Tag Archives: biomimicry

Lobster-inspired 3D printed concrete

A January 19, 2021 news item on ScienceDaily highlights bioinspired 3D printing of concrete,

New research shows that patterns inspired by lobster shells can make 3D printed concrete stronger, to support more complex and creative architectural structures.

Digital manufacturing technologies like 3D concrete printing (3DCP) have immense potential to save time, effort and material in construction.

They also promise to push the boundaries of architectural innovation, yet technical challenges remain in making 3D printed concrete strong enough for use in more free-form structures.

In a new experimental study, researchers at RMIT University [Australia] looked to the natural strength of lobster shells to design special 3D printing patterns.

Their bio-mimicking spiral patterns improved the overall durability of the 3D printed concrete, as well as enabling the strength to be precisely directed for structural support where needed.

Video: Carelle Mulawa-Richards

A January 19, 2021 RMIT University press release (also on EurekAlert) by Gosia Kaszubska, which originated the news item, goes into technical detail about the research once you get past the ‘fluffy’ bits,

When the team combined the twisting patterns with a specialised concrete mix enhanced with steel fibres, the resulting material was stronger than traditionally-made concrete.

Lead researcher Dr Jonathan Tran said 3D printing and additive manufacturing opened up opportunities in construction for boosting both efficiency and creativity.

“3D concrete printing technology has real potential to revolutionise the construction industry, and our aim is to bring that transformation closer,” said Tran, a senior lecturer in structured materials and design at RMIT.

“Our study explores how different printing patterns affect the structural integrity of 3D printed concrete, and for the first time reveals the benefits of a bio-inspired approach in 3DCP.

“We know that natural materials like lobster exoskeletons?have evolved into high-performance structures over millions of years, so by mimicking their key advantages we can follow where nature has already innovated.”

3D printing for construction

The automation of concrete construction is set to transform how we build, with construction the next frontier in the automation and data-driven revolution known as industry 4.0.

A 3D concrete printer builds houses or makes structural components by depositing the material layer-by-layer, unlike the traditional approach of casting concrete in a mould.

With the latest technology, a house can be 3D printed in just 24 hours for about half the cost, while construction on the world’s first 3D printed community began in 2019 in Mexico.

The emerging industry is already supporting architectural and engineering innovation, such as a 3D printed office building in Dubai, a nature-mimicking concrete bridge in Madrid and The Netherlands’ sail-shaped “Europe Building”.

The research team in RMIT’s School of Engineering focuses on 3D printing concrete, exploring ways to enhance the finished product through different combinations of printing pattern design, material choices, modelling, design optimisation and reinforcement options.

Patterns for printing

The most conventional pattern used in 3D printing is unidirectional, where layers are laid down on top of each other in parallel lines.

The new study published in a special issue of 3D Printing and Additive Manufacturing investigated the effect of different printing patterns on the strength of steel fibre-enhanced concrete.

Previous research by the RMIT team found that including 1-2% steel fibres in the concrete mix reduces defects and porosity, increasing strength. The fibres also help the concrete harden early without deformation, enabling higher structures to be built.

The team tested the impact of printing the concrete in helicoidal patterns (inspired by the internal structure of lobster shells), cross-ply and quasi-isotropic patterns (similar to those used for laminated composite structures and layer-by-layer deposited composites) and standard unidirectional patterns.

Supporting complex structures

The results showed strength improvement from each of the patterns, compared with unidirectional printing, but Tran said the spiral patterns hold the most promise for supporting complex 3D printed concrete structures.

“As lobster shells are naturally strong and naturally curved, we know this could help us deliver stronger concrete shapes like arches and flowing or twisted structures,” he said.

“This work is in early stages so we need further research to test how the concrete performs on a wider range of parameters, but our initial experimental results show we are on the right track.”

Further studies will be supported through a new large-scale mobile concrete 3D printer recently acquired by RMIT – making it the first research institution in the southern hemisphere to commission a machine of this kind.

The 5×5m robotic printer will be used by the team to research the 3D printing of houses, buildings and large structural components.

The team will also use the machine to explore the potential for 3D printing with concrete made with recycled waste materials such as soft plastic aggregate.

The work is connected to a new project with industry partners Replas and SR Engineering, focusing on sound-dampening walls made from post-consumer recycled soft plastics and concrete, which was recently supported with an Australian Government Innovations Connections grant.

