Tag Archives: Belgium

A study in contrasts: innovation and education strategies in US and British Columbia (Canada)

It’s always interesting to contrast two approaches to the same issue, in this case, innovation and education strategies designed to improve the economies of the United States and of British Columbia, a province in Canada.

One of the major differences regarding education in the US and in Canada is that the Canadian federal government, unlike the US federal government, has no jurisdiction over the matter. Education is strictly a provincial responsibility.

I recently wrote a commentary (a Jan. 19, 2016 posting) about the BC government’s Jan. 18, 2016 announcement of its innovation strategy in a special emphasis on the education aspect. Premier Christy Clark focused largely on the notion of embedding courses on computer coding in schools from K-12 (kindergarten through grade 12) as Jonathon Narvey noted in his Jan. 19, 2016 event recap for Betakit,

While many in the tech sector will be focused on the short-term benefits of a quick injection of large capital [a $100M BC Tech Fund as part of a new strategy was announced in Dec. 2015 but details about the new #BCTECH Strategy were not shared until Jan. 18, 2016], the long-term benefits for the local tech sector are being seeded in local schools. More than 600,000 BC students will be getting basic skills in the K-12 curriculum, with coding academies, more work experience electives and partnerships between high school and post-secondary institutions.

Here’s what I had to say in my commentary (from the Jan. 19, 2016 posting),

… the government wants to embed  computer coding into the education system for K-12 (kindergarten to grade 12). One determined reporter (Canadian Press if memory serves) attempted to find out how much this would cost. No answer was forthcoming although there were many words expended. Whether this failure was due to ignorance (disturbing!) or a reluctance to share (also disturbing!) was impossible to tell. Another reporter (Georgia Straight) asked about equipment (coding can be taught with pen and paper but hardware is better). … Getting back to the reporter’s question, no answer was forthcoming although the speaker was loquacious.

Another reporter asked if the government had found any jurisdictions doing anything similar regarding computer coding. It seems they did consider other jurisdictions although it was claimed that BC is the first to strike out in this direction. Oddly, no one mentioned Estonia, known in some circles as E-stonia, where the entire school system was online by the late 1990s in an initiative known as the ‘Tiger Leap Foundation’ which also supported computer coding classes in secondary school (there’s more in Tim Mansel’s May 16, 2013 article about Estonia’s then latest initiative to embed computer coding into grade school.) …

Aside from the BC government’s failure to provide details, I am uncomfortable with what I see as an overemphasis on computer coding that suggests a narrow focus on what constitutes a science and technology strategy for education. I find the US approach closer to what I favour although I may be biased since they are building their strategy around nanotechnology education.

The US approach had been announced in dribs and drabs until recently when a Jan. 26, 2016 news item on Nanotechnology Now indicated a broad-based plan for nanotechnology education (and computer coding),

Over the past 15 years, the Federal Government has invested over $22 billion in R&D under the auspices of the National Nanotechnology Initiative (NNI) to understand and control matter at the nanoscale and develop applications that benefit society. As these nanotechnology-enabled applications become a part of everyday life, it is important for students to have a basic understanding of material behavior at the nanoscale, and some states have even incorporated nanotechnology concepts into their K-12 science standards. Furthermore, application of the novel properties that exist at the nanoscale, from gecko-inspired climbing gloves and invisibility cloaks, to water-repellent coatings on clothes or cellphones, can spark students’ excitement about science, technology, engineering, and mathematics (STEM).

An earlier Jan. 25, 2016 White House blog posting by Lisa Friedersdorf and Lloyd Whitman introduced the notion that nanotechnology is viewed as foundational and a springboard for encouraging interest in STEM (science, technology, engineering, and mathematics) careers while outlining several formal and information education efforts,

The Administration’s updated Strategy for American Innovation, released in October 2015, identifies nanotechnology as one of the emerging “general-purpose technologies”—a technology that, like the steam engine, electricity, and the Internet, will have a pervasive impact on our economy and our society, with the ability to create entirely new industries, create jobs, and increase productivity. To reap these benefits, we must train our Nation’s students for these high-tech jobs of the future. Fortunately, the multidisciplinary nature of nanotechnology and the unique and fascinating phenomena that occur at the nanoscale mean that nanotechnology is a perfect topic to inspire students to pursue careers in science, technology, engineering, and mathematics (STEM).

