Tag Archives: Australia

Building architecture inspires new light-bending material

Usually, it’s nature which inspires scientists but not this time. Instead, a building in Canberra, Australia has provided the inspiration according to a March 24, 2015 news item on Nanowerk,

Physicists inspired by the radical shape of a Canberra building have created a new type of material which enables scientists to put a perfect bend in light.

The creation of a so-called topological insulator could transform the telecommunications industry’s drive to build an improved computer chip using light.

Leader of the team, Professor Yuri Kivshar from The Australian National University (ANU) said the revolutionary material might also be useful in microscopes, antenna design, and even quantum computers.

“There has been a hunt for similar materials in photonics based on large complicated structures,” said Professor Kivshar, who is the head of the Nonlinear Physics Centre in ANU Research School of Physics and Engineering.

“Instead we used a simple, small-scale zigzag structure to create a prototype of these novel materials with amazing properties.”

The structure was inspired by the Nishi building near ANU, which consists of rows of offset zigzag walls.

Here’s what the building looks like,

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them. Credit: Stuart Hay, ANU

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them.
Credit: Stuart Hay, ANU

A March 24, 2015 Australian National University press release, which originated the news item, goes on to describe topological insulators and what makes this ‘zigzag’ approach so exciting,

Topological insulators have been initially developed for electronics, and the possibility of building an optical counterpart is attracting a lot of attention.

The original zigzag structure of the material was suggested in the team’s earlier collaboration with Dr Alexander Poddubny, from Ioffe Institute in Russia, said PhD student Alexey Slobozhanyuk.

“The zigzag structure creates a coupling throughout the material that prevents light from travelling through its centre,” Mr Slobozhanyuk said.

“Instead light is channelled to the edges of the material, where it becomes completely localised by means of a kind of quantum entanglement known as topological order.”

Fellow researcher Dr Andrew Miroshnichenko said the building inspired the researchers to think of multiple zigzags.

“We had been searching for a new topology and one day I looked at the building and a bell went off in my brain,” said fellow researcher Dr Andrey Miroshnichenko.

“On the edges of such a material the light should travel completely unhindered, surfing around irregularities that would normally scatter the light.

“These materials will allow light to be bent around corners with no loss of signal,” he said.

The team showed that the exceptional attributes of the material are related to its structure, or topology, and not to the molecules it is made from.

“In our experiment we used an array of ceramic spheres, although the initial theoretical model used metallic subwavelength particles,” said Dr Miroshnichenko.

“Even though they are very different materials they gave the same result.”

In contrast with other international groups attempting to create topological insulators with large scale structures, the team used spheres that were smaller than the wavelength of the microwaves in their successful experiments.

Dr Poddubny devised the theory when he realised there was a direct analogy between quantum Kitaev’s model of Majorana fermions and optically coupled subwavelength scatterers.

Mr Slobozhanyuk said the team could control which parts of the material surface the light is channelled to by changing the polarisation of the light.

“This opens possibilities ranging from nanoscale light sources for enhancing microscopes, highly efficient antennas or even quantum computing,” he said.

“The structure couples the two sides of the material, so they could be used as entangled qubits for quantum computing.”

It would be nice to offer a link to a published paper but I cannot find one.

Looking for nano silicon at 10 nm (nanometres)

I received this request from Greg Packer on March 17, 2015,

Dear Sir we are looking for suppliers of a small qty say 5 kilo of nano silicon 10nm for hydrogen production with water for testing of a new producť designed fòr Ìndia.If you can help please ĺet us know plus the cost we are on the Gold Coast Qld
Thanks Greg Packer. 0403159635

As the request was in a comment to a post from 2010 I’m not sure how many people would see it and so have placed it here. The Gold Coast he is referring to is in Queensland, Australia.

To be clear, I do not know Mr. Packer and am not familiar with the product or his company but if you’re selling, it never hurts to check these things out.

How geckos self-clean, even in dusty environments

An Australian research team claims a world first with regard to ‘gecko research’ according to a March 16, 2014 news item on ScienceDaily,

In a world first, a research team including James Cook University [JCU] scientists has discovered how geckos manage to stay clean, even in dusty deserts.

The process, described in Interface, a journal of the Royal Society, may also turn out to have important human applications.

JCU’s Professor Lin Schwarzkopf said the group found that tiny droplets of water on geckos, for instance from condensing dew, come into contact with hundreds of thousands of extremely small hair-like spines that cover the animals’ bodies.