Here’s a link to and a citation for the paper,

Influences of Printing Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete by Luong Pham, Guoxing Lu, and Phuong Tran. 3D Printing and Additive Manufacturing DOI: https://doi.org/10.1089/3dp.2020.0172 Published Online:30 Dec 2020

This paper is open access.

‘Biomimicry’ patents

The US Patent and Trade Office (USPTO) has issued a new guidance document concerning ‘biomimicry’ patents according to David Bruggeman’s Dec. 20, 2014 post on his Pasco Phronesis blog (Note: Links have been removed),

The United States Patent and Trademark Office (USPTO) has released another guidance memo for patents derived ‘from nature’ (H/T ScienceInsider).  The USPTO released its first memo in March [2014], and between negative public comments and additional court action, releasing new guidance makes sense to me.

The USPTO is requesting comments on the guidance by March 16, 2014 and will be holding a holding a public forum for comments on Jan. 21, 2015. Here’s more detail about the comments from the USPTO 2014 Interim Guidance on Subject Matter Eligibility webpage,

The USPTO has prepared 2014 Interim Guidance on Patent Subject Matter Eligibility (Interim Eligibility Guidance) for USPTO personnel to use when determining subject matter eligibility under 35 U.S.C. 101 in view of recent decisions by the U.S. Supreme Court, including Alice Corp., Myriad, and Mayo.  The Interim Eligibility Guidance supplements the June 25, 2014 Preliminary Examination Instructions issued in view of Alice Corp. and supersedes the March 4, 2014 Procedure for Subject Matter Eligibility Analysis of Claims Reciting or Involving Laws of Nature/Natural Principles, Natural Phenomena, and/or Natural Products issued in view of Mayo and Myriad.  It is expected that the guidance will be updated in view of developments in the case law and in response to public feedback.

Any member of the public may submit written comments on the Interim Eligibility Guidance and claim example sets by electronic mail message over the Internet addressed to 2014_interim_guidance@uspto.gov.  Electronic comments submitted in plain text are preferred, but also may be submitted in ADOBE® portable document format or MICROSOFT WORD® format.  The comments will be available for public inspection here at this Web page.  Because comments will be available for public inspection, information that is not desired to be made public, such as an address or a phone number, should not be included in the comments.  Comments will be accepted until March 16, 2015.

And there is also this about the public forum (from the Interim Guidance page),

A public forum will be hosted at the Alexandria campus of the USPTO on Jan. 21, 2015, to receive public feedback from any interested member of the public.  The Eligibility Forum will be an opportunity for the Office to provide an overview of the Interim Eligibility Guidance and for participants to present their interpretation of the impact of Supreme Court precedent on the complex legal and technical issues involved in subject matter eligibility analysis during examination by providing oral feedback on the Interim Eligibility Guidance and claim example sets.  Individuals will be provided an opportunity to make a presentation, to the extent that time permits.

Date and Location:  The Eligibility Forum will be held on Jan. 21, 2015, from 1pm – 5pm EST, in the Madison Auditorium North (Concourse Level), Madison Building, 600 Dulany Street, Alexandria, VA 22314. The meeting will also be accessible via WebEx.

Requests for Attendance at the Eligibility Forum:  Requests for attendance to the Eligibility Forum should be submitted by electronic mail through the Internet to 2014_interim_guidance@uspto.gov by JAN. 9, 2015.  Requests for attendance must include the attendee’s name, affiliation, title, mailing address, and telephone number.  An Internet e-mail address, if available, should also be provided.

If I understand David’s description of this guidance rightly, the use of something like curcumin (a constituent of turmeric) to heal wounds cannot be patented unless substantive changes have been made to the curcumin. In short, Laws Of Nature/Natural Principles, Natural Phenomena, And/Or Natural Products And/Or Abstract Ideas cannot be patented through the USPTO.

Shrilk—save your insect skeletons, they may come in handy

If you should happen to find a dead beetle or other insect with a hard exoskeleton, take a good look and marvel at strength that doesn’t require bulk or weight. Scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University have been inspired by those exoskeletons, made of  something called insect cuticle, to create a new material, shrilk. From the Dec. 13, 2011 news item on phosorg.com,

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a new material that replicates the exceptional strength, toughness, and versatility of one of nature’s more extraordinary substances—insect cuticle. Also low-cost, biodegradable, and biocompatible, the new material, called “Shrilk,” could one day replace plastics in consumer products and be used safely in a variety of medical applications.