The Nanotechnology: Super Small Science series [mentioned in my Jan. 21, 2016 posting] is just the latest example of the National Nanotechnology Initiative (NNI)’s efforts to educate and inspire our Nation’s students. Other examples include:

The announcement about computer coding and courses being integrated in the US education curricula K-12 was made in US President Barack Obama’s 2016 State of the Union speech and covered in a Jan. 30, 2016 article by Jessica Hullinger for Fast Company,

In his final State Of The Union address earlier this month, President Obama called for providing hands-on computer science classes for all students to make them “job ready on day one.” Today, he is unveiling how he plans to do that with his upcoming budget.

The President’s Computer Science for All Initiative seeks to provide $4 billion in funding for states and an additional $100 million directly to school districts in a push to provide access to computer science training in K-12 public schools. The money would go toward things like training teachers, providing instructional materials, and getting kids involved in computer science early in elementary and middle school.

There are more details in the Hullinger’s article and in a Jan. 30, 2016 White House blog posting by Megan Smith,

Computer Science for All is the President’s bold new initiative to empower all American students from kindergarten through high school to learn computer science and be equipped with the computational thinking skills they need to be creators in the digital economy, not just consumers, and to be active citizens in our technology-driven world. Our economy is rapidly shifting, and both educators and business leaders are increasingly recognizing that computer science (CS) is a “new basic” skill necessary for economic opportunity and social mobility.

CS for All builds on efforts already being led by parents, teachers, school districts, states, and private sector leaders from across the country.

Nothing says one approach has to be better than the other as there’s usually more than one way to accomplish a set of goals. As well, it’s unfair to expect a provincial government to emulate the federal government of a larger country with more money to spend. I just wish the BC government (a) had shared details such as the budget allotment for their initiative and (b) would hint at a more imaginative, long range view of STEM education.

Going back to Estonia one last time, in addition to the country’s recent introduction of computer coding classes in grade school, it has also embarked on a nanotechnology/nanoscience educational and entrepreneurial programme as noted in my Sept. 30, 2014 posting,

The University of Tartu (Estonia) announced in a Sept. 29, 2014 press release an educational and entrepreneurial programme about nanotechnology/nanoscience for teachers and students,

To bring nanoscience closer to pupils, educational researchers of the University of Tartu decided to implement the European Union LLP Comenius project “Quantum Spin-Off – connecting schools with high-tech research and entrepreneurship”. The objective of the project is to build a kind of a bridge: at one end, pupils can familiarise themselves with modern science, and at the other, experience its application opportunities at high-tech enterprises. “We also wish to inspire these young people to choose a specialisation related to science and technology in the future,” added Lukk [Maarika Lukk, Coordinator of the project].

The pupils can choose between seven topics of nanotechnology: the creation of artificial muscles, microbiological fuel elements, manipulation of nanoparticles, nanoparticles and ionic liquids as oil additives, materials used in regenerative medicine, deposition and 3D-characterisation of atomically designed structures and a topic covered in English, “Artificial robotic fish with EAP elements”.

Learning is based on study modules in the field of nanotechnology. In addition, each team of pupils will read a scientific publication, selected for them by an expert of that particular field. In that way, pupils will develop an understanding of the field and of scientific texts. On the basis of the scientific publication, the pupils prepare their own research project and a business plan suitable for applying the results of the project.

In each field, experts of the University of Tartu will help to understand the topics. Participants will visit a nanotechnology research laboratory and enterprises using nanotechnologies.

The project lasts for two years and it is also implemented in Belgium, Switzerland and Greece.

As they say, time will tell.

Mega science (e.g., a Large Hadron Collider) for agriculture

They are not talking about smashing plants together at high speeds when they suggest creating a CERN LHC (European Particle Physics Laboratory Large Hadron Collider) for agricultural sciences. Rather, three scientists have published a discussion paper about enabling large scale collaborations amongst agricultural scientists in Europe, according to a Jan. 5, 2016 news item on phys.org,

The Large Hadron Collider, a.k.a. CERN, found success in a simple idea: Invest in a laboratory that no one institution could sustain on their own and then make it accessible for physicists around the world. Astronomers have done the same with telescopes, while neuroscientists are collaborating to build brain imaging observatories. Now, in Trends in Plant Science on January 5 [2016], agricultural researchers present their vision for how a similar idea could work for them.