A March 16, 2015 JCU press release (also on EurekAlert), which originated the news item, provides more detail,

“If you have seen how drops of water roll off a car after it is waxed, or off a couch that’s had protective spray used on it, you’ve seen the process happening,” she said. “The wax and spray make the surface very bumpy at micro and nano levels, and the water droplets remain as little balls, which roll easily and come off with gravity or even a slight wind.”

The geckos’ hair-like spines trap pockets of air and work on the same principle, but have an even more dramatic effect. Through a scanning electron microscope, tiny water droplets can be seen rolling into each other and jumping like popcorn off the skin of the animal as they merge and release energy.

Scientists were aware that hydrophobic surfaces repelled water, and that the rolling droplets helped clean the surfaces of leaves and insects, but this is the first time it has been documented in a vertebrate animal. Box-patterned geckos live in semi-arid habitats, with little rain but may have dew forming on them when the temperature drops overnight.

Professor Schwarzkopf said the process may help geckos keep clean, as the water can carry small particles of dust and dirt away from their body. “They tend to live in dry environments where they can’t depend on it raining, and this keeps process them clean,” she said.

She said there were possible applications for marine-based electronics that have to shed water quickly in use and for possible “superhydrophobic” clothing that would not get wet or dirty and would never need washing.

I’ve been reading about self-cleaning products for years now. (sigh) Where are they? Despite this momentary lapse into sighing and wailing, I am much encouraged that scientists are still trying to figure out how to create self-cleaning products.

Here’s a link to and a citation for the paper,

Removal mechanisms of dew via self-propulsion off the gecko skin by Gregory S. Watson, Lin Schwarzkopf, Bronwen W. Cribb, Sverre Myhra, Marty Gellender, and Jolanta A. Watson.
Interface, April 2015, Volume: 12 Issue: 105 DOI: 10.1098/rsif.2014.1396 Published 11 March 2015

This paper is open access.

Optical nanoantennas open up lab-on-a-chip possibilities

A Feb. 24, 2015 news item on Nanowerk describes nanoantenna research coming out of Australia (Note: A link has been removed),

Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering, they say.

In a paper published in the Journal of Applied Physics (“Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering”), Debabrata Sikdar of Monash University in Victoria, Australia, and colleagues describe these and other envisioned applications for their nanocubes in “laboratories-on-a-chip.” …

A Feb. 24, 2015 American Institute of Physics news release on EurekAlert, which originated the news item, describes the work in detail,

… The cubes, composed of insulating, rather than conducting or semiconducting materials as were the spherical versions, are easier to fabricate as well as more effective, he [Sikdar] says.

Sikdar’s paper presents analysis and simulation of 200-nanometer dielectric (nonconductive) nanoncubes placed in the path of visible and near-infrared light sources. The nanocubes are arranged in a chain, and the space between them can be adjusted to fine-tune the light beam as needed for various applications. As the separation between cubes increases, the angular width of the beam narrows and directionality improves, the researchers say.

“Unidirectional nanoantennas induce directionality to any omnidirectional light emitters like microlasers, nanolasers or spasers, and even quantum dots,” Sikdar said in an interview. Spasers are similar to lasers, but employ minute oscillations of electrons rather than light. Quantum dots are tiny crystals that produce specific colors, based on their size, and are widely used in color televisions. “Analogous to nanoscale spotlights, the cubic antennas focus light with precise control over direction and beam width,” he said. [emphasis mine]

The new cubic nanoantennas have the potential to revolutionize the infant field of nano-electromechanical systems (NEMS). “These unidirectional nanoantennas are most suitable for integrated optics-based biosensors to detect proteins, DNA, antibodies, enzymes, etc., in truly portable lab-on-a-chip platforms of the future,” Sikdar said. “They can also potentially replace the lossy on-chip IC (integrated circuit) interconnects, via transmitting optical signals within and among ICs, to ensure ultrafast data processing while minimizing device heating,” he added. [emphasis mine]

Sikdar and his colleagues plan to begin constructing unidirectional cubic NEMS antennas in the near future at the Melbourne Center for Nanofabrication. “We would like to collaborate with other research groups across the world, making all these wonders possible,” he said.

I’m glad the writer included Sikdar’s explanation of spasers and quantum dots and thank them both for a new word, “lossy.” Here’s a link to and a citation for the paper,

Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering by Debabrata Sikdar, Wenlong Cheng, and Malin Premaratne. J. Appl. Phys. 117, 083101 (2015); http://dx.doi.org/10.1063/1.4907536

This article is open access.