Natural insect cuticle, such as that found in the rigid exoskeleton of a housefly or grasshopper, is uniquely suited to the challenge of providing protection without adding weight or bulk. As such, it can deflect external chemical and physical strains without damaging the insect’s internal components, while providing structure for the insect’s muscles and wings. It is so light that it doesn’t inhibit flight and so thin that it allows flexibility. Also remarkable is its ability to vary its properties, from rigid along the insect’s body segments and wings to elastic along its limb joints.

Insect cuticle is a composite material consisting of layers of chitin, a polysaccharide polymer, and protein organized in a laminar, plywood-like structure. Mechanical and chemical interactions between these materials provide the cuticle with its unique mechanical and chemical properties. By studying these complex interactions and recreating this unique chemistry and laminar design in the lab, Fernandez [Javier G. Fernandez] and Ingber [Donald Ingber] were able to engineer a thin, clear film that has the same composition and structure as insect cuticle. The material is called Shrilk because it is composed of fibroin protein from silk and from chitin, which is commonly extracted from discarded shrimp shells. [emphasis mine]

The researchers say that shrilk could be used as an environmentally-safe and biodegradable alternative to plastic, e.g. trash bags, diapers, and packaging. It could also be used to suture wounds.

Coatings that shake off bacteria and biological photocopying

The American Vacuum Society (AVS) is holding its 58th International Symposium and Exhibition from Oct. 30 – Nov. 4, 2011 in Nashville, Tennessee. Presentations are not focused on vacuuming (hoovering) floors but rather on something called vacuum science and they span from a presentation on bacteria and coatings to another on photocopying DNA to more.

From the Oct. 31, 2011 news item on Nanowerk,

“Sea water is a very aggressive biological system,” says Gabriel Lopez, whose lab at Duke University studies the interface of marine bacterial films with submerged surfaces. While the teeming abundance of ocean life makes coral reefs and tide pools attractive tourist destinations, for ships whose hulls become covered with slime, all this life can, quite literally, be a big drag. On just one class of U.S. Navy destroyer, biological build-up is estimated to cost more than $50 million a year, mostly in extra fuel, according to a 2010 study performed by researchers from the U.S. Naval Academy and Naval Surface Warfare Center in Maryland. Marine biofouling can also disrupt the operation of ocean sensors, heat-exchangers that suck in water to cool mechanical systems, and other underwater equipment.

I think rather than describing sea water as ‘aggressive’  which suggests intent, I’d use ‘active’ as Lopez does later in another context (excerpted from the news item),

Lopez and his group focus on a class of materials called stimuli-responsive surfaces. As the name implies, the materials will alter their physical or chemical properties in response to a stimulus, such as a temperature change. The coatings being tested in Lopez’s lab wrinkle on the micro- or nano-scale, shaking off slimy colonies of marine bacteria in a manner similar to how a horse might twitch its skin to shoo away flies. The researchers also consider how a stimulus might alter the chemical properties of a surface in a way that could decrease a marine organism’s ability to stick.

At the AVS Symposium, held Oct. 30 – Nov. 4 in Nashville, Tenn., Lopez will present results from experiments on two different types of stimuli-responsive surfaces: one that changes its texture in response to temperature and the other in response to an applied voltage. The voltage-responsive surfaces are being developed in collaboration with the laboratory of Xuanhe Zhao, also a Duke researcher, who found that insulating cables can fail if they deform under voltages. “Surprisingly, the same failure mechanism can be made useful in deforming surfaces of coatings and detaching biofouling,” Zhao said.

“The idea of an active surface is inspired by nature,” adds Lopez, who remembers being intrigued by the question of how a sea anemone’s waving tentacles are able to clean themselves. [emphasis mine] Other biological surfaces, such as shark skin, have already been copied by engineers seeking to learn from nature’s own successful anti-fouling systems.

(I did profile some biomimicry work being done with shark skin in my comments on part 4 of the Making Stuff programmes broadcast as part of the Nova series on PBS (US Public Broadcasting Stations) in my Feb. 10, 2011 posting.)

