Tag Archives: Ballard Power Systems

Simon Fraser University scientists peer deeply into fuel cells while University of Toronto experts debate nanotechnoloy: revolution or evolution?

An Oct. 25, 2013 Simon Fraser University (SFU; Vancouver, Canada) news release touts a new centre and a very snazzy piece of equipment (Nano X-ray Computed Tomography [NXCT]) that scientists will be able to build and purchase courtesy of a new grant (Note: Links have been removed),

Powerful scanners that give scientists a direct line of sight into hydrogen fuel cells are the latest tools Simon Fraser University researchers will use to help Ballard Power Systems Inc create more durable, lower-cost fuel cells. Use of these fuel cells in vehicles can substantially reduce harmful emissions in the transportation sector.

The new Nano X-ray Computed Tomography (NXCT) tools will become part of a nationally unique fuel cell testing and characterization facility. The new four-year, $6.5 million project is receiving $3.39 million in funding from Automotive Partnership Canada (APC).

It’s one of 10 university-industry partnerships receiving a total of more than $52 million ($30 million from APC, leveraged by more than $22 million from industry and other partners) announced today by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Research carried out in the new visualization facility, expected to be operational by spring, will further the ongoing research collaboration between Ballard and SFU.

“This will be an unprecedented, world-class testing facility dedicated entirely to this project over the next four years,” says principal investigator Erik Kjeang, an internationally known fuel cell expert and director of SFU’s Fuel Cell Research Laboratory (FCRel). “Beyond its capabilities, that’s a strength in itself.”

Says Ballard’s Research Manager Shanna Knights: “It’s a unique opportunity, to have dedicated access to highly specialized equipment and access to university experts who are focused on Ballard’s needs.”

Researchers will use the facility to develop and advance the technology required for the company’s next generation of fuel cell products, helping to meet its targets related to extending fuel cell life while improving efficiency.

Kjeang, an assistant professor in SFU’s School of Mechatronic Systems Engineering, says the new, sophisticated nano-scale scanning capabilities will enable researchers to see inside the fuel cell micro-structure and track how its components degrade over time. The research will play an important role in the university’s focus on advancing clean energy initiatives.

“Partnerships with leading companies such as Ballard solidify SFU’s reputation as a world-class innovator in fuel cell research,” says Nimal Rajapakse, dean and professor, Faculty of Applied Sciences. “This unique fuel cell testing facility will be used for cutting edge research and training of HQP (highly qualified personnel) that will help to strengthen the competitiveness of the Canadian automotive and clean energy industry. We are grateful that Automotive Partnership Canada has provided this second round of funding to support the SFU-Ballard research collaboration.”

Adds Kjeang: “Thanks to the APC program, and the support NSERC has provided over the years, I have been able to both explore the fundamentals of fuel cell technology and to successfully work with companies who are making globally leading advances in green automotive technology.”

A former research engineer who began his career at Ballard in 2008, Kjeang came to SFU to continue his own research interests while keeping a foot in industry. He also continues to lead a complementary project with Ballard that involves nearly 40 students and researchers working to improve the durability of heavy-duty bus fuel cells.

You can find the news release with all its links intact here.  I am a little surprised that there isn’t any mention of SFU’s 4D Labs (their nanotechnology showcase project), especially since one of the areas of interest is this (from the 4D Labs Research Areas webpage),

Cleaner Energy
New materials innvovation is critical to lower the costs and improve the performance of promising technologies such as photovoltaics, fuel cells and passive energy control sytems. [emphasis mine]

Meanwhile, experts gathered at the University of Toronto debated nanotechnology by asking this question: revolution or evolution? as  part of a celebratory event extending from Oct. 23 to Oct. 24, 2013. From a University of Toronto Oct. 23, 2013 news release (H/T Hispanic Business.com),

A panel of nanotechnology experts, moderated by U of T Materials Science & Engineering Professor Doug Perovic will explore the possibilities of the technology as part of a celebration marking the University of Toronto’s  Department of Materials Science & Engineering’s 100-year anniversary.

Nanotechnology is the science of manipulating atoms and molecules on a scale so small they can’t be seen with an ordinary microscope. It’s about coaxing them into displaying unusual properties, such as a material 10 times as strong as steel, but a fraction of its weight, or solar panels that produce fuel rather than electricity.

While nanotech has the potential to transform society in ways no one ever thought of before, it’s also been the subject of much hype.

“Some would say it has not met expectations,” says Professor Perovic, Canada’s ‘nabob of nanotechnology.’ “While it hasn’t taken off in the areas people predicted it would take off, it has become huge in unpredictable areas.”