Microplasm-generated gold nanoparticles and the heart

Scientists are hoping they’ve found a better way to detect early signs of a heart attack according to a Jan. 15, 2015 news item on Nanotechnology Now,

NYU [New York University] Polytechnic School of Engineering professors have been collaborating with researchers from Peking University on a new test strip that is demonstrating great potential for the early detection of certain heart attacks.

Kurt H. Becker, a professor in the Department of Applied Physics and the Department of Mechanical and Aerospace Engineering, and WeiDong Zhu, a research associate professor in the Department of Mechanical and Aerospace Engineering, are helping develop a new colloidal gold test strip for cardiac troponin I (cTn-I) detection. The new strip uses microplasma-generated gold nanoparticles (AuNPs) and shows much higher detection sensitivity than conventional test strips. The new cTn-I test is based on the specific immune-chemical reactions between antigen and antibody on immunochromatographic test strips using AuNPs.

A Jan. 14, 2015 NYU Polytechnic School of Engineering news release (also on EurekAlert but dated Jan. 15, 2015), which originated the news item, explains what makes these new test strips more sensitive (hint: microplasma-generated gold nanoparticles),

Compared to AuNPs produced by traditional chemical methods, the surfaces of the gold nanoparticles generated by the microplasma-induced liquid chemical process attract more antibodies, which results in significantly higher detection sensitivity.

cTn-I is a specific marker for myocardial infarction. The cTn-I level in patients experiencing cardiac infarction is several thousand times higher than in healthy people. The early detection of cTn-I is therefore a key factor of heart attack diagnosis and therapy.

The use of microplasmas to generate AuNP is yet another application of the microplasma technology developed by Becker and Zhu.  Microplasmas have been used successfully in dental applications (improved bonding, tooth whitening, root canal disinfection), biological decontamination (inactivation of microorganisms and biofilms), and disinfection and preservation of fresh fruits and vegetables.

The microplasma-assisted synthesis of AuNPs has great potential for other biomedical and therapeutic applications such as tumor detection, cancer imaging, drug delivery, and treatment of degenerative diseases such as Alzheimer’s.

The routine use of gold nanoparticles in therapy and disease detection in patients is still years away: longer for therapeutic applications and shorter for biosensors. The biggest hurdle to overcome is the fact that the synthesis of monodisperse, size-controlled gold nanoparticles, even using microplasmas, is still a costly, time-consuming, and labor-intensive process, which limits their use currently to small-scale clinical studies, Becker explained.

Here’s a link to and citation for the paper,

Microplasma-Assisted Synthesis of Colloidal Gold Nanoparticles and Their Use in the Detection of Cardiac Troponin I (cTn-I) by Ruixue Wang, Shasha Zuo, Dong Wu, Jue Zhang, Weidong Zhu, Kurt H. Becker, and Jing Fang. Plasma Processes and Polymers DOI: 10.1002/ppap.201400127 Article first published online: 11 DEC 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

For anyone curious about the more common chemical methods of producing gold nanoparticles, there’s this video produced in Australia by TechNyou Education. There’s a specific technique described which I believe is one of the most commonly used and I think this can be generalized to other gold nanoparticle chemical production processes,

One more thing, this video runs over my 5 min. policy limit for videos. To do this, I battled my inclination to include something that I think is useful for understanding more about nanoparticles and my desire to make sure that my blog doesn’t get too bloated.

Gold nanorod instabilities

A Dec. 8, 2014 news item on Nanowerk focuses on research from Australia,

Researchers at Swinburne University of Technology [Melbourne, Australia]  have discovered an instability in gold nanoparticles that is critical for their application in future technology.

Gold nanorods are important building blocks for future applications in solar cells, cancer therapy and optical circuitry.

However their stability is under question due to their peculiar reshaping behaviour below melting points.

A Dec. 8, 2014 Swinburne University of Technology press release, which originated the news item, discusses melting points and shape instabilities in the context of this research,

A solid normally does not change its shape unless it reaches its melting point, or surface melting points. It is also known that the melting point for nanoparticles is suppressed due to their size.

PhD student Adam Taylor (now a postdoctoral researcher at Swinburne) said it came as a surprise that reshaping is observed well below these melting points. Until now, no one could explain this peculiar behaviour.

“In our work, we have discovered both theoretically and experimentally that the reshaping mechanism for nanoparticles below melting point is surface atom diffusion, rather than melting,” Mr Taylor said.

Surface atom diffusion is a process involving the motion of molecules at solid material surfaces that can generally be thought of in terms of particles jumping between adjacent adsorption sites on a surface.