Rather than a single laboratory, the authors want to open a network of research stations across Europe—from a field in Scotland to an outpost in Sicily. Not only would this provide investigators with easy access to a range of different soil properties, temperatures, and atmospheric conditions to study plant/crop growth, it would allow more expensive equipment (for example, open-field installations to create artificial levels of carbon dioxide) to be a shared resource.

A Jan. 5, 2016 Cell Press news release on EurekAlert, which originated the news item, expands on the theme,

“Present field research facilities are aimed at making regional agriculture prosperous,” says co-author Hartmut Stützel of Leibniz Universität Hannover in Germany. “To us, it is obvious that the ‘challenges’ of the 21st century–productivity increase, climate change, and environmental sustainability–will require more advanced research infrastructures covering a wider range of environments.”

Stützel and colleagues, including Nicolas Brüggemann of Forschungszentrum Jülich in Germany and Dirk Inzé of VIB and Ghent University in Belgium, are just at the beginning of the process of creating their network, dubbed ECOFE (European Consortium for Open Field Experimentation). The idea was born last February at a meeting of Science Europe and goes back to discussions within a German Research Foundation working group starting four years ago. Now, they are approaching European ministries to explore the possibilities for ECOFE’s creation.

In addition to finding financial and political investment, ECOFE’s success will hinge on whether scientists at the various institutional research stations will be able to sacrifice a bit of their autonomy to focus on targeted research projects, Stützel says. He likens the network to a car sharing service, in which researchers will be giving up the autonomy and control of their own laboratories to have access to facilities in different cities. If ECOFE catches on, thousands of scientists could be using the network to work together on a range of “big picture” agricultural problems.

“It will be a rather new paradigm for many traditional scientists, but I think the communities are ready to accept this challenge and understand that research in the 21st century requires these types of infrastructures,” Stützel say. “We must now try to make political decision makers aware that a speedy implementation of a network for open field experimentation is fundamental for future agricultural research.”

Here’s a link to and a citation for the paper,

The Future of Field Trials in Europe: Establishing a Network Beyond Boundaries by Hartmut Stützel, Nicolas Brüggemann, Dirk Inzé. Publication stage: In Press Corrected Proof DOI: http://dx.doi.org/10.1016/j.tplants.2015.12.003 Published Online: January 05, 2016

This paper appears to be open access.

Promising new technique for controlled fabrication of nanowires

This research is the result of a collaboration between French, Italian, Australian, and Canadian researchers. From a Jan. 5, 2016 news item on *phys.org,

An international team of researchers including Professor Federico Rosei and members of his group at INRS (Institut national de la recherche scientifique) has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics. An article just published in the prestigious journal Nature Communications presents their findings: the complete electronic structure of a conjugated organic polymer, and the influence of the substrate on its electronic properties.

A Jan. 5, 2016 INRS news release by Gisèle Bolduc, which originated the news item, indicates this is the beginning rather than an endpoint (Note: A link has been removed),

The researchers combined two procedures previously developed in Professor Rosei’s lab—molecular self-assembly and chain polymerization—to produce a network of long-range poly(para-phenylene) (PPP) nanowires on a copper (Cu) surface. Using advanced technologies such as scanning tunneling microscopy and photoelectron spectroscopy as well as theoretical models, they were able to describe the morphology and electronic structure of these nanostructures.

“We provide a complete description of the band structure and also highlight the strong interaction between the polymer and the substrate, which explains both the decreased bandgap and the metallic nature of the new chains. Even with this hybridization, the PPP bands display a quasi one-dimensional dispersion in conductive polymeric nanowires,” said Professor Federico Rosei, one of the authors of the study.

Although further research is needed to fully describe the electronic properties of these nanostructures, the polymer’s dispersion provides a spectroscopic record of the polymerization process of certain types of molecules on gold, silver, copper, and other surfaces. It’s a promising approach for similar semiconductor studies—an essential step in the development of actual devices.

The results of the study could be used in designing organic nanostructures, with significant potential applications in nanoelectronics, including photovoltaic devices, field-effect transistors, light-emitting diodes, and sensors.