Some of the world’s top nanotechnology experts will be part of the panel and give the big picture.

WHAT: Nanotechnology panel featuring several experts

WHERE: Room#: BA 1130, Bahen Centre for Information Technology, University of Toronto, 40 St. George Street (Google map: http://goo.gl/maps/tXBxP)

WHEN: 10am, Thursday (October 24)

WHO:
Michael F. Ashby
Royal Society Research Professor
Department of Engineering
University of Cambridge

Shawn Qu | MMS PhD 9T5
Chairman, President & CEO
Canadian Solar Inc.

Polina Snugovsky
Chief Metallurgist, Celestica Inc.
Robert B. Storey | MMS 7T7
Managing Partner, Bereskin & Parr LLP

Gino Palumbo
MMS 8T3, MASc 8T5, PhD 8T9
President & CEO, Integran Technologies Inc

Donald R. Sadoway
EngSci 7T2, MMS MASc 7T3, PhD 7T7
John F. Elliot Professor of Materials Chemistry
Department of Materials Science & Engineering, MIT

David S. Wilkinson
EngSci 7T2, MMS MASc 7T4
Vice-President & Provost, Academic
McMaster University

I wonder if the experts came to any conclusions.

University of Victoria’s (Canada) microscope, world’s most powerful, unveiled

This new microscope at the University of Victoria (UVic) was supposed to be unveiled in 2011 according to my July 28, 2009 posting about the purchase,

In other BC news, the University of Victoria (Canada) will be getting a new microscope which senses at subatomic levels. (From the media release on Azonano),

The new microscope-called a Scanning Transmission Electron Holography Microscope (STEHM) — will use an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution as small as one-fiftieth the size of an atom.

This is being done in collaboration with Hitachi High-Technologies which is building the microscope in Japan and installing it at U Vic in late 2010. The microscope will be located in a specially adapted room where work to prepare and calibrate it will continue until it becomes operational sometime in 2011.

I had been wondering if I’d ever hear of the microscope again, so finding a June 18, 2013 news item on Nanowerk announcing the world’s most powerful microscope at the University of Victoria (British Columbia, Canada) answered the question for me (Note: A link has been removed),

The world’s most powerful microscope, which resides in a specially constructed room at the University of Victoria, has now been fully assembled and tested, and has a lineup of scientists and businesses eager to use it.

The seven-tonne, 4.5-metre tall Scanning Transmission Electron Holography Microscope (STEHM), the first such microscope of its type in the world, came to the university in parts last year,. A team from Hitachi, which constructed the ultra high-resolution, ultra-stable instrument, spent one year painstakingly assembling the STEHM in a carefully controlled lab in the basement of the Bob Wright Centre.

The wait was worth it, says Rodney Herring, a professor of mechanical engineering and director of UVic’s Advanced Microscopy Facility. [emphasis mine]

The June 17, 2013 University of Victoria news release, which originated the news item, doesn’t address the two year delay directly as Herring’s quote seems to be in reference to the one-year assembly period. The news release goes on to describe the microscope’s resolution,

Herring viewed gold atoms through the microscope at a resolution of 35 picometres. One picometre is a trillionth of a metre. This resolution is much better than the previous best image with 49-picometre resolution taken at the Lawrence Berkley National Laboratory in California, and is about 20 million times human sight.

The STEHM allows researchers to see the atoms in a manner never before possible. It has full analytical capabilities that can determine the types and number or elements present, and high-resolution cameras for collecting data.

It will be used by researchers of many science and engineering disciplines for projects requiring knowledge of small atomic scale structures (nanoscience) and nanotechnology. Dr. Vincenzo Grillo from the Istituto Nanoscienze Consiglio Nazionale Delle Ricerche in Modena [Italy] will be the first visiting researcher later this month.

A line-up seems to have formed (from the news release),

Local scientists and businesses are also eager to use it. Ned Djilali, a UVic professor of mechanical engineering, is working with the National Research Council, Ballard Power Systems in Vancouver and Mercedes-Benz on fuel cell research. The STEHM “opens up entirely new possibilities” in fuel cell technology, says Djilali.

Redlen Technologies, a local company that manufactures high resolution semiconductor radiation detectors that are used for such things as nuclear cardiology, CT scanning, baggage scanning and dirty bomb detection, has been waiting for the STEHM to open for the company’s research and development.