This next presentation is in the area of synthetic biology. From the Oct. 31, 2011 news item (DNA origami from inkjet synthesis produced strands) on Nanowerk,

In the emerging field of synthetic biology, engineers use biological building blocks, such as snippets of DNA, to construct novel technologies. One of the key challenges in the field is finding a way to quickly and economically synthesize the desired DNA strands. Now scientists from Duke University have fabricated a reusable DNA chip that may help address this problem by acting as a template from which multiple batches of DNA building blocks can be photocopied. The researchers have used the device to create strands of DNA which they then folded into unique nanoscale structures.

“We found that we had an “immortal” DNA chip in our hands,” says Ishtiaq Saaem, a biomedical engineering researcher at Duke and member of the team. [emphasis mine] “Essentially, we were able to do the biological copying process to release material off the chip tens of times. [emphasis mine] The process seems to work even using a chip that we made, used, stored in -20C for a while, and brought out and used again.”

After releasing the DNA from the chip, the team “cooked” it together with a piece of long viral DNA. “In the cooking process, the viral DNA is stapled into a desired shape by the smaller chip-derived DNA,” explains Saaem. One of the team’s first examples of DNA origami was a rectangle shape with a triangle attached on one side, which the researchers dubbed a “nano-house.” The structure could be used to spatially orient organic and inorganic materials, serve as a scaffold for drug delivery, or act as a nanoscale ruler, Saaem says.

I’m not very comfortable with the notion of an “immortal DNA chip” but then I have many reservations about synthetic biology. Still, I think it’s important to pay attention and consider the possibility that my fears about synthetic biology might make as much sense as the fears many had about electricity in the 19th century.

It’s a bird. It’s a plane. No, it’s a laser!

I couldn’t resist the Superman reference although it really should have been a Morpho butterfly or a jewel beetle reference since these are two other animals/insects that also display unusual optical properties courtesy of nanoscale structures.

Top: Male eastern bluebird (Sialia sialis, Turdidae). Credit: Ken Thomas (image in public domain). Published in Soft Matter, 2009, 5, 1792-1795. E.R. Dufresne et al., “Self-assembly of amorphous biophotonic nanostructures by phase separation.” Royal Society of Chemistry. http://dx.doi.org/10.1039/B902775K

According to the Oct. 12, 2011 news item on Nanowerk,

Researchers at Yale University are studying how two types of nanoscale structures on the feathers of birds produce brilliant and distinctive colors. The researchers are hoping that by borrowing these nanoscale tricks from nature they will be able to produce new types of lasers—ones that can assemble themselves by natural processes. The team will present their findings at the Optical Society’s (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011, taking place in San Jose, Calif. next week. [It starts Sunday, Oct. 16, 2011.]

Devin Powell, in a May 13, 2011 article for Science News provides some additional detail,

The barbs of these feathers [from bluebirds, blue jays, and parrots] contain tiny pockets of air. Light striking the tightly packed air bubbles scatters, bringing out deep shades of blues and ultraviolet (which birds can see but humans can’t).

“Birds use these structures to create colors that they can’t make in other ways,” says Richard Prum, an  ornithologist at Yale University who discovered the mechanism behind this color.

To make a two-dimensional imitation of a bird feather, Yale physicist Hui Cao and her colleagues punched holes into a thin slice of gallium arsenide semiconductor. The holes were arranged like people in a crowd — somewhat haphazardly but with small-scale patterns that dictate roughly how far each hole is from its neighbor.

“The lesson we learned from nature is that we don’t need something perfect to get control,” says Cao, whose team describes their laser in the May 6 [2011] Physical Review Letters.

The latest work being presented is described this way in an Oct. 2011 news release (why aren’t people putting dates on their news releases????) from the Optical Society of America,

Inspired by feathers, the Yale physicists created two lasers that use this short-range order to control light. One model is based on feathers with tiny spherical air cavities packed in a protein called beta-keratin. The laser based on this model consists of a semiconductor membrane full of tiny air holes that trap light at certain frequencies. Quantum dots embedded between the holes amplify the light and produce the coherent beam that is the hallmark of a laser. The researchers also built a network laser using a series of interconnecting nano-channels, based on their observations of feathers whose beta-keratin takes the form of interconnecting channels in “tortuous and twisting forms.” The network laser produces its emission by blocking certain colors of light while allowing others to propagate. In both cases, researchers can manipulate the lasers’ colors by changing the width of the nano-channels or the spacing between the nano-holes.

