Tag Archives: biobattery

Biobattery with a 100-year shelf life

According to an April 18, 2023 news item on ScienceDaily this long-lasting (100 years potentially) biobattery runs on bacteria,

A tiny biobattery that could still work after 100 years has been developed by researchers at Binghamton University, State University of New York.

Last fall [2022], Binghamton University Professor Seokheun “Sean” Choi and his Bioelectronics and Microsystems Laboratory published their research into an ingestible biobattery activated by the Ph factor of the human intestine.

Now, he and PhD student Maryam Rezaie have taken what they learned and incorporated it into new ideas for use outside the body.

A new study in the journal Small, which covers nanotechnology, shares the results from using spore-forming bacteria similar to the previous ingestible version to create a device that potentially would still work after 100 years.

An April 12, 2023 Binghamton University news release (also on EurekAlert but published April 18, 2023) by Chris Kocher, which originated the news item, highlights the researcher’s perspective on this work,

“The overall objective is to develop a microbial fuel cell that can be stored for a relatively long period without degradation of biocatalytic activity and also can be rapidly activated by absorbing moisture from the air,” said Choi, a faculty member in the Department of Electrical and Computer Engineering at the Thomas J. Watson College of Engineering and Applied Science.

“We wanted to make these biobatteries for portable, storable and on-demand power generation capabilities,” Choi said. “The problem is, how can we provide the long-term storage of bacteria until used? And if that is possible, then how would you provide on-demand battery activation for rapid and easy power generation? And how would you improve the power?”

The dime-sized fuel cell was sealed with a piece of Kapton tape, a material that can withstand temperatures from -500 to 750 degrees Fahrenheit. When the tape was removed and moisture allowed in, the bacteria mixed with a chemical germinant that encouraged the microbes to produce spores. The energy from that reaction produced enough to power an LED, a digital thermometer or a small clock.

Heat activation of the bacterial spores cut the time to full power from 1 hour to 20 minutes, and increasing the humidity led to higher electrical output. After a week of storage at room temperature, there was only a 2% drop in power generation.

The study is funded by the [US] Office of Naval Research, and it’s easy to imagine the military applications for a power source that could be deployed on the battlefield or in remote locations. However, there would be plenty of civilian uses for such a fuel cell, too.

While these are all good results, Choi knows that a fuel cell like this needs to power up more quickly and produce more voltage to become a viable alternative to traditional batteries.

“I think this is a good start,” he said. “Hopefully, we can make a commercial product using these ideas.”

Here’s a link to and a citation for the paper,

Moisture-Enabled Germination of Heat-Activated Bacillus Endospores for Rapid and Practical Bioelectricity Generation: Toward Portable, Storable Bacteria-Powered Biobatteries by Maryam Rezaie, Seokheun Choi. Small, Online Version of Record before inclusion in an issue 2301135 DOI: https://doi.org/10.1002/smll.202301135 First published online: 18 March 2023

This paper is behind a paywall.

Batteryfree cardiac pacemaker

This particular energy-havesting pacemaker has been tested ‘in vivo’ or, as some like to say, ‘on animal models’. From an Aug. 31, 2014 European Society of Cardiology news release (also on EurekAlert),

A new batteryless cardiac pacemaker based on an automatic wristwatch and powered by heart motion was presented at ESC Congress 2014 today by Adrian Zurbuchen from Switzerland. The prototype device does not require battery replacement.

Mr Zurbuchen, a PhD candidate in the Cardiovascular Engineering Group at ARTORG, University of Bern, Switzerland, said: “Batteries are a limiting factor in today’s medical implants. Once they reach a critically low energy level, physicians see themselves forced to replace a correctly functioning medical device in a surgical intervention. This is an unpleasant scenario which increases costs and the risk of complications for patients.”

Four years ago Professor Rolf Vogel, a cardiologist and engineer at the University of Bern, had the idea of using an automatic wristwatch mechanism to harvest the energy of heart motion. Mr Zurbuchen said: “The heart seems to be a very promising energy source because its contractions are repetitive and present for 24 hours a day, 7 days a week. Furthermore the automatic clockwork, invented in the year 1777, has a good reputation as a reliable technology to scavenge energy from motion.”

