Tag Archives: Bill Clinton

Celebrating the 20th Anniversary of the Authorization of the US 21st Century Nanotechnology Research and Development Act

The US National Nanotechnology Initiative (NNI) was signed into existence by then US President Bill Clinton in 2000 (one of his last official acts while still in office) but it was then US President George W. Bush who signed the 21st Century Nanotechnology Research and Development Act in 2003. My understanding is the act gave the NNI a more permanent status.

In any event it’s the 20th anniversary of the 2003 signing of the act as noted in a December 6, 2023 posting by : Lynn L. Bergeson and Carla N. Hutton on the National Law Review blog, Note: A link has been removed,

The White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) announced on December 4, 2023, a series of events to drive U.S. leadership in nanotechnology, in celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act. The announcement notes that for the past two decades, the National Nanotechnology Initiative (NNI) “has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society.” …

A December 4, 2023 White House Office of Science and Technology Policy (OSTP) news release announced the 20th anniversary and celebrations, Note: Links have been removed,

In celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act, the White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) are announcing a series of events to drive U.S. leadership in nanotechnology.

For the past two decades, the National Nanotechnology Initiative (NNI) has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society. Coordination across the government has allowed Americans to safely enjoy the benefits of nanotechnology, which has led to revolutions in technology and industry, including faster microchips, powerful mRNA vaccines, and clean energy technologies. Meanwhile, carbon nanotubes have improved the power and lifecycle of batteries; quantum dots make flat screen TVs more vibrant; and nanoparticles allow for faster medical diagnostics.

“Over the years, the NNI has dynamically and responsibly responded to the needs of the country,” said Dr. Branden Brough, Director of NNCO, which coordinates the NNI. “The initiative is a model for collaborative and thoughtful technology development, while supporting the rapid development of other emerging fields by creating the infrastructure and workforce development programs that bolster these growing industries.”

The NNI community will host a symposium on March 5, 2024 [emphasis mine] at the National Academies of Sciences, Engineering, and Medicine in Washington, D.C., to recognize the impact of research and development at the nanoscale and plan the NNI’s promising future. The event is open to the public. …

This week, as we celebrate the Act’s signing, the NNCO will release a series of reports and stories that illustrate the impact of the NNI. This includes readouts from the Nano4EARTH roundtable discussions [emphasis mine] about applying nanotechnology solutions to address climate change, such as surface technologies, new batteries and energy storage solutions, and greenhouse gas capture approaches. Also, the NNCO will highlight a new independent study [emphasis mine] about how the U.S. nanotechnology community contributes tens of billions of dollars—and potentially hundreds of billions of dollars—to the economy each year. And, to highlight the importance of this growing field, NNCO will feature the stories of early-career scientists who represent the promising future of nanotechnology.

Additional events will be held during the coming months, including science cafes across the country, activities at local museums, and podcasts and articles in the media. For more information about these activities, visit the NNI website.

The report/study

The independent study (Economic Impact Analysis: 20 Years of Nanotechnology Investments, 2002 – 2022) mentioned in the OSTP news release was launched on December 5, 2023 and highlighted here in a January 2, 2024 posting.

The symposium

Here’s a poster of the March 5, 2024 symposium celebrating the 20th anniversary of the act,

There’s a registration page where you can register for the in-person symposium and find more information about the speakers. I thought introduction and agenda from the registration page might be of interest, Note: A link has been removed,

Scientists and engineers across many fields and disciplines are united by their work at the nanoscale. Their diverse efforts have helped produce everything from faster microchips to powerful mRNA vaccines. The transformative impact of this work has been spurred by the coordination and focus on U.S. nanotechnology established by the 21st Century Nanotechnology Research and Development Act in 2003. Celebrating such a broad impact and envisioning the future can be quite challenging, but this event will bring together voices from across the emerging technology landscape. There will be experts who can speak on the importance of nanotechnology in quantum engineering, optics, EHS, plastics, DEIA, microelectronics, medicine, education, manufacturing, and more. We can’t predict what will emerge from this lively discussion between researchers, policymakers, members of industry, educators, and the public, but the conversation can only benefit from including more diverse perspectives – especially yours.