“Surface atom diffusion always existed in bulk solids, but this is the first evidence that its effect is enhanced at the nano-size, dominating over the traditional theory of melting,” Associate Professor James Chon, who is supervising Mr Taylor’s research, said.

Mr Taylor said the more finely nanoparticles are shaped, the less stable they become.

“This is important, for example, for solar panel manufacturers as the more needle-like these nanoparticles are shaped the less stable they become. If you put these particles into a solar panel to concentrate light they may not last long in the sun before they degrade,” Mr Taylor said.

“This discovery will be crucial for future applications of gold nanorods, as people will need to reconsider their stability when applying them to solar cells, cancer therapeutic agents and optical circuitry.”

The researchers have provided an illustration of their work,

Courtesy Swinburne University of Technology

Courtesy Swinburne University of Technology

Here’s a link to and citation for the research,

Below Melting Point Photothermal Reshaping of Single Gold Nanorods Driven by Surface Diffusion by Adam B. Taylor, Arif M. Siddiquee, and James W. M. Chon. ACS Nano, Article ASAP DOI: 10.1021/nn5055283 Publication Date (Web): November 18, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall but should you be in Australia and eligible to attend, there’s another opportunity to learn more; Taylor will be presenting his work at the Australian Institute of Physics conference on December 10, 2014 in Canberra.

Super-capacitors on automobiles

Queensland University of Technology* (QUT; Australia) researchers are hopeful they can adapt supercapacitors in the form of a fine film tor use in electric vehicles making them more energy-efficient. From a Nov. 6, 2014 news item on ScienceDaily,

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a QUT team.

Researchers have developed lightweight “supercapacitors” that can be combined with regular batteries to dramatically boost the power of an electric car.

The discovery was made by Postdoctoral Research Fellow Dr Jinzhang Liu, Professor Nunzio Motta and PhD researcher Marco Notarianni, from QUT’s Science and Engineering Faculty — Institute for Future Environments, and PhD researcher Francesca Mirri and Professor Matteo Pasquali, from Rice University in Houston, in the United States.

A Nov. 6, 2014 QUT news release, which originated the news item, describes supercapacitors, the research, and the need for this research in more detail,

The supercapacitors – a “sandwich” of electrolyte between two all-carbon electrodes – were made into a thin and extremely strong film with a high power density.

The film could be embedded in a car’s body panels, roof, doors, bonnet and floor – storing enough energy to turbocharge an electric car’s battery in just a few minutes.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but they are able to deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

“Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared to several hours for a standard electric car battery.”

Dr Liu said currently the “energy density” of a supercapacitor is lower than a standard lithium ion (Li-Ion) battery, but its “high power density”, or ability to release power in a short time, is “far beyond” a conventional battery.

“Supercapacitors are presently combined with standard Li-Ion batteries to power electric cars, with a substantial weight reduction and increase in performance,” he said.

“In the future, it is hoped the supercapacitor will be developed to store more energy than a Li-Ion battery while retaining the ability to release its energy up to 10 times faster – meaning the car could be entirely powered by the supercapacitors in its body panels.

“After one full charge this car should be able to run up to 500km – similar to a petrol-powered car and more than double the current limit of an electric car.”

Dr Liu said the technology would also potentially be used for rapid charges of other battery-powered devices.

“For example, by putting the film on the back of a smart phone to charge it extremely quickly,” he said.

The discovery may be a game-changer for the automotive industry, with significant impacts on financial, as well as environmental, factors.

“We are using cheap carbon materials to make supercapacitors and the price of industry scale production will be low,” Professor Motta said.

“The price of Li-Ion batteries cannot decrease a lot because the price of Lithium remains high. This technique does not rely on metals and other toxic materials either, so it is environmentally friendly if it needs to be disposed of.”

A Nov. 10, 2014 news item on Azonano describes the Rice University (Texas, US) contribution to this work,

Rice University scientist Matteo Pasquali and his team contributed to two new papers that suggest the nano-infused body of a car may someday power the car itself.

Rice supplied high-performance carbon nanotube films and input on the device design to scientists at the Queensland University of Technology in Australia for the creation of lightweight films containing supercapacitors that charge quickly and store energy. The inventors hope to use the films as part of composite car doors, fenders, roofs and other body panels to significantly boost the power of electric vehicles.

A Nov. 7, 2014 Rice University news release, which originated the news item, offers a few technical details about the film being proposed for use as a supercapacitor on car panels,

Researchers in the Queensland lab of scientist Nunzio Motta combined exfoliated graphene and entangled multiwalled carbon nanotubes combined with plastic, paper and a gelled electrolyte to produce the flexible, solid-state supercapacitors.