If you are curious but don’t have any special influence, you can find out about the microscope (and perhaps view it?) later this week (from the news release),

Herring will give details of the results at a microscopy conference this week at UVic, as well as during a talk Thursday, June 20, that is open to the public. [emphasis mine] It is from 4:30 to 5 p.m. at the Bob Wright Centre, in Flury Hall, room B150.

I don’t usually include funding information but since I am from British Columbia, I have more of an interest than usual (from the news release),

The STEHM microscope is supported by $9.2 million in funding from the government of Canada through the Canadian Foundation for Innovation, the BC Knowledge Development Fund and UVic, as well as significant in-kind support from Hitachi.

Since microscopes and big equipment (in general) are weirdly fascinating to me, here are some details from UVic’s STEHM backgrounder,

The Scanning Transmission Electron Holography Microscope (STEHM) is the highest resolution microscope ever built and the only one of its kind in the world. It’s arrival makes the University of Victoria a global leader in the competitive field of advanced microscopy.

Unlike conventional microscopes, which use light to peer at specimens, the STEHM uses an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution smaller than the size of an atom.

The STEHM will see materials beyond the nanoscale to the picoscale. A nanometer is one-billionth of a metre, while a picometre is one-trillionth of a metre. Atoms are typically between 62 and 520 picometres in diameter.

The STEHM will not only see individual atoms, but it will indicate what type of atoms they are. It also features an electron vortex beam, which researchers can use like tweezers to manipulate individual atoms in a specimen.

The microscope itself is a 4.5-metre tall cylinder encased in metal shielding to block magnetic fields. It has a footprint of six square metres and weighs seven tonnes.

The microscope is so huge that researchers will climb a stepladder to insert their specimens through a tiny airlock into the vacuum of the column. They’ll then leave the room, wait for the air currents in the room to calm, and then operate the microscope remotely from an adjoining room.

The microscope is so sensitive that its image could be affected by little more than a passing cloud. …

I don’t know how many times the public will have any access to this microscope given its extreme sensitivity so you might want to make a point of attending the public talk on Thursday, June 20, 2013 at the University of Victoria.

One final comment, I find it a bit disconcerting that the only ‘academic’ research mentioned seems to be Italian and that the ‘Canadian’ research is primarily commercial. It’s very nice that Dr. Herring saw a gold nanoparticle but are there any local or Canadian publicly funded academic researchers using this microscope, which seems to have been paid for by taxpayers? Hopefully, this is a case where excitement took over and the writer who almost always focuses on local, academic research got carried away with the international involvement and big name companies (Mercedes Benz).

Fuel cells break free of metal catalysts (graphene instead of platinum) with research from joint Korea-US research team

Fuel cells—I used to hear a lot about them as there is a company in the region, Ballard Power Systems which specializes in that field. There was a lot of excitement in the late 1990s and into the 2000s and then nothing. Given the hype of the early days, I was expecting fuel-cell-powered-cars by now.  A June 5, 2013 Case Western Reserve University news release on EurekAlert may provide an answer as to why fuel cells have not been adopted more widely,

Researchers from South Korea, Case Western Reserve University and University of North Texas have discovered an inexpensive and easily produced catalyst that performs better than platinum in oxygen-reduction reactions.

The finding, detailed in Nature’s Scientific Reports online today, is a step toward eliminating what industry regards as the largest obstacle to large-scale commercialization of fuel cell technology.

Fuel cells can be more efficient than internal combustion engines, silent, and at least one type produces zero greenhouse emissions at the tail pipe. Car and bus manufacturers as well as makers of residential and small-business-sized generators have been testing and developing different forms of fuel cells for more than a decade but the high cost and insufficiencies of platinum catalysts have been the Achilles heel.

The news release goes on to provide context for the work and details about the new graphene catalyst,

Like a battery, a fuel cell converts chemical energy into electrical energy. It works by removing an electron from a fuel, usually hydrogen or methanol mixed with water, at the cell’s anode, or positive electrode, creating a current.Hydrogen ions produced then pass through a membrane to the cathode, or negative electrode. Here, oxygen molecules from the air are split and reduced by the addition of electrons and combined with the hydrogen ions to form water and heat—the only byproducts.

A better, cheaper catalyst than scarce and costly platinum is required if hydrogen fuel cells and direct methanol fuel cells are to become realistic alternatives to fossil fuels, the authors say.

The technology to make alternative catalysts builds on a simple and cheap industrial process several of the researchers developed to make graphene sheets from graphite.

Inside a ball miller, which is a canister filled with steel balls, the researchers broke graphite down into single-layer graphene nanoparticles. While the canister turned, they injected chlorine, bromine or iodine gas to produce different catalysts.