AGENDA

8:30-9:00   Coffee and refreshments

9:00-9:05   Welcome and Introduction

9:05-9:30   Policy Perspectives #1

9:30-10:15  Morning Keynote

10:15-10:45  Coffee Break

10:45-11:30  Panel: Responsible Development

11:30-12:15  Panel: Fundamental Research

12:15-1:15  Lunch, Poster Session, and Networking

1:15-1:45  Policy Perspectives #2

1:45-2:30  Keynote Panel: The Future of Nanotechnology

2:30-3:15  Panel: Workforce Development

3:15-3:45  Break

3:45-4:30  Panel: Infrastructure

4:30-5:15  Panel: Commercialization

5:15-6:00  Closing Keynote

6:00-7:00  Reception Sponsored by the Kavli Foundation

No details about exactly what is being discussed but it certainly seems like it will be a busy day.

Nano4EARTH

I found the OSTP news release a little confusing with regard to the “readouts from the Nano4EARTH roundtable discussions” but here’s how the Nano4EARTH (Climate Change National Nanotechnology Challenge) webpage describes its upcoming workshop and roundtables,

Nano4EARTH Kick-off Workshop

Click here for information about the Nano4EARTH Kick-off hybrid workshop, to be held in Washington, DC and online on Jan. 24–25, 2023.

Nano4EARTH Roundtable Discussions

The Nano4EARTH roundtable discussions aim to identify fundamental knowledge gaps, needs, and opportunities to advance current energy efficiency, sustainable development, and climate change goals. By convening stakeholders from different sectors, backgrounds, and expertise, the goals of these roundtables are to identify applicable lessons across the spectrum of technologies, discuss system-specific needs, scalability and commercialization challenges, and potential paths forward.

The topics of the roundtables were identified at the Nano4EARTH Kick-off Workshop as particularly promising areas that could have an impact in a short time frame (four years or less). 

Roundtables:

Coatings, Lubricants, Membranes, and Other Interface Technologies

Roundtable Information, Discussion Summary

Batteries and Energy Storage

Roundtable Information, Discussion Summary

Capture, Storage, and Use of Greenhouse Gases

Roundtable Information, Discussion Summary

Nano4EARTH Roundtable Discussion on Catalysts (January 24, 2024)

Roundtable Information

Other celebrations around the country

There’s this December 11, 2023 notice from the “Celebrating nanotechnology around the country” webpage on the NNI website,

In celebration of the 20-year anniversary of the signing of the 21st Century Nanotechnology Research and Development Act, which codified the National Nanotechnology Initiative, the National Nanotechnology Coordination Office is showing its appreciation for the many organizations across the country that have put together engagement events with the general public to raise awareness about nanotechnology.

Such events (compiled by the National Informal STEM Education (NISE) Network) include:

Nanotechnology Day Activities in Arizona

Family Science Nights in Greensboro, NC

Celebrating 45 Years of Nanoscale Research at the Cornell Nanoscale Science and Technology Facility

Twenty Years of Nanotechnology! Opportunity to engage your community with NanoDays activities

The end

Chad Mirkin at Northwestern University (Chicago, Illinois, US) who’s a pretty big deal in the nanomedicine field wrote an October 29, 2021 introductory essay for Scientific American,

A Big Bet on Nanotechnology Has Paid Off

The National Nanotechnology Initiative promised a lot. It has delivered more

We’re now more than two decades out from the initial announcement of the National Nanotechnology Initiative (NNI), a federal program from President Bill Clinton founded in 2000 to support nanotechnology research and development in universities, government agencies and industry laboratories across the United States. It was a significant financial bet on a field that was better known among the general public for science fiction than scientific achievement. Today it’s clear that the NNI did more than influence the direction of research in the U.S. It catalyzed a worldwide effort and spurred an explosion of creativity in the scientific community. And we’re reaping the rewards not just in medicine, but also clean energy, environmental remediation and beyond.