“Nunzio’s team is making important advances in the energy-storage area, and we were glad to see that our carbon nanotube film technology was able to provide breakthrough current collection capability to further improve their devices,” said Pasquali, a Rice professor of chemical and biomolecular engineering and chemistry. “This nice collaboration is definitely bottom-up, as one of Nunzio’s Ph.D. students, Marco Notarianni, spent a year in our lab during his Master of Science research period a few years ago.”

“We built on our earlier work on CNT films published in ACS Nano, where we developed a solution-based technique to produce carbon nanotube films for transparent electrodes in displays,” said Francesca Mirri, a graduate student in Pasquali’s research group and co-author of the papers. “Now we see that carbon nanotube films produced by the solution-processing method can be applied in several areas.”

As currently designed, the supercapacitors can be charged through regenerative braking and are intended to work alongside the lithium-ion batteries in electric vehicles, said co-author Notarianni, a Queensland graduate student.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but with their high power density, deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

Because hundreds of film supercapacitors are used in the panel, the electric energy required to power the car’s battery can be stored in the car body. “Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared with several hours for a standard electric car battery,” Notarianni said.

The researchers foresee such panels will eventually replace standard lithium-ion batteries. “In the future, it is hoped the supercapacitor will be developed to store more energy than an ionic battery while retaining the ability to release its energy up to 10 times faster – meaning the car would be powered by the supercapacitors in its body panels,” said Queensland postdoctoral researcher Jinzhang Liu.

Here’s an image of graphene infused with carbon nantoubes used in the supercapacitor film,

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology - See more at: http://news.rice.edu/2014/11/07/supercharged-panels-may-power-cars/#sthash.0RPsIbMY.dpuf

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology

Here are links to and citations for the two papers published by the researchers,

Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector by Marco Notarianni, Jinzhang Liu, Francesca Mirri, Matteo Pasquali, and Nunzio Motta. Nanotechnology Volume 25 Number 43 doi:10.1088/0957-4484/25/43/435405

High performance all-carbon thin film supercapacitors by Jinzhang Liu, Francesca Mirri, Marco Notarianni, Matteo Pasquali, and Nunzio Motta. Journal of Power Sources Volume 274, 15 January 2015, Pages 823–830 DOI: 10.1016/j.jpowsour.2014.10.104

Both articles are behind paywalls.

One final note, Dexter Johnson provides some insight into issues with graphene-based supercapacitors and what makes this proposed application attractive in his Nov. 7, 2014 post on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

The hope has been that someone could make graphene electrodes for supercapacitors that would boost their energy density into the range of chemical-based batteries. The supercapacitors currently on the market have on average an energy density around 28 Wh/kg, whereas a Li-ion battery holds about 200Wh/kg. That’s a big gap to fill.

The research in the field thus far has indicated that graphene’s achievable surface area in real devices—the factor that determines how many ions a supercapacitor electrode can store, and therefore its energy density—is not any better than traditional activated carbon. In fact, it may not be much better than a used cigarette butt.

Though graphene may not help increase supercapacitors’ energy density, its usefulness in this application may lie in the fact that its natural high conductivity will allow superconductors to operate at higher frequencies than those that are currently on the market. Another likely benefit that graphene will yield comes from the fact that it can be structured and scaled down, unlike other supercapacitor materials.

I recommend reading Dexter’s commentary in its entirety.

*’University of Queensland’ corrected to “Queensland University of Technology’ on Nov. 10, 2014 at 1335 PST.

Murdoch University (Australia) encourages* bone formation in sheep

It’s time to finally publish this which has been languishing in drafts folder: from a Sept. 16, 2014 news item on Nanowerk (Note: A link has been removed),

Murdoch University [Australia] nanotechnology researchers have successfully engineered synthetic materials which encouraged bone formation in sheep (“The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications”).

The advancement means the successful use of synthetic materials in bone grafts for human patients is a step closer. The material could also have potential future applications in fracture repair and reconstructive surgery.

A Sept. 16, 2014 Murdoch University news release, which originated the news item, notes

Currently the patient’s own bone, donated bone or artificial materials are used for bone grafts but limitations with all these options have prompted researchers to investigate how synthetic materials can be enhanced.

Dr Eddy Poinern and his team from the Murdoch Applied Nanotechnology Research Group worked with powdered forms of the bio ceramic hydroxyapatite (HAP) to form pellets with a sponge-like structure which were then successfully implanted behind the shoulders of four sheep by collaborators from the School of Veterinary and Life Sciences at Murdoch University.