The researchers’ first prototype is based on a commercially available automatic wristwatch. All unnecessary parts were removed to reduce weight and size. In addition, they developed a custom-made housing with eyelets that allows suturing the device directly onto the myocardium (photo 1).

The prototype works the same way it would on a person’s wrist. When it is exposed to an external acceleration, the eccentric mass of the clockwork starts rotating. This rotation progressively winds a mechanical spring. After the spring is fully charged it unwinds and thereby spins an electrical micro-generator.

To test the prototype, the researchers developed an electronic circuit to transform and store the signal into a small buffer capacity. They then connected the system to a custom-made cardiac pacemaker (photo 2). The system worked in three steps. First, the harvesting prototype acquired energy from the heart. Second, the energy was temporarily stored in the buffer capacity. And finally, the buffered energy was used by the pacemaker to apply minute stimuli to the heart.

The researchers successfully tested the system in in vivo experiments with domestic pigs. The newly developed system allowed them for the first time to perform batteryless overdrive-pacing at 130 beats per minute.

Mr Zurbuchen said: “We have shown that it is possible to pace the heart using the power of its own motion. The next step in our prototype is to integrate both the electronic circuit for energy storage and the custom-made pacemaker directly into the harvesting device. This will eliminate the need for leads.”

He concluded: “Our new pacemaker tackles the two major disadvantages of today’s pacemakers. First, pacemaker leads are prone to fracture and can pose an imminent threat to the patient. And second, the lifetime of a pacemaker battery is limited. Our energy harvesting system is located directly on the heart and has the potential to avoid both disadvantages by providing the world with a batteryless and leadless pacemaker.”

This project seems the furthest along with regard to its prospects for replacing batteries in pacemakers (with leadlessness being a definite plus) but there are other projects such as Korea’s Professor Keon Jae Lee of KAIST and Professor Boyoung Joung, M.D. at Severance Hospital of Yonsei University who are working on a piezoelectric nanogenerator according to a June 26, 2014 article by Colin Jeffrey for Gizmodo.com,

… Unfortunately, the battery technology used to power these devices [cardiac pacemakers] has not kept pace and the batteries need to be replaced on average every seven years, which requires further surgery. To address this problem, a group of researchers from Korea Advanced Institute of Science and Technology (KAIST) has developed a cardiac pacemaker that is powered semi-permanently by harnessing energy from the body’s own muscles.

The research team, headed by Professor Keon Jae Lee of KAIST and Professor Boyoung Joung, M.D. at Severance Hospital of Yonsei University, has created a flexible piezoelectric nanogenerator that has been used to directly stimulate the heart of a live rat using electrical energy produced from small body movements of the animal.

… the team created their new high-performance flexible nanogenerator from a thin film semiconductor material. In this case, lead magnesium niobate-lead titanate (PMN-PT) was used rather than the graphene oxide and carbon nanotubes of previous versions. As a result, the new device was able to harvest up to 8.2 V and 0.22 mA of electrical energy as a result of small flexing motions of the nanogenerator. The resultant voltage and current generated in this way were of sufficient levels to stimulate the rat’s heart directly.

I gather this project too was tested on animal models, in this case, rats.

Gaining some attention at roughly the same time as the Korean researchers, a French team’s work with a ‘living battery’ is mentioned in a June 17, 2014 news item on the Open Knowledge website,

Philippe Cinquin, Serge Cosnier and their team at Joseph Fourier University in France have invented a ‘living battery.’ The device – a fuel cell and conductive wires modified with reactive enzymes – has the power to tap into the body’s endless supply of glucose and convert simple sugar, which constitutes the energy source of living cells, into electricity.

Visions of implantable biofuel cells that use the body’s natural energy sources to power pacemakers or artificial hearts have been around since the 1960s, but the French team’s innovations represents the closest anyone has ever come to harnessing this energy.