Before the NNI, there were people who thought nanotechnology was a gimmick. I began my research career in chemistry, but it seemed to me that nanotechnology was a once-in-a-lifetime opportunity: the opening of a new field that crossed scientific disciplines. In the wake of the NNI, my university, Northwestern University, made the strategic decision to establish the International Institute for Nanotechnology, which now represents more than $1 billion in pure nanotechnology research, educational programs and supporting infrastructure. Other universities across the U.S. made similar investments, creating new institutes and interdisciplinary partnerships.

He’s a little euphoric but his perspective and the information he offers is worth knowing about.

Documentary “NNI Retrospective Video: Creating a National Initiative” celebrates the US National Nanotechnology Initiative (NNI) and a lipid nanoparticle question

i stumbled across an August 4, 2022 tvworldwide.com news release about a video celbrating the US National Nanotechnology Initiative’s (NNI) over 20 years of operation, (Note: A link has been removed),

TV Worldwide, since 1999, a pioneering web-based global TV network, announced that it was releasing a video trailer highlighting a previously released documentary on NNI over the past 20 years, entitled, ‘NNI Retrospective Video: Creating a National Initiative’.

The video and its trailer were produced in cooperation with the National Nanotechnology Initiative (NNI), the National Science Foundation and the University of North Carolina Greensboro.

Video Documentary Synopsis

Nanotechnology is a megatrend in science and technology at the beginning of the 21 Century. The National Nanotechnology Initiative (NNI) has played a key role in advancing the field after it was announced by President Clinton in January 2000. Neil Lane was Presidential Science Advisor. Mike Roco proposed the initiative at the White House in March 1999 on behalf of the Interagency Working Group on Nanotechnology and was named the founding Chair of NSET to implement NNI beginning with Oct. 2000. NSF led the preparation of this initiative together with other agencies including NIH, DoD, DOE, NASA, and EPA. Jim Murday was named the first Director of NNCO to support NSET. The scientific and societal success of NNI has been recognized in the professional communities, National Academies, PCAST, and Congress. Nanoscale science, engineering and technology are strongly connected and collectively called Nanotechnology.

This video documentary was made after the 20th NNI grantees conference at NSF. It is focused on creating and implementing NNI, through video interviews. The interviews focused on three questions: (a) Motivation and how NNI started; (b) The process and reason for the success in creating NNI; (c) Outcomes of NNI after 20 years, and how the initial vision has been realized.

About the National Nanotechnology Initiative (NNI)

The National Nanotechnology Initiative (NNI) is a U.S. Government research and development (R&D) initiative. Over thirty Federal departments, independent agencies, and commissions work together toward the shared vision of a future in which the ability to understand and control matter at the nanoscale leads to ongoing revolutions in technology and industry that benefit society. The NNI enhances interagency coordination of nanotechnology R&D, supports a shared infrastructure, enables leveraging of resources while avoiding duplication, and establishes shared goals, priorities, and strategies that complement agency-specific missions and activities.

The NNI participating agencies work together to advance discovery and innovation across the nanotechnology R&D enterprise. The NNI portfolio encompasses efforts along the entire technology development pathway, from early-stage fundamental science through applications-driven activities. Nanoscience and nanotechnology are prevalent across the R&D landscape, with an ever-growing list of applications that includes nanomedicine, nanoelectronics, water treatment, precision agriculture, transportation, and energy generation and storage. The NNI brings together representatives from multiple agencies to leverage knowledge and resources and to collaborate with academia and the private sector, as appropriate, to promote technology transfer and facilitate commercialization. The breadth of NNI-supported infrastructure enables not only the nanotechnology community but also researchers from related disciplines.

In addition to R&D efforts, the NNI is helping to build the nanotechnology workforce of the future, with focused efforts from K–12 through postgraduate research training. The responsible development of nanotechnology has been an integral pillar of the NNI since its inception, and the initiative proactively considers potential implications and technology applications at the same time. Collectively, these activities ensure that the United States remains not only the place where nanoscience discoveries are made, but also where these discoveries are translated and manufactured into products to benefit society.