What makes these short-range-ordered, bio-inspired structures different from traditional lasers is that, in principle, they can self-assemble, through natural processes similar to the formation of gas bubbles in a liquid. This means that engineers would not have to worry about the nanofabrication of the large-scale structure of the materials they design, resulting in cheaper, faster, and easier production of lasers and light-emitting devices.

Here’s an image of a ‘feather-based laser’,

Top: A laser based on feathers with the sphere-type nanostructure. This laser consists of tiny air holes (black) in a semiconductor membrane; each hole is about 77 nanometers across. (Scale bar = 5 micrometers.) Credit: Hui Cao Research Laboratory / Yale University.

As for the Morpho butterfly and jewel beetle, I last posted about gaining inspiration from these insects (biomimicry) in my May 20, 2011 posting in the context of some anti-counterfeiting strategies.

I first came across some of this work on the optical properties of nanostructures in nature in a notice about a 2008 conference on iridescence at Arizona State University. Here’s the stated purpose for the conference (from the conference page),

A unique, integrative 4–day conference on iridescent colors in nature, Iridescence: More than Meets the Eye is a graduate student proposed and organized conference supported by the Frontiers in Life Sciences program in Arizona State University’s School of Life Sciences. This conference intends to connect diverse groups of researchers to catalyze synthetic cross–disciplinary discussions regarding iridescent coloration in nature, identify new avenues of research, and explore the potential for these stunning natural phenomena to provide novel insights in fields as divergent as materials science, sexual selection and primary science education.

Nano, the Memphis Zoo, and connecting with kids

Who would have thought that the US Dept. of Agriculture would be awarding the Memphis Zoo $500,000.00 for a project to connect rural schools online for a NanoZoo? Kudos to Dr. Helen Beady, Director of Education, and the staff at the Memphis Zoo for a truly imaginative approach to science education.  From the March 9, 2011 news release,

Dr. Helen Beady, Memphis Zoo Director of Education, applied for this grant [Distance Learning and Telemedicine Grant Program] to help fund the Education Department’s ventures in nanotechnology through a program called “NanoZoo Connects.” This program will initially reach 14 schools in rural Tennessee through distance learning technology.

The Memphis Zoo’s “Discovery Center” will be renovated to become a state-of-the-art studio in which Zoo educators will be able to communicate through a video-bridge with some 7000 students in rural classrooms.

“This is just the beginning,” said Dr. Beady. “This grant will give us the ability to begin a program that will be improved and expanded for years to come. We can’t wait to see what the future holds for distance learning through this new technology.”

It was a story about a lotus leaf at a conference presentation that fired Helen Beady’s imagination three years ago. Scientists working at the nanoscale talk a lot about biomimcry. The lotus leaf is an excellent example of a material that is naturally water-resistant and finding out how the leaf achieves its water-resistant state and using that knowledge to create new textiles is an example of biomimicry.

The notion of biomimicry that helped Dr. Beady to tie together her interest in nanotechnology with exciting children’s interest in the zoo and the animals and integrating STEM (science, technology, engineering, and mathematics) education objectives in a single programme,  NanoZoo.  That project designed for students from kindergarten to high school was launched in August 2010. From the news release,

The concept of nanotechnology as it is taught through “NanoZoo” explores the ways animals and plants can help science improve the way we live and work. For example, students are taught how the Lotus leaf has inspired the development of fabrics that can remain under water for days and not get wet, and how the stick-ability of a Gecko’s foot has motivated the production of tape that allows a robot to walk vertically up a wall.

This new project which is being funded through the Dept. of Agriculture is the NanoZoo Connects distance education project.  From the news release,

“NanoZoo and distance learning bring the Memphis Zoo on the cutting edge of technology,” said Zoo President and CEO, Chuck Brady. “What we learn in the early stages of these initiatives will revolutionize the way we are able to help educate students in Tennessee and, one day, across the globe.

The $500,000. will purchase equipment necessary to make the distance education experience successful. (If you’ve ever struggled with connections and bug-ridden software while trying to pursuing any kind of distance education programme, you can appreciate how important good equipment and software are.) From the news release,

The Memphis Zoo’s “Discovery Center” will be renovated to become a state-of-the-art studio in which Zoo educators will be able to communicate through a video-bridge with some 7000 students in rural classrooms.