About the article

This study was designed by Yannick Fagot-Revurat and Daniel Malterre of Université de Lorraine/CNRS, Federico Rosei of INRS, Josh Lipton-Duffin of the Institute for Future Environments (Australia), Giorgio Contini of the Italian National Research Council, and Dmytro F. Perepichka of McGill University. […]The researchers were generously supported by Conseil Franco-Québécois de coopération universitaire, the France–Italy International Program for Scientific Cooperation, the Natural Sciences and Engineering Research Council of Canada, Fonds québécois de recherche – Nature et technologies, and a Québec MEIE grant (in collaboration with Belgium).

Here’s a link to and a citation for the paper,

Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires by Guillaume Vasseur, Yannick Fagot-Revurat, Muriel Sicot, Bertrand Kierren, Luc Moreau, Daniel Malterre, Luis Cardenas, Gianluca Galeotti, Josh Lipton-Duffin, Federico Rosei, Marco Di Giovannantonio, Giorgio Contini, Patrick Le Fèvre, François Bertran, Liangbo Liang, Vincent Meunier, Dmitrii F. Perepichka. Nature Communications 7, Article number:  10235 doi:10.1038/ncomms10235 Published 04 January 2016

This is an open access paper.

*’ScienceDaily’ corrected to ‘phys.org’ on Tues., Jan. 5, 2016 at 1615 PST.

Making diesel cleaner

A Dec. 10, 2015 news item on Nanowerk announces a new method for producing diesel fuels (Note: A link has been removed),

Researchers from KU Leuven [Belgium] and Utrecht University [Netherlands] have discovered a new approach to the production of fuels (Nature, “Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons”). Their new method can be used to produce much cleaner diesel. It can quickly be scaled up for industrial use. In 5 to 10 years, we may see the first cars driven by this new clean diesel.

A Dec. 10, 2015 KU Leuven press release, which originated the news item, provides more detail about the research,

The production of fuel involves the use of catalysts. These substances trigger the chemical reactions that convert raw material into fuel. In the case of diesel, small catalyst granules are added to the raw material to sufficiently change the molecules of the raw material to produce useable fuel.

Catalysts can have one or more chemical functions. The catalyst that was used for this particular study has two functions, represented by two different materials: a metal (platinum) and a solid-state acid. During the production process for diesel, the molecules bounce to and fro between the metal and the acid. Each time a molecule comes into contact with one of the materials, it changes a little bit. At the end of the process, the molecules are ready to be used for diesel fuel.

The assumption has always been that the metal and the solid-state acid in the catalyst should be as close together as possible. That would speed up the production process by helping the molecules bounce to and fro more quickly. Professor Johan Martens (KU Leuven) and Professor Krijn de Jong (Utrecht University) have now discovered that this assumption is incorrect. [emphasis mine] If the functions within a catalyst are nanometres apart, the process yields better molecules for cleaner fuel.

“Our results are the exact opposite of what we had expected. At first, we thought that the samples had been switched or that something was wrong with our analysis”, says Professor Martens. “We repeated the experiments three times, only to arrive at the same conclusion: the current theory is wrong. There has to be a minimum distance between the functions within a catalyst. This goes against what the industry has been doing for the past 50 years.”

The new technique can optimise quite a few molecules in diesel. Cars that are driven by this clean diesel would emit far fewer particulates and CO². The researchers believe that their method can be scaled up for industrial use with relative ease, so the new diesel could be used in cars in 5 to 10 years.

The new technique can be applied to petroleum-based fuels, but also to renewable carbon from biomass.

A fifty year old assumption has been found wrong. Interesting, non? In any event, here’s a link to and a citation for the paper,

Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons by Jovana Zecevic, Gina Vanbutsele, Krijn P. de Jong, & Johan A. Martens. Nature 528, 245–248 (10 December 2015)  doi:10.1038/nature16173 Published online 09 December 2015

This paper is behind a paywall.

Clothing which turns you into a billboard

This work from a Belgian-Dutch initiative has the potential to turn us into billboards. From a Sept. 2, 2015 news item on Nanowerk,

Researchers from Holst Centre (set up by TNO and imec), imec and CMST, imec’s associated lab at Ghent University [Belgium], have demonstrated the world’s first stretchable and conformable thin-film transistor (TFT) driven LED display laminated into textiles. This paves the way to wearable displays in clothing providing users with feedback.