I’m embedding the trailer here and a lipid nanoparticle question follows (The origin story told in Vancouver [Canada] is that the work was started at the University of British Columbia by Pieter Quilty.),

I was curious about what involvement the US NNI had with the development of lipid nanoparticles (LNPs) and found a possible answer to that question on Wikipedia The LNP Wikipedia entry certainly gives the bulk of the credit to Quilty but there was work done prior to his involvement (Note: Links have been removed),

A significant obstacle to using LNPs as a delivery vehicle for nucleic acids is that in nature, lipids and nucleic acids both carry a negative electric charge—meaning they do not easily mix with each other.[19] While working at Syntex in the mid-1980s,[20] Philip Felgner [emphasis mine] pioneered the use of artificially-created cationic lipids (positively-charged lipids) to bind lipids to nucleic acids in order to transfect the latter into cells.[21] However, by the late 1990s, it was known from in vitro experiments that this use of cationic lipids had undesired side effects on cell membranes.[22]

During the late 1990s and 2000s, Pieter Cullis of the University of British Columbia [emphasis mine] developed ionizable cationic lipids which are “positively charged at an acidic pH but neutral in the blood.”[8] Cullis also led the development of a technique involving careful adjustments to pH during the process of mixing ingredients in order to create LNPs which could safely pass through the cell membranes of living organisms.[19][23] As of 2021, the current understanding of LNPs formulated with such ionizable cationic lipids is that they enter cells through receptor-mediated endocytosis and end up inside endosomes.[8] The acidity inside the endosomes causes LNPs’ ionizable cationic lipids to acquire a positive charge, and this is thought to allow LNPs to escape from endosomes and release their RNA payloads.[8]

From 2005 into the early 2010s, LNPs were investigated as a drug delivery system for small interfering RNA (siRNA) drugs.[8] In 2009, Cullis co-founded a company called Acuitas Therapeutics to commercialize his LNP research [emphasis mine]; Acuitas worked on developing LNPs for Alnylam Pharmaceuticals’s siRNA drugs.[24] In 2018, the FDA approved Alnylam’s siRNA drug Onpattro (patisiran), the first drug to use LNPs as the drug delivery system.[3][8]

By that point in time, siRNA drug developers like Alnylam were already looking at other options for future drugs like chemical conjugate systems, but during the 2010s, the earlier research into using LNPs for siRNA became a foundation for new research into using LNPs for mRNA.[8] Lipids intended for short siRNA strands did not work well for much longer mRNA strands, which led to extensive research during the mid-2010s into the creation of novel ionizable cationic lipids appropriate for mRNA.[8] As of late 2020, several mRNA vaccines for SARS-CoV-2 use LNPs as their drug delivery system, including both the Moderna COVID-19 vaccine and the Pfizer–BioNTech COVID-19 vaccines.[3] Moderna uses its own proprietary ionizable cationic lipid called SM-102, while Pfizer and BioNTech licensed an ionizable cationic lipid called ALC-0315 from Acuitas.[8] [emphases mine]

You can find out more about Philip Felgner here on his University of California at Irvine (UCI) profile page.

I wish they had been a little more careful about some of the claims that Thomas Kalil made about lipid nanoparticles in both the trailer and video but, getting back to the trailer (approx. 3 mins.) and the full video (approx. 25 mins.), either provides insight into a quite extraordinary effort.

Bravo to the US NNI!

Canada has a nanotechnology industry? and an overview of the US situation

It’s always interesting to get some insight into how someone else sees the nanotechnology effort in Canada.

First, there have been two basic approaches internationally. Some countries have chosen to fund nanotechnology/nanoscience research through a national initiative/project/council/etc. Notably the US, the UK, China, and Russia, amongst others, have followed this model. For example, the US National Nanotechnology Initiative (NNI)  (a type of hub for research, communication, and commercialization efforts) has been awarded a portion of the US budget every year since 2000. The money is then disbursed through the National Science Foundation.

Canada and its nanotechnology industry efforts

By contrast, Canada has no such line item in its national budget. There is a National Institute of Nanotechnology (NINT) but it is one of many institutes that help make up Canada’s National Research Council. I’m not sure if this is still true but when it was first founded, NINT was funded in part by the federal government and in part by the province of Alberta where it is located (specifically, in Edmonton at the University of Alberta). They claim the organization has grown since its early days although it looks like it’s been shrinking. Perhaps some organizational shuffles? In any event, support for the Canadian nanotechnology efforts are more provincial than federal. Alberta (NINT and other agencies) and Québec (NanoQuébec, a provincially funded nano effort) are the standouts, with Ontario (nano Ontario, a self-organized not-for-profit group) following closely. The scene in Canada has always seemed fragmented in comparison to the countries that have nanotechnology ‘hubs’.

