Tag Archives: Biomaterials: Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces: A Novel Method of Enhancing Flow-Resistant Cell Adhesion

Making cardiac implants stickier

It’s not often you read about an agricultural and biosystems engineer collaborating with a cardiac and biomedical engineer but that’s exactly what happened according to this Nov. 26, 2013 news item in phys.org,

Jeong-Yeol Yoon, associate professor of agricultural and biosystems engineering, and Dr. Marvin Slepian, professor of cardiology and biomedical engineering, collaborated to test how nanotechnology-based techniques can be used to better facilitate adhesion between tissue and implanted devices.

The Nov. 25, 2013 University of Arizona news release by Eric Swedlund, which originated the news item, describes the pairing (Note Links have been removed),

The connection between Yoon, [Jeong-Yeol Yoon, associate professor of agricultural and biosystems engineering] a specialist in biosensors and nanotechnology from the College of Agriculture and Life Sciences, and Slepian [Dr. Marvin Slepian, professor of cardiology and biomedical engineering], co-founder and chief scientific officer of artificial-heart manufacturer SynCardia, came about by chance. A graduate student in Yoon’s lab met Slepian through their shared interest in bicycling.

“It’s very rare for the agriculture people to work with the cardiovascular people in the medical school,” Yoon says.

Here’s what the researchers did (from the news release),

“When we created the nanotexture surface, we thought it could be used as a sticky surface for the implants,” Yoon says.

Cell-substrate adhesion involves the interplay of mechanical properties, surface topographic features, electrostatic charge and biochemical mechanisms. By working at the nanoscale level, Yoon was able to maximize the physical properties of the underlying substrate in promoting adhesion.

[The adhesive properties derive from optimized surface texturing, electrostatic charge and cell adhesive ligands (molecular binding substances) that {sic} are uniquely assembled on the substrata surface as an ensemble of nanoparticles trapped in nanowells.]

But beyond simply creating a sticky surface, the researchers’ goal was to create a selectively sticky surface, favoring endothelial cell attachment, without favoring platelet attachment, Slepian says.

This particular approach has an important advantage (from the news release),

One particular challenge to overcome in cardiovascular implants is the potential for devices – such as stents placed inside coronary arteries – to become detached as a result of blood flow, Yoon says.

“We’re particularly focused on the cardiovascular applications because there’s a blood flow involved and our system is very good when there’s a flow situation,” Yoon says.

i have searched but am unable to find anything more recent than a July 2013 study by these researchers for Advanced Health Materials,

Biomaterials: Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces: A Novel Method of Enhancing Flow-Resistant Cell Adhesion by Phat L. Tran, Jessica R. Gamboa, Katherine E. McCracken, Mark R. Riley, Marvin J. Slepian, and Jeong-Yeol Yoon.
Advanced Healthcare Materials Volume 2, Issue 7, page 1064, July, 2013 Article first published online: 10 JUL 2013 DOI: 10.1002/adhm.201370037

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article (assuming it’s the right one) is behind a paywall, should you wish to pursue this work further.