Here’s what it looks like,

A Sept. 2, 2015 Holst Centre press release, which originated the news item, provides more details,

“Wearable devices allow people to monitor their fitness and health so they can live full and active lives for longer. But to maximize the benefits wearables can offer, they need to be able to provide feedback on what users are doing as well as measuring it. By combining imec’s patented stretch technology with our expertise in active-matrix backplanes and integrating electronics into fabrics, we’ve taken a giant step towards that possibility,” says Edsger Smits, Senior research scientist at Holst Centre.

The conformable display is very thin and mechanically stretchable. A fine-grain version of the proven meander interconnect technology was developed by the CMST lab at Ghent University and Holst Centre to link standard (rigid) LEDs into a flexible and stretchable display. The LED displays are fabricated on a polyimide substrate and encapsulated in rubber, allowing the displays to be laminated in to textiles that can be washed. Importantly, the technology uses fabrication steps that are known to the manufacturing industry, enabling rapid industrialization.

Following an initial demonstration at the Society for Information Display’s Display Week in San Jose, USA earlier this year, Holst Centre has presented the next generation of the display at the International Meeting on Information Display (IMID) in Daegu, Korea, 18-21 August 2015. Smaller LEDs are now mounted on an amorphous indium-gallium-zinc oxide (a-IGZO) TFT backplane that employs a two-transistor and one capacitor (2T-1C) pixel engine to drive the LEDs. These second-generation displays offer higher pitch and increased, average brightness. The presentation will feature a 32×32 pixel demonstrator with a resolution of 13 pixels per inch (ppi) and average brightness above 200 candelas per square meter (cd/m2). Work is ongoing to further industrialize this technology.

There are some references for the work offered at the end of the press release but I believe they are citing their conference presentations,

9.4: Stretchable 45 × 80 RGB LED Display Using Meander Wiring Technology, Ohmae et al. SID 2015, June 2015

1.2: Rollable, Foldable and Stretchable Displays, Gelinck et al. IMID, Aug. 2015.

13.4 A conformable Active Matrix LED Display, Tripathi et al. IMID, Aug. 2015

For anyone interested in imec formerly the Interuniversity Microelectronics Centre, there’s this Wikipedia entry, and in TNO (Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek in Dutch), there’s this Wikipedia entry.

A 2015 nanotechnology conference for the security and defense sectors

According to an August 25, 2015 news item on Nanotechnology Now, a security and defence conference (NanoSD 2015) will be held in September 2015 in Spain,

Nano for Security & Defense International Conference (NanoSD2015) will be held in Madrid, Spain (September 22-25, 2015). The conference will provide an opportunity to discuss general issues and important impacts of nanotechnology in the development of security and defense. A broad range of defense and security technologies and applications, such as nanostructures, nanosensors, nano energy sources, and nanoelectronics which are influencing these days will be discussed.

The NanoSD 2015 website notes this on its homepage,

After a first edition organised in Avila [Spain], NanoSD 2015 will again provide an opportunity to discuss general issues and important impacts of nanotechnology in the development of security and defense. …

It is evident that nanotechnology can bring many innovations into the defense world such as new innovate products, materials and power sources. Therefore, NanoSD 2015 will present current developments, research findings and relevant information on nanotechnology that will impact the security and defense.

The Phantoms Foundation (event organizers) August 24, 2015 press release, which originated the news item, provides a few more details,

NanoSD2015 Topics
Sensors | Textiles | Nano-Optics | Nanophotonics | Nanoelectronics | Nanomaterials | Nanobio & Nanomedicine | Energy | Nanofood | Forensic Science

Do not miss presentations from well known institutions
Lawrence Livermore National Laboratory (USA) | Ministry of Economy, Industry and Digital (France) | European Defence Agency (Belgium) | Metamaterial Technologies Inc. (Canada) | Graphenea (Spain) | Consiglio Nazionale delle Ricerche (Italy) | Gemalto SA (France) | ICFO (Spain) | The University of Texas at Dallas (USA) | International Commercialisation Alliance of Israel | Grupo Antolin (Spain), among others

Do not miss the opportunity to meet the key players of the Security & Defense industry. Prices starting from 350€ and 495€ for students and seniors respectively.