What’s striking in this project is the multidisciplinary approach from inception to execution with all of it grounded in the zoo’s basic mission statement: “The Memphis Zoo preserves wildlife through education, conservation and research.” I’ll restate this to say, it’s about discovering and healing the relationship between people, animals, and nature. So by that token, teaching and discussing biomimicry and nanotechnology are not such a far reach as some may believe.

Here’s one last item to illustrate the point. I asked Tiffany Langston, a member of the Memphis Zoo’s marketing and communications department, for something either she or the children have found particularly interesting in the NanoZoo.  Tiffany informed me that the Memphis Zoo is one of only four in the US that have pandas and the only food they will eat is bamboo (40 lbs. per day!). Students at the NanoZoo find out that the fibre within the bamboo stalks features a hexagonal structure at the nanoscale which makes the fibre (at the nanoscale) stronger than steel. Today, scientists are trying to mimic those structures to create strong materials that are produced in a more environmentally friendly fashion than steel.

Meanwhile, Dr. Beady has more projects up her sleeve (from the news release),

The Zoo’s Education Department has recently received a $25,000 environmental grant from the City of Memphis Office of Youth Services and Community Affairs to develop a Science, Technology, Engineering and Math (STEM) field program that focuses on the emerging science nanotechnology. This program will help inner city students draw connections between technology, plants, animals and those things that exist in the “big” world through our “NanoZoo.”

The NanoZoo initiative was celebrated at the Memphis Zoo’s Nano Days event on March 28, 2011 (from the news release),

On March 28, 2011 from 9:00 a.m. until 1:00 p.m. the Memphis Zoo invites you to join us for NanoDays and our One Bazillion Nano Meter Walk (leisurely 1 mile stroll). This event will include hands-on demonstrations which explore how scientists mimic traits of plants and animals to inspire innovations in technology and engineering.

The event attracted US Senator Steve Cohen who had this to say in a recent news release to the Memphis Business Journal (http://www.bizjournals.com/memphis/news/2011/03/28/memphis-zoo-gets-500000-nano-grant.html),

The initiative, NanoZoo Connects!, will help demonstrate how scientists use nanotechnology to mimic particular traits of animals and plants to solve engineering and technological problems, according to a release issued by U.S. Sen. Steve Cohen’s office.

“If we are going to successfully compete in a rapidly changing 21st century global economy, our children must have the necessary tools to get ahead,” Cohen said. “The NanoZoo Connects! program will help us accomplish such a goal.”

Dr. Helen Beady told me that she drew on her experience as a former business owner, where she was in the position of trying to hire people who didn’t have the necessary skills or education, to develop the NanoZoo programme. Multidisciplinary in nature. Dr. Beady has hired an engineer and a PhD. in biochemistry to assist with further developing the NanoZoo.

All of this may or may not lead to ‘successful competition in the 21st century global economy’ but it certainly will lead to children learning more about animals and nature and how we might all better co-exist on this planet.

Thoughts on part 4 of (PBS) Nova’s Making Stuff series

Last night (Feb.9.11) PBS aired the final part of the Making Stuff  series as part of its Nova tv programming. It was titled Making Stuff Smarter and did not feature a single bot of any kind or any nanoscale computers or labs on chips thereby frustrating (not in a bad way) some of my expectations but I should have become accustomed to that by now.

There was a focus on something called biomimicry, a term I did not hear used while I was watching (confession: I didn’t watch every single minute of the show), where researchers try to make materials that mimic a process or ability observed in nature. They used sharkskin as an example for making a ‘smarter’ material. Scientists have observed that nanoscale structures on a shark’s skin have antibacterial properties. This is especially important when we have a growing problem with bacteria that are antibiotic resistant. David Pogue’s (the program host) interviewed scientists at Sharklet and highlighted their work producing a plastic with nanostructures similar to those found on sharkskin for use in hospitals, restaurants, etc.  I found this on the Sharklet website (from a rotating graphic on the home page),

The World Health Organization calls antibiotic resistance a leading threat to human health.

Sharkjet provides a non-toxic approach to bacterial control and doesn’t create resistance.

The reason that the material does not create resistance is that it doesn’t kill the bacteria (antibiotics kill most bacteria but cannot kill all of them with the consequence that only the resistant survive and reproduce). Excerpted from Sharklet’s technology page,

While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.