HAP is already being used in a number of biomedical applications such as bone augmentation in dentistry because of its similarity to the inorganic mineral component of human bone. But treatments of HAP so that it can be successfully used in a bone graft have yet to be developed because of the complexities involved with compatibility and HAP’s load bearing limitations.

The news release goes on to provide a few technical details,

Dr Poinern and his team prepared pellets with varying density and porosity using a variety of chemical methods including sintering, ultrasound and microwaves. Four pellets were implanted into muscles in each of the sheep, later demonstrating good bio-compatibility, including mixed cell colonisation after four weeks and even new bone formation 12 weeks after the surgery.

“Using synthetic materials in this way is difficult and complicated because they need to be engineered to be porous and to replicate the various physical, chemical and mechanical properties found in natural bone tissue,” explained Dr Poinern.

“They also need to be non-toxic and have a degradation rate which will allow for cells from the host to steadily recolonize the area and permit the formation of blood vessels necessary for the delivery of nutrients to the forming bone tissues.

“We already knew that synthetic HAP was a good material to study for possible use in bone-related medicine, but we needed to find out if the pellets we’d engineered were bio-compatible.

“Our results were very positive – our pellets acted as a scaffold for the growth of bone material, made possible because of its porous properties allowing cells to infiltrate.

“The pellets were also very cost effective to make.”

Although the study was small scale and originally intended to test the bio-compatibility of the HAP pellets, the bone growth was beyond what the interdisciplinary team expected.

Associate Professor Martin Cake, who surgically implanted the pellets into the sheep, described the results as “stunning” and said they boded well for the use of engineered HAP in bone implants.

“This material begins as a powder that can be theoretically moulded to any shape, or perhaps one day even 3D printed, then sintered to harden it,” he said.

Dr Poinern said he was hoping to improve and match the physical and mechanical properties of the pellets with those of natural bone tissue in a new study.

“Once these properties have been achieved, further implantation studies will be carried out to establish the feasibility of using this scaffold for bone grafts,” he said.

Here’s a link to and a citation for the paper,

The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications by Gérrard Eddy Jai Poinern, Ravi Krishna Brundavanam, Xuan Thi Le, Philip K. Nicholls, Martin A. Cake, & Derek Fawcett. Scientific Reports 4, Article number: 6235 doi:10.1038/srep06235 Published 29 August 2014

This paper is open access.

This news release included information of a type I haven’t previously seen included,

The implantation study was carried out in non pregnant Merino ewes with the approval of Murdoch University’s Animal Ethics Committee and all experiments were conducted in accordance with the Australian National Health and Medical Research Council’s (NHMRC) Code of Practice for the care and use of animals for scientific purposes.

In accordance with the ethical principles of the Code, the sheep were simultaneously used in an unrelated trial involving surgery of the stifle joints.

After the pellets were removed, the sheep were humanely euthanased.

I’m glad to see the information and hope more research groups follow suit.

One final note, Murdoch University, Eddy Poinern, and Dereck Fawcett have been mentioned here before in an Aug. 1, 2014 posting about ‘green’ chemistry involving eucalyptus leaves, and gold nanoparticles.

* ‘encourage’ corrected to ‘encourages’ on Oct. 7, 2014 at 1315 hours PDT.

Keeping your chef’s jackets clean and a prize for Teijin Aramid/Rice University

Australian start-up company, Fabricor Workwear launched a Kickstarter campaign on Sept. 18, 2014 to raise funds for a stain-proof and water-repellent chef’s jacket according to a Sept. 25, 2014 news item on Azonano,

An Australian startup is using a patented nanotechnology to create ‘hydrophobic’ chef jackets and aprons. Fabricor says this means uniforms that stay clean for longer, and saving time and money.

The company was started because cofounder and MasterChef mentor Adrian Li, was frustrated with keeping his chef jackets and aprons clean.

“As a chef I find it really difficult to keep my chef jacket white, and we like our jackets white,” Li said. …

The nanotechnology application works by modifying the fabric at a molecular level by permanently attaching hydrophobic ‘whiskers’ to individual fibres which elevate liquids, causing them to bead up and roll off.

The Fabricor: Stain-proof workwear for the hospitality industry Kickstarter campaign has this to say on its homepage (Note: Links have been removed),

Hi Kickstarters,

Thanks for taking the time check out our campaign.

Traditional chef jackets date back to the mid 19th century and since then haven’t changed much.

We’re tired of poor quality hospitality workwear that doesn’t last and hate spending our spare time and money washing or replacing our uniforms.