In each case, gas molecules replaced carbon atoms along the zigzag edges of nanoplatelets created by milling. Not only were the edges then favorable to binding with oxygen molecules, but the bond strength between the two oxygen atoms weakened. The weaker the oxygen bonds became, the more efficiently the oxygen was reduced and converted to water at the cathode.

In testing, a cathode coated with iodine-edged nanoplatelets performed best. A cathode coated with bromine-edged nanoparticles generated 7 percent less current than the commercial cathode coated with platinum, the chlorine-edged nanoplatelets 40 percent less.

In a test of durability, electrodes coated with the nanoplatelets maintained 85.6 percent to 87.4 percent of their initial current after 10,000 cycles while the platinum electrodes maintained only 62.5 percent.

Carbon monoxide was added to replicate the poisoning that many scientists blame for the poor performance of platinum at the cathode. The performance of the graphene-based catalysts was unaffected.

When methanol was added to replicate methanol crossover from the anode to cathode in direct methanol fuel cells, the current density of the platinum catalyst dropped sharply. Again, the graphene-based catalysts were unaffected.

One of the researchers sums up the research (from the news release),

“We made metal-free catalysts using an affordable and scalable process,” said Liming Dai, the Kent Hale Smith Professor of macromolecular science and engineering at Case Western Reserve and one of the report’s authors. “The catalysts are more stable than platinum catalysts and tolerate carbon monoxide poisoning and methanol crossover.”

And, in their initial tests, a cathode coated with one form of catalyst—graphene nanoparticles edged with iodine—proved more efficient in the oxygen reduction reaction, generating 33 percent more current than a commercial cathode coated with platinum generated.

For those who want more,

Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction by In-Yup Jeon, Hyun-Jung Choi, Min Choi, Jeong-Min Seo, Sun-Min Jung, Min-Jung Kim, Sheng Zhang, Lipeng Zhang, Zhenhai Xia, Liming Dai, Noejung Park, & Jong-Beom Baek. Scientific Reports 3, Article number: 1810 doi:10.1038/srep01810 Published 05 June 2013

The paper is open access.

Gold in them thar fuel cells

There’s a lot of interest in fuel cells where I live due primarily to the existence of Ballard Power Systems, which was founded here in the province of British Columbia, Canada. Here’s what it says on the About Ballard page,

Ballard Power Systems, Inc. is a global leader in PEM (proton exchange membrane) fuel cell technology. We provide clean energy fuel cell products enabling optimized power systems for a range of applications. Ballard offers smarter solutions for a clean energy future.

We are actively putting fuel cells to work in high-value commercial uses every day. In fact, Ballard has designed and shipped close to 150 MW of hydrogen fuel cell technology to date.

In addition to Ballard, Canada’s National Research Council located its Institute for Fuel Cell Innovation in Vancouver, British Columbia (after much lobbying from the province).

Despite all the excitement over the years (especially in the beginning), the fuel cell industry in British Columbia has yet to become the revenue producer that was promised.

According to some observers, one of the keys issues has been the metals used as catalysts and once the situation is resolved, fuel cells will come into their own. Researchers at Brown University have developed a nanoparticle that outperforms other metallic catalysts. From the March 12, 2012 news item on Nanowerk,

Advances in fuel-cell technology have been stymied by the inadequacy of metals studied as catalysts. The drawback to platinum, other than cost, is that it absorbs carbon monoxide in reactions involving fuel cells powered by organic materials like formic acid. A more recently tested metal, palladium, breaks down over time.

Now chemists at Brown University have created a triple-headed metallic nanoparticle that they say outperforms and outlasts all others at the anode end in formic-acid fuel-cell reactions. In a paper published in the Journal of the American Chemical Society (“Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles”), the researchers report a 4-nanometer iron-platinum-gold nanoparticle (FePtAu), with a tetragonal crystal structure, generates higher current per unit of mass than any other nanoparticle catalyst tested. Moreover, the trimetallic nanoparticle at Brown performs nearly as well after 13 hours as it did at the start. By contrast, another nanoparticle assembly tested under identical conditions lost nearly 90 percent of its performance in just one-quarter of the time.