Patrick Johnson in a Dec. 22, 2015 article for Geopolitical Monitor offers a view which provides an overview of nanotechnology in the US and Canada,  adds to the perspective offered here, and, at times, challenges it (Note: A link has been added),

The term ‘nanotechnology’ entered into the public vernacular quite suddenly around the turn of the century, right around the same time that, when announcing the US National Nanotechnology Initiative (NNI) in 2001 [2000; see the American Association for the Advancement of Science webpage on Historical Trends in Federal R&D, scroll down to the National Nanotechnology Initiative and click on the Jpg or Excel links], President Bill Clinton declared that it would one day build materials stronger than steel, detect cancer at its inception, and store the vast records of the Library of Congress in a device the size of a sugar cube. The world of science fiction took matters even further. In his 2002 book Prey, Michael Creighton [Michael Crichton; see Wikipedia entry] wrote of a cloud of self-replicating nanorobots [also known as, nanobots or self-assemblers] that terrorize the good people of Nevada when a science experiment goes terribly wrong.

Back then the hype was palpable. Federal money was funneled to promising nanotech projects as not to fall behind in the race to master this new frontier of science. And industry analysts began to shoot for the moon in their projections. The National Science Foundation famously predicted that the nanotechnology industry would be worth $1 trillion by the year 2015.

Well here we are in 2015 and the nanotechnology market was worth around $26 billion in [sic] last year, and there hasn’t even been one case of a murderous swarm of nanomachines terrorizing the American heartland. [emphasis mine]

Is this a failure of vision? No. If anything it’s only a failure of timing.

The nanotechnology industry is still well on its way to accomplishing the goals set out at the founding of the NNI, goals which at the time sounded utterly quixotic, and this fact is increasingly being reflected in year-on-year growth numbers. In other words, nanotechnology is still a game-changer in global innovation, it’s just taking a little longer than first expected.

The Canadian Connection

Although the Canadian government is not among the world’s top spenders on nanotechnology research, the industry still represents a bright spot in the future of the Canadian economy. The public-private engine [emphasis mine] at the center of Canada’s nanotech industry, the National Institute for Nanotechnology (NINT), was founded in 2001 with the stated goal of “increasing the competitiveness of Canadian companies; creating technology solutions to meet the needs of society; expanding training programs for researchers and entrepreneurs; and enhancing Canada’s stature in the world of nanotechnology.” This ambitious mandate that NINT set out for itself was to be accomplished over the course of two broad stages: first a ‘seeding’ phase of attracting promising personnel and coordinating basic research, and the then a ‘harvesting’ phase of putting the resulting nanotechnologies to the service of Canadian industry.

Recent developments in Canadian nanotechnology [emphasis mine] show that we have already entered that second stage where the concept of nanotechnology transitions from hopeful hypothetical to real-world economic driver

I’d dearly like to know which recent developments indicate Canada’s industry has entered a serious commercialization phase. (It’s one of the shortcomings of our effort that communication is not well supported.) As well, I’d like to know more about the  “… public-private engine at the center of Canada’s nanotech industry …” as Johnson seems to be referring to the NINT, which is jointly funded (I believe) by the federal government and the province of Alberta. There is no mention of private funding on their National Research Council webpage but it does include the University of Alberta as a major supporter.

I am intrigued and I hope there is more information to come.

US and its nanotechnology industry efforts

Dr. Ambika Bumb has written a Dec. 23, 2015 article for Tech Crunch which reflects on her experience as a researcher and entrepreneur in the context of the US NNI effort and includes a plea for future NNI funding [Note: One link added and one link removed],

Indeed, I am fortunate to be the CEO of a nanomedicine technology developer that extends the hands of doctors and scientists to the cellular and molecular level.