The French team was a finalist for the 2014 European Inventor Award. Here’s a description of how their invention works, from their 2014 European Inventor Award’s webpage,

Biofuel cells that harvest energy from glucose in the body function much like every-day batteries that conduct electricity through positive and negative terminals called anodes and cathodes and a medium conducive to electric charge known as the electrolyte. Electricity is produced via a series of electrochemical reactions between these three components. These reactions are catalysed using enzymes that react with glucose stored in the blood.

Bodily fluids, which contain glucose and oxygen, serve as the electrolyte. To create an anode, two enzymes are used. The first enzyme breaks down the sugar glucose, which is produced every time the animal or person consumes food. The second enzyme oxidises the simpler sugars to release electrons. A current then flows as the electrons are drawn to the cathode. A capacitor that is hooked up to the biofuel cell stores the electric charge produced.

I wish all the researchers good luck as they race towards a new means of powering pacemakers, deep brain stimulators, and other implantable devices that now rely on batteries which need to be changed thus forcing the patient to undergo major surgery.

Self-powered batteries for pacemakers, etc. have been mentioned here before:

April 3, 2009 posting

July 12, 2010 posting

March 8, 2013 posting

Bacteria on a battery can be a good thing

In a joint project between the UK’s University of East Anglia (UEA) and the Pacific Northwest National Laboratory (PNNL) in Washington State (US) researchers have published a paper about their work utilizing bacteria to produce electric currents in batteries. From the Mar. 25, 2013 news item on ScienceDaily,

Scientists at the University of East Anglia have made an important breakthrough in the quest to generate clean electricity from bacteria.

Findings published today in the journal Proceedings of the National Academy of Sciences (PNAS) show that proteins on the surface of bacteria can produce an electric current by simply touching a mineral surface.

The research shows that it is possible for bacteria to lie directly on the surface of a metal or mineral and transfer electrical charge through their cell membranes. This means that it is possible to ‘tether’ bacteria directly to electrodes — bringing scientists a step closer to creating efficient microbial fuel cells or ‘bio-batteries’.

The team collaborated with researchers at Pacific Northwest National Laboratory in Washington State in the US.

Shewanella oneidensis (pictured) is part of a family of marine bacteria. The research team created a synthetic version of this bacteria using just the proteins thought to shuttle the electrons from the inside of the microbe to the rock.

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

The Mar. 25, 2013 UEA news release,which originated the news item,  describes the work n some detail (Note: A link has been removed),

They inserted these proteins into the lipid layers of vesicles, which are small capsules of lipid membranes such as the ones that make up a bacterial membrane. Then they tested how well electrons travelled between an electron donor on the inside and an iron-bearing mineral on the outside.

Lead researcher Dr Tom Clarke from UEA’s school of Biological Sciences said: “We knew that bacteria can transfer electricity into metals and minerals, and that the interaction depends on special proteins on the surface of the bacteria. But it was not been clear whether these proteins do this directly or indirectly though an unknown mediator in the environment.

“Our research shows that these proteins can directly ‘touch’ the mineral surface and produce an electric current, meaning that is possible for the bacteria to lie on the surface of a metal or mineral and conduct electricity through their cell membranes.

“This is the first time that we have been able to actually look at how the components of a bacterial cell membrane are able to interact with different substances, and understand how differences in metal and mineral interactions can occur on the surface of a cell.

“These bacteria show great potential as microbial fuel cells, where electricity can be generated from the breakdown of domestic or agricultural waste products.

“Another possibility is to use these bacteria as miniature factories on the surface of an electrode, where chemicals reactions take place inside the cell using electrical power supplied by the electrode through these proteins.”

Biochemist Liang Shi of Pacific Northwest National Laboratory said: “We developed a unique system so we could mimic electron transfer like it happens in cells. The electron transfer rate we measured was unbelievably fast – it was fast enough to support bacterial respiration.”

This work reminds me of the biobattery created at Concordia University (my April 20, 2012 posting) and the work on breathable batteries at the Polish Academy of Sciences (my Mar. 8, 2013 posting).

Interested parties can find a full citation for the UEA/PNNL research paper at the bottom of the ScienceDaily news item here.