The deadline for poster submission is September 04.

My most recent piece on nanotechnology and security is an Aug. 19, 2014 posting about a then upcoming NATO (North Atlantic Treaty Organization) workshop on aiding chemical and biological defenses. It took place in Sept. 2014 in Turkey.

Canada and some graphene scene tidbits

For a long time It seemed as if every country in the world, except Canada, had some some sort of graphene event. According to a July 16, 2015 news item on Nanotechnology Now, Canada has now stepped up, albeit, in a peculiarly Canadian fashion. First the news,

Mid October [Oct. 14 -16, 2015], the Graphene & 2D Materials Canada 2015 International Conference & Exhibition (www.graphenecanada2015.com) will take place in Montreal (Canada).

I found a July 16, 2015 news release (PDF) announcing the Canadian event on the lead organizer’s (Phantoms Foundation located in Spain) website,

On the second day of the event (15th October, 2015), an Industrial Forum will bring together top industry leaders to discuss recent advances in technology developments and business opportunities in graphene commercialization.
At this stage, the event unveils 38 keynote & invited speakers. On the Industrial Forum 19 of them will present the latest in terms of Energy, Applications, Production and Worldwide Initiatives & Priorities.

Plenary:
Gary Economo (Grafoid Inc., Canada)
Khasha Ghaffarzadeh (IDTechEx, UK)
Shu-Jen Han (IBM T.J. Watson Research Center, USA)
Bor Z. Jang (Angstron Materials, USA)
Seongjun Park (Samsung Advanced Institute of Technology (SAIT), Korea)
Chun-Yun Sung (Lockheed Martin, USA)

Parallel Sessions:
Gordon Chiu (Grafoid Inc., Canada)
Jesus de la Fuente (Graphenea, Spain)
Mark Gallerneault (ALCERECO Inc., Canada)
Ray Gibbs (Haydale Graphene Industries, UK)
Masataka Hasegawa (AIST, Japan)
Byung Hee Hong (SNU & Graphene Square, Korea)
Tony Ling (Jestico + Whiles, UK)
Carla Miner (SDTC, Canada)
Gregory Pognon (THALES Research & Technology, France)
Elena Polyakova (Graphene Laboratories Inc, USA)
Federico Rosei (INRS–EMT, Université du Québec, Canada)
Aiping Yu (University of Waterloo, Canada)
Hua Zhang (MSE-NTU, Singapore)

Apart from the industrial forum, several industry-related activities will be organized:
– Extensive thematic workshops in parallel (Standardization, Materials & Devices Characterization, Bio & Health and Electronic Devices)
– An exhibition carried out with the latest graphene trends (Grafoid, RAYMOR NanoIntegris, Nanomagnetics Instruments, ICEX and Xerox Research Centre of Canada (XRCC) already confirmed)
– B2B meetings to foster technical cooperation in the field of Graphene

It’s still possible to contribute to the event with an oral presentation. The call for abstracts is open until July, 20 [2015]. [emphasis mine]

Graphene Canada 2015 is already supported by Canada’s leading graphene applications developer, Grafoid Inc., Tourisme Montréal and Université de Montréal.

This is what makes the event peculiarly Canadian: multiculturalism, anyone? From the news release,

Organisers: Phantoms Foundation www.phantomsnet.net & Grafoid Foundation (lead organizers)

CEMES/CNRS (France) | Grafoid (Canada) | Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | IIT (Italy) | McGill University, Canada | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal, Canada

It’s billed as a ‘Canada Graphene 2015’ and, as I recall, these types of events don’t usually have so many other countries listed as organizers. For example, UK Graphene 2015 would have mostly or all of its organizers (especially the leads) located in the UK.