Dr. Brennan was convinced that using an engineered topography could be a key to new antifouling technologies. Clarity struck as he and several colleagues watched an algae-coated nuclear submarine return to port. Dr. Brennan remarked that the submarine looked like a whale lumbering into the harbor. In turn, he asked which slow moving marine animals don’t foul. The only one? The shark.

Dr. Brennan was inspired to take an actual impression of shark skin, or more specifically, its dermal denticles. Examining the impression with scanning electron microscopy, Dr. Brennan confirmed his theory. Shark skin denticles are arranged in a distinct diamond pattern with tiny riblets. Dr. Brennan measured the ribs’ width-to-height ratios which corresponded to his mathematical model for roughness – one that would discourage microorganisms from settling. The first test of Sharklet yielded impressive results. Sharklet reduced green algae settlement by 85 percent compared to smooth surfaces.

There’s more to the story so I encourage you to take a look at the page. What I find compelling about biomimicry is that we are learning from nature and mimicking it rather than try to control or destroy what we view as dangerous to us or, in some cases, not valuable. Interestingly, this program featured the military quite prominently in other segments while, as far as I’m aware, failing to mention biomimcry  which suggests (I’m putting on my semiotic hat) that our ideas about controlling nature and using warlike metaphors to describe scientific and medical efforts are still dominant socially and being reproduced.

I enjoyed (with qualifications regarding some of the subtext) the program series (all three of the shows I managed to watch) but, as I’ve noted previously, I’m not the target market so some of it was a bit too fluffy for me.

I found this fourth installment the most interesting and I was delighted to see that they featured climbing robots (based on geckos and mentioned in my Aug. 2, 2010 posting) and invisibility (mentioned most recently in my Jan. 26, 2011 posting although that features a different approach than the one mentioned in the program) along with a few items that were new to me.

Coincidentally the National Film Board of Canada is featuring a film short titled, Magic Molecule in its Feb. 9, 2011 newsletter. Produced in 1964, it introduces us to the fabulous world of plastics. In some ways, it’s very similar to the Making Stuff series. The tone is upbeat and very much pro plastics and its wonders.

Nano activities for the summer months

Courtesy of the July 2010 NISE (Nanoscale Informal Science Education) Net (work) newsletter, I have a list of nano-related activities taking place in various science museums and centres in the US. From the newsletter,

  • The Sciencenter in Ithaca, NY is integrating two mornings of nano programming into every two-week camp session. Sciencenter camp activities are designed for girls and boys entering grades 2 – 6 in the fall of 2010. Sciencenter educators plan an assortment of active, physical games, focused classroom experiences, special presentations, and free exploration of the museum and the science park. More information can be found at http://www.sciencenter.org/programs/sciencentersummercamp.asp
  • The Children’s Museum of Science and Technology (CMOST) in Troy, NY is partnering with the College of Nanoscale Science and Engineering to offer two week long sessions of Nano Camp! One week will be all inclusive, and the second week is a ladies-only GIST (Girls in Science and Technology) program. More information can be found at http://www.cmost.org/programs/summer_gist.php
  • The Arts and Science Center in Pine Bluff, AR held a weeklong nano camp in early June using some of the NanoDays kit activities.
  • The Museum of Science in Boston, MA is hosting its fourth round of science communication workshops for NSF-funded REU (Research Experience for Undergraduate) students from Boston-area nano research centers, and is working with the Discovery Center Museum and the UW Madison NSEC and MRSEC to adapt this set of workshops for integration into their REU programs. The goal of these workshops is to help to cultivate a new generation of nano and materials science researchers aware of the broader context of their research and equipped with the skills to communicate effectively on interdisciplinary research teams and to engage broader audiences.[emphases mine]
  • In about a month, the National Nanotechnology Infrastructure Network (NNIN) REU will gather at the University of Minnesota for their network-wide convocation.  All 80 NNIN REU interns will present a talk and a poster.  Plus, all 18 International REUs, the iREUs, will be attending having just gotten home from Belgium, Germany or Japan!  Finally, staff from every site, along with many of the interns’ parents and friends, attend.  It’s an exciting event where staff and interns meet and find out what everyone has been up to over the summer. The presentations are web-cast and details and schedules can be found at http://www.nano.umn.edu/nninreuconvocation2010/.
  • The Summer Institute for Physics Teachers is currently going on at Cornell’s Center for Nanoscale Systems. The course, open to high school physics teachers, includes lectures are given by Dr. Julie Nucci and many Cornell faculty on topics such as electronics, photonics, nanotechnology, and particle physics. Lab tours provide a glimpse into state-of-the-art academic research.  The lab activities, which are co-developed by high school physics teachers and Cornell scientists, are presented by teachers.