The March 12, 2012 news release from Brown University describes how gold improves performance,

Gold plays key roles in the reaction. First, it acts as a community organizer of sorts, leading the iron and platinum atoms into neat, uniform layers within the nanoparticle. The gold atoms then exit the stage, binding to the outer surface of the nanoparticle assembly. Gold is effective at ordering the iron and platinum atoms because the gold atoms create extra space within the nanoparticle sphere at the outset. When the gold atoms diffuse from the space upon heating, they create more room for the iron and platinum atoms to assemble themselves. Gold creates the crystallization chemists want in the nanoparticle assembly at lower temperature.

Gold atoms create orderly places for iron and platinum atoms, then retreat to the periphery of the fuel cell, where they scrub carbon monoxide from fuel reactions. The tighter organization and cleaner reactions extend the cell's performance life. Credit: Sun Lab/Brown University

The researchers note that other metals may be substituted for gold as the best combinations are tested for combination and durability. (You can find more technical details in either the news item on Nanowerk or the news release at Brown University.)

Dexter Johnson at his Nanoclast blog (on the Institute of Electrical and Electronics Engineers [IEEE] website) provides a contrasting opinion as to why fuel cells have not become popular in his March 9, 2012 posting,

One of the fundamental problems with fuel cells has been the cost of producing hydrogen. While hydrogen is, of course, the most abundant element, it attaches itself to other elements like nitrogen or fluorine, and perhaps most ubiquitously to oxygen to create the water molecule. The process used to separate hydrogen out into hydrogen gas for powering fuel cells now relies on electricity produced from fossil fuels, negating some of the potential environmental benefits. So in the last few years, a new line of research has emerged that uses nanomaterials to imitate photosynthesis and break water down into hydrogen and oxygen thereby creating a more cost-effective and environmentally-friendly method for producing hydrogen.

If you’re interested, Dexter goes on to describe some promising areas of research that mimic photosynthesis.

In that odd area where coincidences meet, the latest work that Dexter discusses is taking place in California, a major centre for the gold rush of the 1800s. As it turns out, British Columbia was also a major destination in the days of the gold rush.

Fuel cells and iron veins and Ballard Power Systems

The iron ‘veins’ are an idea from the researchers at the US National Institute of Standards and Technology (NIST) that might make fuel cells a standard piece of equipment in a car. From the August 31, 2011 news item on Nanowerk,

With a nod to biology, scientists at the National Institute of Standards and Technology (NIST) have a new approach to the problem of safely storing hydrogen in future fuel-cell-powered cars. Their idea: molecular scale “veins” of iron permeating grains of magnesium like a network of capillaries. The iron veins may transform magnesium from a promising candidate for hydrogen storage into a real-world winner (“Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films”).

Hydrogen has been touted as a clean and efficient alternative to gasoline, but it has one big drawback: the lack of a safe, fast way to store it onboard a vehicle. According to NIST materials scientist Leo Bendersky, iron-veined magnesium could overcome this hurdle. The combination of lightweight magnesium laced with iron could rapidly absorb—and just as importantly, rapidly release—sufficient quantities of hydrogen so that grains made from the two metals could form the fuel tank for hydrogen-powered vehicles.

There are more technical details in the Nanowerk news item.

Since Ballard Power Systems, known for its fuel cell powered buses, is located in the Vancouver area (the region where I live) I was curious as the why this NIST advance is considered so wonderful. After all, fuel cells are already being used commercially. From the Ballard website page on buses,

Ballard designs and manufactures fully-integrated FC velocity®-HD6 fuel cell modules delivering 75 kW or 150 kW of power for use in the bus market. Ballard’s leading-edge fuel cell technology combined with our customer’s advanced hybrid bus system designs have demonstrated improved vehicle performance, durability and lower cost. All of which has created a path to commercialization for the fuel cell hybrid bus.

Zero-emission fuel cell-powered buses deliver economic, operational as well as environmental benefits, when compared to traditional diesel or diesel hybrid systems. Economic benefits are a direct result of increased fuel cell efficiency and reliability. And fuel cell buses emit only water vapour, eliminating air pollutants such as nitrogen oxides, sulphur oxides and particulate matter. Fuel cell buses can also significantly reduce greenhouse gas emissions on a “well-to-wheel” basis, when compared to conventional technologies.

I note Ballard has a hybrid system so perhaps the NIST researchers are working on a 100% fuel cell system? I did check one more thing while I was on the Ballard website, the technical specifications for the fuel cells used to power the buses. The weight for the smaller 75w fuel cell is 350 kg or 772 lbs. and its dimensions are 1530 x 871 x 495 mm or 50 x 34 x 12 in. With that weight and those dimensions, I imagine that’s why we haven’t been hearing about hybrid fuel cell cars. I now better understand why the NIST researchers are excited.