Batteries that breathe

Researchers at the Polish Academy of Sciences Institute of Physical Chemistry have constructed a biobattery that breathes. The device could be used in medication applications as the researchers note in the Mar. 7, 2013 news release on EurekAlert,

People are increasingly taking advantage of devices supporting various functions of our bodies. Today they include cardiac pacemakers or hearing aids; tomorrow it will be contact lenses with automatically changing focal length or computer-controlled displays generating images directly in the eye. None of these devices will work if not coupled to an efficient and long-lasting power supply source. The best solution seems to be miniaturised biofuel cells consuming substances naturally occurring in human body or in its direct surrounding.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw developed an efficient electrode for the use in construction of biofuel cells or zinc-oxygen biobatteries. After installation in a cell, the new biocathode generates a voltage, during many hours, that is higher than that obtained in existing power sources of similar design. The most interesting is that the device is air-breathing: it works at full efficiency when it can take oxygen directly from the air.

Here’s some of the reasoning which underlies this project’s approach to the challenge of creating better batteries for implantable medical devices (from the news release),

Common batteries and rechargeable batteries are unsuitable to power implants inside the human body as they use strong bases or acids. These agents can on no account get into the body. The battery housing must be therefore absolutely tight. But in line with reducing the battery size, it must be better isolated. In extreme cases, the weight of the housing of a common, miniaturised battery would be even a few dozen times greater than the weight of the battery’s active components that generate electricity. And here biofuel cells offer an essential advantage: they do not require housing. To get electricity, it is enough to insert the electrodes into the body.

“One of the most popular experiments in electrochemistry is to make a battery by sticking appropriately selected electrodes into a potato. We are doing something similar, the difference is that we are focusing on biofuel cells and the improvement of the cathode. And, of course, to have the whole project working, we’d rather replace the potato with… a human being”, says Dr Martin Jönsson-Niedziółka (IPC PAS).

Here’s what the researchers decided to do,

In the experiments, Dr Jönsson-Niedziółka’s group uses zinc-oxygen batteries. The principle of their operation is not new. The batteries constructed in this way had been popular before the time of alkaline power sources came. “At present, many laboratories work on glucose-oxygen biofuel cells. In the best case they generate a voltage of 0.6-0.7 V. A zinc-oxygen biobattery with our cathode is able to generate 1.75 V for many hours.”, says Adrianna Złoczewska, a PhD student at the IPC PAS, whose research has been supported under the International PhD Projects Programme of the Foundation for Polish Science.

The main component of the biocathode developed at the IPC PAS is an enzyme surrounded by carbon nanotubes and encapsulated in a porous structure – a silicate matrix deposited on an oxygen permeable membrane. “Our group had been working for many years on techniques that were necessary to construct the cathode using enzymes, carbon nanotubes and silicate matrices”, stresses Prof. Marcin Opałło (IPC PAS).

An electrode so constructed is installed in a wall of a small container. To have the biofuel cell working, it is enough to pour an electrolyte (here: a solution containing hydrogen ions) and insert the zinc electrode in the electrolyte. The pores in the silicate matrix enable oxygen supply from the air and H+ ions from the solution to active centres of the enzyme, where oxygen reduction takes place. Carbon nanotubes facilitate transport of electrons from the surface of the semipermeable membrane.

A cell with the new biocathode is able to supply power with a voltage of 1.6 V, for a minimum one and a half of a week. The cell efficiency decreases with time, likely because of gradual deactivation of the enzyme on the biocathode. “Here not everything is dependent on us, but on the progress in biotechnology. The lifetime of a biofuel cells with our biocathode could be significantly prolonged, if the enzyme regeneration processes are successfully developed”, says Dr Jönsson-Niedziółka.

In the experiments carried out so far, a stack of four batteries connected in series successfully powered a lamp composed of two LEDs. Before, however, the biofuel cells based on the design developed at the IPC PAS get popularised, the researchers must solve the problem of relatively low electric power that is common to all types of biofuel cells.

I have mentioned similar projects in two previous postings, long ago. The first project was a vampire battery (a battery for implantable medical devices that powers itself with blood) mentioned in an April 3, 2009 posting. The second project was to power batteries from harvested mechanical energy from heart beats, breathing, vocal cord vibrations, and more and that was mentioned in a July 12, 2010 posting.