So we designed a range of stain-resistant Chef Jackets and Aprons using the world’s leading patented hydrophobic nanotechnology that repels water, dirt and oil.

Most stains either run off by themselves or can easily be rinsed off with a little water. This means they don’t need to be washed as often saving you time and money.

We’re really proud of what we’ve created and we hope you you’ll support us.

Adrian Li

Head Chef at Saigon Sally
Mentor on MasterChef Australia – Asian Street Food Challenge
Cofounder at Fabricor Workwear

At this point (Sept. 24, 2014), the campaign has raised approximately $2700US towards a $5000US goal and there are 22 days left to the campaign.

I did find more information at the Fabricor Workwear website in this Sept. 13, 2014 press release,

The fabric’s patented technology can extend the life of the apparel is because the apparel doesn’t have to be washed as often and can be washed in cooler temperatures, the company stated.

Fabricor’s products are not made with spray-application like many on the market which can destroy fabrics and contain carcinogenic chemical. Its hydrophobic properties are embedded into the weave during the production of the fabric.

Li said chefs spend too much money on chef jackets that are poorly designed and don’t last. The long-lasting fabric in Fabricor’s chef’s apparel retains its natural softness and breathability.

It seems to me that the claim about fewer washes can be made for all superhydrophobic textiles. As for carcinogenic chemicals in other superhydrophobic textiles, it’s the first I’ve heard of it, which may or may not be significant. I.e., I look at a lot of material but don’t focus on superhydrophobic textiles here and do not seek out research on risks specific to these textiles.

Teijin Aramid/Rice University

Still talking about textile fibres but on a completely different track, I received a news release this morning (Sept. 25, 2014) from Teijin Aramid about carbon nanotubes and fibres,

Researchers of Teijin Aramid, based in the Netherlands, and Rice University in the USA are awarded with the honorary ‘Paul Schlack Man-Made Fibers Prize’ for corporate-academic partnerships in fiber research. Their new super fibers are now driving innovation in aerospace, healthcare, automotive, and (smart) clothing.

The honorary Paul Schlack prize was granted by the European Man-made Fibers Association to Dr. Marcin Otto, Business Development Manager at Teijin Aramid and Prof. Dr. Matteo Pasquali from Rice University Texas, for the development of a new generation super fibers using carbon nanotubes (CNT). The new super fibers combine high thermal and electrical conductivity, as seen in metals, with the flexibility, robust handling and strength of textile fibers.

“The introduction of carbon nanotube fibers marked the beginning of a series of innovations in various industries”, says Marcin Otto, Business Development Manager at Teijin Aramid. “For example, CNT fibers can be lifesaving for heart patients: one string of CNT fiber in the cardiac muscle suffices to transmit vital electrical pulses to the heart. Or by replacing copper in data cables and light power cables by CNT fibers it’s possible to make satellites, aircraft and high end cars lighter and more robust at the same time.”

Since 1971, the Paul Schlack foundation annually grants one monetary prize to an individual young researcher for outstanding research in the field of fiber research, and an honorary prize to the leader(s) of excellent academic and corporate research partnerships to promote research at universities and research institutes.

For several years, leading researchers at Rice University and Teijin Aramid worked together on the development of CNT production. Teijin Aramid and Rice University published their research findings on carbon nanotubes fibers in the leading scientific journal, Science, beginning of 2013.

Teijin Aramid and some of its carbon nanotube projects have been mentioned here before, notably, in a Jan. 11, 2013 posting and in a Feb. 17, 2014.

Good luck on the Kickstarter campaign and congratulations on the award!

Tibetan Buddhist singing bowls inspire more efficient solar cells

There’s no mention as to whether or not Dr Niraj Lal practices any form of meditation or how he came across Tibetan Buddhist singing bowls but somehow he was inspired by them when studying for his PhD at Cambridge University (UK). From a Sept. 8, 2014 news item by Niall Byrne for physorg.com,

The shape of a centuries-old Buddhist singing bowl has inspired a Canberra scientist to re-think the way that solar cells are designed to maximize their efficiency.

Dr Niraj Lal, of the Australian National University,  found during his PhD at the University of Cambridge, that small nano-sized versions of Buddhist singing bowls resonate with light in the same way as they do with sound, and he’s applied this shape to solar cells to increase their ability to capture more light and convert it into electricity.