I highlighted the science communication workshops for the US undergraduates in light of a recent (July 8, 2010) University of British Columbia media release announcing two recent federal grants including this one,

young researchers at UBC were awarded a further $1.6 million from the Collaborative Research and Training Experience (CREATE) program to help upgrade their skills for a successful transition to the workplace.

The CREATE grant to UBC is part of a $32-million investment over six years from NSERC, for 20 projects at Canadian universities. The funding will give science and engineering graduates an opportunity to expand their professional and personal skills to prepare them for the workplace.

While the two programmes are markedly different, the fact of their existence is intriguing. I don’t believe communication skills workshops or programmes to upgrade workplace skills for budding young scientists have been a feature of science training (in Canada anyway) until fairly recently. If you know differently, please do comment.

I’ve long been interested in the work being done on adhesive forces (usually Spiderman or geckos are featured in the headline for the news release) so I was quite happy to see this in the newsletter,

→ Geckos!

Check out our new program Biomimicry: Synthetic Gecko Tape through Nanomolding.  The hands-on activity gives visitors a glimpse of one of the methods used by researchers to make synthetic gecko tape.  Visitors make their own synthetic gecko tape with micron-sized hairs that mimic the behavior of the gecko foot and test how much weight their gecko tape can hold using LEGOs. The activity was designed to fit into a classroom/camp program, but can be adapted for a museum floor.

If the scientists are successful, it means you won’t need glue to stick things together, for example, putting up curtain rods. (Some curtain rods use adhesive pads so you can pull them on and off the walls but if you do that too many times you lose the adhesive properties; Spiderman and geckos don’t experience that problem.)

I found the document which tells you exactly how to create your synthetic gecko tape. You may not have the materials needed easily available but if you’re interested, the instructions are here.

This month’s nano haiku,

Surface to Volume
new science with a nano
Golden Ratio

by Luke Doney of the Museum of Nature and Science in Dallas, TX

If you want to check NISE Net, go here.

Biomimicry, proteins, muscles, and the University of British Columbia’s Dr. Hongbin Li

This morning, I was excited to receive a news release about Dr. Hongbin Li’s recent work which has been published in Nature magazine. A Canada Research Chair in Molecular Nanoscience  and Protein Engineering at the University of British Columbia (Canada), Dr. Li’s work has been featured here before. (Part 1 and Part 2 of the interviews where he patiently answered my uninformed questions about his 2008 work on proteins where he had them behave like shock absorbers.) This latest work builds on his 2008 discoveries and extends them as he considers muscle elasticity.

From the news release,

University of British Columbia researchers have cast artificial proteins into a new solid biomaterial that very closely mimics the elasticity of muscle.

The approach, detailed in the current issue of the journal Nature, opens new avenues to creating solid biomaterials from smaller engineered proteins, and has potential applications in material sciences and tissue engineering.

“There are obvious long-term implications for tissue engineers,” says Hongbin Li, associate professor in the Dept. of Chemistry. “But at a fundamental level, we’ve learned that the mechanical properties we engineer into the individual proteins that make up this biomaterial can be translated into useful mechanical properties at the larger scale.”

The work will be published tomorrow “Designed biomaterials to mimic the mechanical properties of muscles” by Shanshan Lv, Daniel M. Dudek, Yi Cao, M. M. Balamurali, John Gosline, Hongbin Li in Nature 465, 69-73 (6 May 2010) doi:10.1038/nature09024 Letter.

Again from the news release,

The mechanical properties of these biomaterials can be fine-tuned, providing the opportunity to develop biomaterials that exhibit a wide range of useful properties – including mimicking different types of muscles. The material is also fully hydrated and biodegradable.

I wonder where are these ‘muscles’ going to appear? On robots?

Congratulations to Dr. Hongbin Li and your colleagues, Shanshan Lv, Daniel M. Dudek, Yi Cao, M. M. Balamurali, and John Gosline.