Tag Archives: BaE systems

AI x 2: the Amnesty International and Artificial Intelligence story

Amnesty International and artificial intelligence seem like an unexpected combination but it all makes sense when you read a June 13, 2018 article by Steven Melendez for Fast Company (Note: Links have been removed),

If companies working on artificial intelligence don’t take steps to safeguard human rights, “nightmare scenarios” could unfold, warns Rasha Abdul Rahim, an arms control and artificial intelligence researcher at Amnesty International in a blog post. Those scenarios could involve armed, autonomous systems choosing military targets with little human oversight, or discrimination caused by biased algorithms, she warns.

Rahim pointed at recent reports of Google’s involvement in the Pentagon’s Project Maven, which involves harnessing AI image recognition technology to rapidly process photos taken by drones. Google recently unveiled new AI ethics policies and has said it won’t continue with the project once its current contract expires next year after high-profile employee dissent over the project. …

“Compliance with the laws of war requires human judgement [sic] –the ability to analyze the intentions behind actions and make complex decisions about the proportionality or necessity of an attack,” Rahim writes. “Machines and algorithms cannot recreate these human skills, and nor can they negotiate, produce empathy, or respond to unpredictable situations. In light of these risks, Amnesty International and its partners in the Campaign to Stop Killer Robots are calling for a total ban on the development, deployment, and use of fully autonomous weapon systems.”

Rasha Abdul Rahim’s June 14, 2018 posting (I’m putting the discrepancy in publication dates down to timezone differences) on the Amnesty International website (Note: Links have been removed),

Last week [June 7, 2018] Google released a set of principles to govern its development of AI technologies. They include a broad commitment not to design or deploy AI in weaponry, and come in the wake of the company’s announcement that it will not renew its existing contract for Project Maven, the US Department of Defense’s AI initiative, when it expires in 2019.

The fact that Google maintains its existing Project Maven contract for now raises an important question. Does Google consider that continuing to provide AI technology to the US government’s drone programme is in line with its new principles? Project Maven is a litmus test that allows us to see what Google’s new principles mean in practice.

As details of the US drone programme are shrouded in secrecy, it is unclear precisely what role Google plays in Project Maven. What we do know is that US drone programme, under successive administrations, has been beset by credible allegations of unlawful killings and civilian casualties. The cooperation of Google, in any capacity, is extremely troubling and could potentially implicate it in unlawful strikes.

As AI technology advances, the question of who will be held accountable for associated human rights abuses is becoming increasingly urgent. Machine learning, and AI more broadly, impact a range of human rights including privacy, freedom of expression and the right to life. It is partly in the hands of companies like Google to safeguard these rights in relation to their operations – for us and for future generations. If they don’t, some nightmare scenarios could unfold.

Warfare has already changed dramatically in recent years – a couple of decades ago the idea of remote controlled bomber planes would have seemed like science fiction. While the drones currently in use are still controlled by humans, China, France, Israel, Russia, South Korea, the UK and the US are all known to be developing military robots which are getting smaller and more autonomous.

For example, the UK is developing a number of autonomous systems, including the BAE [Systems] Taranis, an unmanned combat aircraft system which can fly in autonomous mode and automatically identify a target within a programmed area. Kalashnikov, the Russian arms manufacturer, is developing a fully automated, high-calibre gun that uses artificial neural networks to choose targets. The US Army Research Laboratory in Maryland, in collaboration with BAE Systems and several academic institutions, has been developing micro drones which weigh less than 30 grams, as well as pocket-sized robots that can hop or crawl.

Of course, it’s not just in conflict zones that AI is threatening human rights. Machine learning is already being used by governments in a wide range of contexts that directly impact people’s lives, including policing [emphasis mine], welfare systems, criminal justice and healthcare. Some US courts use algorithms to predict future behaviour of defendants and determine their sentence lengths accordingly. The potential for this approach to reinforce power structures, discrimination or inequalities is huge.

In july 2017, the Vancouver Police Department announced its use of predictive policing software, the first such jurisdiction in Canada to make use of the technology. My Nov. 23, 2017 posting featured the announcement.

The almost too aptly named Campaign to Stop Killer Robots can be found here. Their About Us page provides a brief history,

Formed by the following non-governmental organizations (NGOs) at a meeting in New York on 19 October 2012 and launched in London in April 2013, the Campaign to Stop Killer Robots is an international coalition working to preemptively ban fully autonomous weapons. See the Chronology charting our major actions and achievements to date.