A Sept. ?, 2014 news release from Australian science communication company, Science in Public, fills in a few more details without any mention of Lal’s meditation practices, should he have any,

“Current standard solar panels lose a large amount of light-energy as it hits the surface, making the panels’ generation of electricity inefficient,” says Niraj. “But if the cells are singing bowl-shaped, then the light bounces around inside the cell for longer”.

Normally used in meditation, music, and relaxation, Buddhist singing bowls make a continuous harmonic ringing sound when the rim of the metal bowl is vibrated with a wooden or other utensil.

During his PhD, Niraj discovered that his ‘nanobowls’ manipulated light by creating a ‘plasmonic’ resonance, which quadrupled the laboratory solar cell’s efficiency compared to a similarly made flat solar cell.

Now, Niraj and his team aim to change all that by applying his singing-bowl discovery to tandem solar cells: a technology that has previously been limited to aerospace applications.

In research which will be published in the November issue of IEEE Journal of Photonics, Niraj and his colleagues have shown that by layering two different types of solar panels on top of each other in tandem, the efficiency of flat rooftop solar panels can achieve 30 per cent—currently, laboratory silicon solar panels convert only 25 per cent of light into electricity, while commercial varieties convert closer to 20 per cent.

The tandem cell design works by absorbing a sunlight more effectively —each cell is made from a different material so that it can ‘see’ a different light wavelength.

“To a silicon solar cell, a rainbow just looks like a big bit of red in the sky—they don’t ‘see’ the blue, green or UV light—they convert all light to electricity as if it was red ,” says Niraj. “But when we put a second cell on top, which ‘sees’ the blue part of light, but allows the red to pass through to the ‘red-seeing’ cell below, we can reach a combined efficiency of more than 30 percent.”

Niraj and a team at ANU are now looking at ways to super-charge the tandem cell design by applying the Buddhist singing bowl shape to further increase efficiency.

“If we can make a solar cell that ‘sees’ more colours and  keeps the right light in the right layers, then we could increase efficiency even further,” says Niraj.

“Every extra percent in efficiency saves you thousands of dollars over the lifetime of the panel,” says Niraj. “Current roof-top solar panels have been steadily increasing in efficiency, which has been a big driver of the fourfold drop in the price for these panels over the last five years.”

More importantly, says Niraj, greater efficiency will allow solar technology to compete with fossil fuels and meet the challenges of climate change and access.

“Electricity is also one of the most enabling technologies we have ever seen, and linking people in rural areas around the world to electricity is one of the most powerful things we can do.”

At the end of the Science in Public news release there’s mention of a science communication competition,

Niraj was a 2014 national finalist of FameLab Australia. FameLab is a global science communication competition for early-career scientists. His work is supported by the Australian Research Council and ARENA – the Australian Renewable Energy Agency.

About FameLab

In 2014, the British Council and Fresh Science have joined forces to bring FameLab to Australia.

FameLab Australia will offer specialist science media training and, ultimately, the chance for early-career researchers to pitch their research at the FameLab International Grand Final in the UK at The Times Cheltenham Science Festival from 3 to 5 June 2014.

FameLab is an international communication competition for scientists, including engineers and mathematicians. Designed to inspire and motivate young researchers to actively engage with the public and with potential stakeholders, FameLab is all about finding the best new voices of science and engineering across the world.

Founded in 2005 by The Times Cheltenham Science Festival, FameLab, working in partnership with the British Council, has already seen more than 5,000 young scientists and engineers participate in over 23 different countries — from Hong Kong to South Africa, USA to Egypt.

Now, FameLab comes to Australia in a landmark collaboration with the British Council and Fresh Science — Australia’s very own science communication competition.

For more information about FameLab Australia, head to www.famelab.org.au

You can find out more about Australia’s Fresh Science here.

Getting back to Dr. Lal, here’s a video he made about his work and where he demonstrates a Tibetan Buddhist singing bowl (this is a very low tech video and the sound quality isn’t great),

Here’s a link to and a citation for Lal’s most recent paper,

Optics and Light Trapping for Tandem Solar Cells on Silicon by Lal, N.N.; White, T.P. ; and Catchpole, K.R. Photovoltaics, IEEE Journal of  (Volume:PP ,  Issue: 99) Page(s): 1 – 7 ISSN : 2156-3381 DOI: 10.1109/JPHOTOV.2014.2342491 Published online 19 August 2014

The paper is behind a paywall but there is open access to Lal’s 2012 University of Cambridge PhD thesis on his approach,

Enhancing solar cells with plasmonic nanovoids by Lal, Niraj Narsey
URI: http://www.dspace.cam.ac.uk/handle/1810/243864 Date:2012-07-03

Hap;y reading!