The first seeds of interest in bringing effective nano-tools into the hands of doctors and patients were planted in my mind when I did undergrad research at Georgia Tech.  That initial interest led to me pursuing a PhD at Oxford University to develop a tri-modal nanoparticle for imaging a variety of diseases ranging from cancers to autoimmune disorders.

My graduate research only served to increase my curiosity so I then did a pair of post-doctoral fellowships at the National Cancer Institute and the National Heart Lung and Blood Institute.  When it seemed that I was a shoe-in for a life-long academic career, our technology garnered much attention and I found myself in the Bay Area founding the now award-winning Bikanta [bikanta.com].

Through the National Nanotechnology Initiative (NNI) and Nanotechnology Research and Development Act of 2003, our federal government has invested $20 billion in nanoresearch in the past 13 years.  The return on that investment has resulted in 628 agency‐to‐agency collaborations, hundreds of thousands of publications, and more than $1 trillion in revenue generated from nano‐enabled products. [emphasis mine]

Given that medical innovations take a minimum of 10 years before they translate into a clinical product, already realizing a 50X return is an astounding achievement.  Slowing down would be counter-intuitive from an academic and business perspective.

Yet, that is what is happening.  Federal funding peaked half a decade ago in 2010.  [emphasis mine] NNI investments went from $1.58B in 2010 to $1.170B in 2015 (in constant dollars), a 26% drop.  The number of nano-related papers published in the US were roughly 25 thousand in 2013, while the EU and China produced 33 and 35 thousand, respectively.

History has shown repeatedly how the United States has lost an early competitive advantage in developing high‐value technologies to international competition when commercialization infrastructure was not adequately supported.

Examples include semiconductors, advanced batteries for vehicles, and cement‐based construction materials, all of which were originally developed in the United States, but are now manufactured elsewhere.

It is now time for a second era – NNI 2.0.  A return to higher and sustained investment, the purpose of NNI 2.0 should be not just foundational research but also necessary support for rapid commercialization of nanotechnology. The translation of bench science into commercial reality requires the partnership of academic, industrial, federal, and philanthropic players.

I’m not sure why there’s a difference between Johnson’s ” … worth around $26 billion in [sic] last year …] and Bumb’s “… return on that investment has resulted … more than $1 trillion in revenue generated from nano‐enabled products.” I do know there is some controversy as to what should or should not be included when estimating the value of the ‘nanotechnology enterprise’, for example, products that are only possible due to nanotechnology as opposed to products that already existed, such as golf clubs, but are enhanced by nanotechnology.

Bumb goes on to provide a specific example from her own experience to support the plea,

When I moved from the renowned NIH [US National Institutes of Health] on the east coast to the west coast to start Bikanta, one of the highest priority concerns was how we were going to develop nanodiamond technology without access to high-end characterization instrumentation to analyze the quality of our material.  Purchasing all that equipment was not financially viable or even wise for a startup.

We were extremely lucky because our proposal was accepted by the Molecular Foundry, one of five DOE [US Department of Energy]-funded nanoscience user facilities.  While the Foundry primarily facilitates basic nanoscience projects from academic and national laboratory users, Fortune 500 companies and startups like ours also take advantage of its capabilities to answer fundamental questions and conduct proof of concept studies (~10%).

Disregarding the dynamic intellectual community for a minute, there is probably more than $150M worth of instrumentation at the Foundry.  An early startup would never be able to dream of raising a first round that large.

One of the factors of Bikanta’s success is that the Molecular Foundry enabled us to make tremendous strides in R&D in just months instead of years.  More user facilities, incubator centers, and funding for commercializing nanotech are greatly needed.

Final comments

I have to thank Dr. Bumb for pointing out that 2010 was the peak for NNI funding (see the American Association for the Advancement of Science webpage on Historical Trends in Federal R&D, scroll down to the National Nanotechnology Initiative and click on the Jpg or Excel links). I erroneously believed (although I don’t appear to have written up my belief; if you find any such statement, please let me know so I can correct it) that the 2015 US budget was the first time the NNI experienced a drop in funding.

While I found Johnson’s article interesting I wasn’t able to determine the source for his numbers and some of his material had errors that can be identified immediately, e.g., Michael Creighton instead of Michael Crichton.