this present advance, Mirkin uses nanoparticles as “atoms” and DNA as “bonds.” He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide’s DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

“This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful,” Mirkin said. “It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up.”

Mirkin and his colleagues have since published a paper about this new periodic table in Angewandte Chemie (May 2013). And, earlier today (July 5, 2013) Philip Ball writing (A self-assembled periodic table) for the Royal Society of Chemistry provided a critique of the idea while supporting it in principle,

Mirkin and his colleagues perceive the pairing of [DNA] strands as somewhat analogous to the covalent pairing of electrons and call their DNA-tagged nanoparticles programmable atom equivalents (PAEs). These PAEs may bind to one another according to particular combinatorial rules and Mirkin proposes a kind of periodic table of PAEs that systematises their possible interactions and permutations.
Well, it’s not hard to start enumerating ways in which PAEs are unlike atoms. Most fundamentally, perhaps, the bonding propensity of a PAE need bear no real relation to the ‘atom’ (the nanoparticle) with which it is associated: a given nanoparticle might be paired with any other, and there’s nothing periodic about those tendencies.

I recommend reading Ball’s piece for the way he analyzes the weaknesses and for why he thinks the effort to organize PAEs conceptually is worthwhile.

For the curious, here’s a link to and a citation for the researchers’ published paper,

Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New “Table of Elements by Robert J. Macfarlane, Matthew N. O’Brien, Dr. Sarah Hurst Petrosko, and Prof. Chad A. Mirkin. Angewandte Chemie International Edition Volume 52, Issue 22, pages 5688–5698, May 27, 2013. Article first published online: 2 MAY 2013 DOI: 10.1002/anie.201209336

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

One final comment, this is not the first ‘nanoparticle table of elements’.  Larry Bell mentioned one in his Dec. 7, 2010 NISENet (Nanoscale Informal Science Education Network) blog posting,

The focus of today’s sessions at NSF’s [US National Science Foundation] meeting of nanoscale science and engineering grantees focuses on putting the science to practical use. First up this morning is nanomanufacturing. Mark Tuonimen from the University of Massachusetts at Amherst gave a talk about the Nanoscale Manufacturing Network and one of his images caught my imagination. This image, which comes from the draft Nano2 vision document on the next decade of nanoscale research, illustrates and idea that is sometimes referred to as a periodic table of nanoparticles.

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

Bell goes on to describe one way in which a nanoparticle table of elements would have to differ from the traditional chemistry table.

The best atomic movie ever from the University of Toronto (Canada)

To date, the real-time video, recorded by scientists from the University of Toronto, of atoms undergoing a transformation to become a new structure offers the best resolution yet, according to an Apr. 18, 2013 news item on Azonano,

“It’s the first look at how chemistry and biology involve just a few key motions for even the most complex systems,” says U of T [University of Toronto] chemistry and physics professor R. J. Dwayne Miller, principal investigator of the study. “There is an enormous reduction in complexity at the defining point, the transition state region, which makes chemical processes transferrable from one type of molecule to another. This is how new drugs or materials are made.”

Miller, who holds a joint appointment as director of the Max Planck Research Group for Structural Dynamics at the Centre for Free Electron Laser Science, conducted the research with colleagues from institutions in Germany and Japan. He says nature uses this reduction principle at transition states to breathe life into otherwise inanimate matter.

“The first atomic movies were very grainy, much like the first motion pictures,” says Miller. “The new movies are so clear one could dare say they are becoming beautiful to behold, especially when you remember you are looking at atoms moving on the fly. We’ve captured them at an incredibly fast rate of less than 1 millionth of a millionth of a second per frame.”

In the Apr. 17, 2013 University of Toronto news release, which originated the news item, Miller provides a description of the complexity,

To help illuminate what’s going on here,  Miller explains that with two atoms there is only one possible coordinate or dimension for following the chemical pathway. With three atoms, two dimensions are now needed. However, with a complex molecule, it would be expected that hundreds or even thousands of dimensions would be required to map all possible trajectories of the atoms.

“In this case, chemistry would be a completely new problem for every molecule,” says Miller. “But somehow there is an enormous reduction in dimensions to just a few motions, and we are now able to see exactly how this works at the atomic level of detail.”

Mapping molecular motions -- the "magic" of Chemistry revealed. Despite the enormous number of possible arrangements of atoms during a structural transition, such as occurs with changes in charge distribution or chemical processes, the interconversion from one structure to another reduces to a few key types of motions.  This enormous reduction in dimensionality is what makes chemical concepts transferable from one molecule to another and has enabled chemists to synthesize nearly any molecule desired, for new drugs to infusing new material properties. This movie gives a direct atomic level view of this enormous reduction in complexity.  The specific trajectories along 3 different coordinates, as highlighted in the movie, are shown as projections (right view) on a cube.  The key atomic motions can be mapped on to 3 highly simplified coordinates -- the magic of chemistry in its full atomic splendour. Credit: Lai Chung Liu, University of Toronto

Mapping molecular motions — the “magic” of Chemistry revealed. Despite the enormous number of possible arrangements of atoms during a structural transition, such as occurs with changes in charge distribution or chemical processes, the interconversion from one structure to another reduces to a few key types of motions. This enormous reduction in dimensionality is what makes chemical concepts transferable from one molecule to another and has enabled chemists to synthesize nearly any molecule desired, for new drugs to infusing new material properties. This movie gives a direct atomic level view of this enormous reduction in complexity. The specific trajectories along 3 different coordinates, as highlighted in the movie, are shown as projections (right view) on a cube. The key atomic motions can be mapped on to 3 highly simplified coordinates — the magic of chemistry in its full atomic splendour.
Credit: Lai Chung Liu, University of Toronto

Unfortunately, I was not able to successfully bring over the movie but you can try accessing it from here.