Steering Committee

The Steering Committee is the campaign’s principal leadership and decision-making body. It is comprised of five international NGOs, a regional NGO network, and four national NGOs that work internationally:

Human Rights Watch
Article 36
Association for Aid and Relief Japan
International Committee for Robot Arms Control
Mines Action Canada
Nobel Women’s Initiative
PAX (formerly known as IKV Pax Christi)
Pugwash Conferences on Science & World Affairs
Seguridad Humana en América Latina y el Caribe (SEHLAC)
Women’s International League for Peace and Freedom

For more information, see this Overview. A Terms of Reference is also available on request, detailing the committee’s selection process, mandate, decision-making, meetings and communication, and expected commitments.

For anyone who may be interested in joining Amnesty International, go here.

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.

Flexible, graphene-based display: first ever?

It seems like there’s been a lot of discussion about flexible displays, graphene or not, over the years so the announcement of the first graphene-based flexible display might seem a little anticlimactic. That’s one of the problems with the technology and science communities. Sometimes there’s so much talk about an idea or concept that by the time it becomes reality people think it’s already been done and is not news.

So, kudos to the folks at the University of Cambridge who have been working on this development for a long time. From a Sept. 10, 2014 news release on EurekAlert,

The partnership between the two organisations combines the graphene expertise of the Cambridge Graphene Centre (CGC), with the transistor and display processing steps that Plastic Logic has already developed for flexible electronics. This prototype is a first example of how the partnership will accelerate the commercial development of graphene, and is a first step towards the wider implementation of graphene and graphene-like materials into flexible electronics.

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

Graphene is more flexible than conventional ceramic alternatives like indium-tin oxide (ITO) and more transparent than metal films. The ultra-flexible graphene layer may enable a wide range of products, including foldable electronics. Graphene can also be processed from solution bringing inherent benefits of using more efficient printed and roll-to-roll manufacturing approaches.

The new 150 pixel per inch (150 ppi) backplane was made at low temperatures (less than 100°C) using Plastic Logic’s Organic Thin Film Transistor (OTFT) technology. The graphene electrode was deposited from solution and subsequently patterned with micron-scale features to complete the backplane.

For this prototype, the backplane was combined with an electrophoretic imaging film to create an ultra-low power and durable display. Future demonstrations may incorporate liquid crystal (LCD) and organic light emitting diodes (OLED) technology to achieve full colour and video functionality. Lightweight flexible active-matrix backplanes may also be used for sensors, with novel digital medical imaging and gesture recognition applications already in development.

“We are happy to see our collaboration with Plastic Logic resulting in the first graphene-based electrophoretic display exploiting graphene in its pixels’ electronics,” said Professor Andrea Ferrari, Director of the Cambridge Graphene Centre. “This is a significant step forward to enable fully wearable and flexible devices. This cements the Cambridge graphene-technology cluster and shows how an effective academic-industrial partnership is key to help move graphene from the lab to the factory floor.”

As an example of how long this development has been in the works, I have a Nov. 7, 2011 posting about a University of Cambridge stretchable, electronic skin produced by what was then the university’s Nokia Research Centre. That ‘skin’ was a big step forward to achieving a phone/device/flexible display (the Morph), wrappable around your wrist, first publicized in 2008 as I noted in a March 30, 2010 posting.

According to the news release, there should be some more news soon,

This joint effort between Plastic Logic and the CGC was also recently boosted by a grant from the UK Technology Strategy Board, within the ‘realising the graphene revolution’ initiative. This will target the realisation of an advanced, full colour, OELD based display within the next 12 months.

My colleague Dexter Johnson has offered some business-oriented insight into this development at Cambridge in his Sept. 9, 2014 posting on the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

In the UK’s concerted efforts to become a hub for graphene commercialization, one of the key partnerships between academic research and industry has been the one between the Cambridge Graphene Centre located at the University of Cambridge and a number of companies, including Nokia, Dyson, BaE systems, Philips and Plastic Logic. The last on this list, Plastic Logic, was spun out originally from the University of Cambridge in 2000. However, since its beginnings it has required a $200 million investment from RusNano to keep itself afloat back in 2011 for a time called Mountain View, California, home.

The post is well worth reading for anyone interested in the twists and turns of graphene commercialization in the UK.