Getting to the Canadian content, I wrote about Grafoid at length tracking some of its relationships to companies it owns, a business deal with Hydro Québec, and a partnership with the University of Waterloo, and a nonrepayable grant from the Canadian federal government (Sustainable Development Technology Canada [SDTC]) in a Feb. 23, 2015 posting. Do take a look at the post if you’re curious about the heavily interlinked nature of the Canadian graphene scene and take another look at the list of speakers and their agencies (Mark Gallerneault of ALCERECO [partially owned by Grafoid], Carla Miner of SDTC [Grafoid received monies from the Canadian federal department],  Federico Rosei of INRS–EMT, Université du Québec [another Quebec link], Aiping Yu, University of Waterloo [an academic partner to Grafoid]). The Canadian graphene community is a small one so it’s not surprising there are links between the Canadian speakers but it does seem odd that Lomiko Metals is not represented here. Still, new speakers have been announced since the news release (e.g., Frank Koppens of ICFO, Spain, and Vladimir Falko of Lancaster University, UK) so  time remains.

Meanwhile, Lomiko Metals has announced in a July 17, 2015 news item on Azonano that Graphene 3D labs has changed the percentage of its outstanding shares affecting the percentage that Lomiko owns, amid some production and distribution announcements. The bit about launching commercial sales of its graphene filament seems more interesting to me,

On March 16, 2015 Graphene 3D Lab (TSXV:GGG) (OTCQB:GPHBF) announced that it launched commercial sales of its Conductive Graphene Filament for 3D printing. The filament incorporates highly conductive proprietary nano-carbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing; therefore, the filament is compatible with most commercially available 3D printers. The conductive filament can be used to print conductive traces (similar to as used in circuit boards) within 3D printed parts for electronics.

So, that’s all I’ve got for Canada’s graphene scene.

ASCENT: access to European Nanoelectronics Infrastructure

ASCENT is an Irish-French-Belgian-led collaborative project designed to open up state of the state-of-the-art facilities to researchers across Europe. From a June 10, 2015 news item on Nanowerk,

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

A June 10, 2015 Imec press release, which originated the news item, expands on the theme,

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment. This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these state-of-the-art devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO Marie-Noëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ [probably a Moore’s law reference] as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

I’m curious as to how they plan to balance industry requests with academic requests. Will organizations that can afford to pay more get preference?

Fully textile-embedded transparent and flexible technology?

There are a lot of research teams jockeying for position in the transparent, flexible electrodes stakes (for anyone unfamiliar with the slang, I’m comparing the competition between various research teams to a horse race). A May 11, 2015 news item on Nanowerk describes work from an international collaboration at the University of Exeter (UK), Note: A link has been removed,

An international team of scientists, including Professor Monica Craciun from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

The discovery could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players, which are lightweight, durable and easily transportable.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Institute for Systems Engineering and Computers, Microsystems and Nanotechnology (INESC-MN) in Lisbon, the Universities of Lisbon and Aveiro in Portugal and the Belgian Textile Research Centre (CenTexBel), is published in the leading scientific journal Scientific Reports (“Transparent conductive graphene textile fibers”).

A May 11, 2015 University of Exeter press release (also on EurekAlert*), which originated the news item,  describes the current situation regarding transparent and flexible electrodes in textiles and how the research at Exeter improves the situation,

Professor Craciun, co-author of the research said: “This is a pivotal point in the future of wearable electronic devices. The potential has been there for a number of years, and transparent and flexible electrodes are already widely used in plastics and glass, for example. But this is the first example of a textile electrode being truly embedded in a yarn. The possibilities for its use are endless, including textile GPS systems, to biomedical monitoring, personal security or even communication tools for those who are sensory impaired.  The only limits are really within our own imagination.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research has identified that ‘monolayer graphene’, which has exceptional electrical, mechanical and optical properties, make it a highly attractive proposition as a transparent electrode for applications in wearable electronics. In this work graphene was created by a growth method called chemical vapour deposition (CVD) onto copper foil, using a state-of-the-art nanoCVD system recently developed by Moorfield.

The collaborative team established a technique to transfer graphene from the copper foils to a polypropylene fibre already commonly used in the textile industry.

Dr Helena Alves who led the research team from INESC-MN and the University of Aveiro said: “The concept of wearable technology is emerging, but so far having fully textile-embedded transparent and flexible technology is currently non-existing. Therefore, the development of processes and engineering for the integration of graphene in textiles would give rise to a new universe of commercial applications. “

Dr Ana Neves, Associate Research Fellow in Prof Craciun’s team from Exeter’s Engineering Department and former postdoctoral researcher at INESC added: “We are surrounded by fabrics, the carpet floors in our homes or offices, the seats in our cars, and obviously all our garments and clothing accessories. The incorporation of electronic devices on fabrics would certainly be a game-changer in modern technology.

“All electronic devices need wiring, so the first issue to be address in this strategy is the development of conducting textile fibres while keeping the same aspect, comfort and lightness. The methodology that we have developed to prepare transparent and conductive textile fibres by coating them with graphene will now open way to the integration of electronic devices on these textile fibres.”

Dr Isabel De Schrijver,an expert of smart textiles from CenTexBel said: “Successful manufacturing of wearable electronics has the potential for a disruptive technology with a wide array of potential new applications. We are very excited about the potential of this breakthrough and look forward to seeing where it can take the electronics industry in the future.”

Professor Saverio Russo, co-author and also from the University of Exeter, added: “This breakthrough will also nurture the birth of novel and transformative research directions benefitting a wide range of sectors ranging from defence to health care. “

In 2012 Professor Craciun and Professor Russo, from the University of Exeter’s Centre for Graphene Science, discovered GraphExeter – sandwiched molecules of ferric chloride between two graphene layers which makes a whole new system that is the best known transparent material able to conduct electricity.  The same team recently discovered that GraphExeter is also more stable than many transparent conductors commonly used by, for example, the display industry.

Here’s a link to and a citation for the paper,

Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment by Freddie Withers, Thomas Hardisty Bointon, David Christopher Hudson, Monica Felicia Craciun, & Saverio Russo. Scientific Reports 4, Article number: 4967 doi:10.1038/srep04967 Published 15 May 2014

Did they wait a year to announce the research or is this a second-go-round? In any event, it is an open access paper.

* Added EurekAlert link 1120 hours PDT on May 12, 2015.

Nanex Canada (?) opens office in United States

Earlier this month in a Sept. 5, 2014 posting I noted that a Belgian company was opening a Canadian subsidiary in Montréal, Québec, called Nanex Canada. Not unexpectedly, the company has now announced a new office in the US. From a Sept. 23, 2014 Nanex Canada news release on Digital Journal,

Nanex Canada appoints Patrick Tuttle, of Havre de Grace, Maryland as the new USA National Sales Director. Tuttle will be in charge of all operations for the USA marketing and distribution for the Nanex Super hydrophobic Water Repellent Nanotechnology products.

… Nanex Canada is proud to announce a new partnership with Patrick Tuttle to develop the market within the Unites States for Its new line of super hydrophobic products. “We feel this is a very strategic alliance with Mr. Tuttle and his international marketing staff,” said Boyd Soussana, National Marketing Director for the parent company, Nanex Canada.

The products Mr. Tuttle will be responsible for in developing a market for include:

1) Aqua Shield Marine

2) Aqua Shield Leather and Textile

3) Aqua Shield Exterior: Wood, Masonry, Concrete

4) Aqua Shield Sport: Skiing, Snowboarding, Clothing

5) Aqua Shield Clear: Home Glass and Windshield Coating

6) Dryve Shield: For all Auto Cleaning and Shine

Soussana went on to say “the tests we have done in Canada on high dollar vehicles and the feedback from the Marine industry have been excellent. We are hearing from boat owners that they are seeing instant results in cleaning and protection from the Aqua Shield Marine products from the teak, to the rails and the fiberglass as well”

Boyd Soussana told me they did a private test on some very high end vehicles and the owners were very impressed, according to him.

So what is a Super hydrophobic Water Repellent Nanotechnology Product and how does it work?

A superhydrophobic coating is a nanoscopic surface layer that repels water and also can reduce dirt and friction against the surface to achieve better fuel economies for the auto and maritime industries according to Wikipedia.

About Nanex Company

Nanex is a developer of commercialized nanotechnology solutions headquartered in Belgium operating in North America through its Canadian subsidiary Nanex Canada Incorporated. At the start of 2012 it launched its first product, an advanced super hydrophobic formula called Always Dry. By 2014 Nanex had distributors around the world from Korea, Malaysia, and Singapore, to England and Eastern Europe, and had expanded its products into three lines and several formulas.

Given the remarkably short time span between opening a Canadian subsidiary and opening an office in the US, it’s safe to assume that obtaining a toehold in the US market was Nanex’s true objective.