Tag Archives: bionanotechnology

Cyborgs (a presentation) at the American Chemical Society’s 248th meeting

There will be a plethora of chemistry news online over the next few days as the American Society’s (ACS) 248th meeting in San Francisco, CA from Aug. 10 -14, 2014 takes place. Unexpectedly, an Aug. 11, 2014 news item on Azonano highlights a meeting presentation focused on cyborgs,

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works — and how to treat its most devastating diseases.

An Aug. 10, 2014 ACS news release on EurekAlert provides more detail about the presentation (Note: Links have been removed),

“By focusing on the nanoelectronic connections between cells, we can do things no one has done before,” says Charles M. Lieber, Ph.D. “We’re really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in neurodegenerative diseases in the future.”

These disorders, such as Parkinson’s, that involve malfunctioning nerve cells can lead to difficulty with the most mundane and essential movements that most of us take for granted: walking, talking, eating and swallowing.

Scientists are working furiously to get to the bottom of neurological disorders. But they involve the body’s most complex organ — the brain — which is largely inaccessible to detailed, real-time scrutiny. This inability to see what’s happening in the body’s command center hinders the development of effective treatments for diseases that stem from it.

By using nanoelectronics, it could become possible for scientists to peer for the first time inside cells, see what’s going wrong in real time and ideally set them on a functional path again.

For the past several years, Lieber has been working to dramatically shrink cyborg science to a level that’s thousands of times smaller and more flexible than other bioelectronic research efforts. His team has made ultrathin nanowires that can monitor and influence what goes on inside cells. Using these wires, they have built ultraflexible, 3-D mesh scaffolding with hundreds of addressable electronic units, and they have grown living tissue on it. They have also developed the tiniest electronic probe ever that can record even the fastest signaling between cells.

Rapid-fire cell signaling controls all of the body’s movements, including breathing and swallowing, which are affected in some neurodegenerative diseases. And it’s at this level where the promise of Lieber’s most recent work enters the picture.

In one of the lab’s latest directions, Lieber’s team is figuring out how to inject their tiny, ultraflexible electronics into the brain and allow them to become fully integrated with the existing biological web of neurons. They’re currently in the early stages of the project and are working with rat models.

“It’s hard to say where this work will take us,” he says. “But in the end, I believe our unique approach will take us on a path to do something really revolutionary.”

Lieber acknowledges funding from the U.S. Department of Defense, the National Institutes of Health and the U.S. Air Force.

I first covered Lieber’s work in an Aug. 27, 2012 posting  highlighting some good descriptions from Lieber and his colleagues of their work. There’s also this Aug. 26, 2012 article by Peter Reuell in the Harvard Gazette (featuring a very good technical description for someone not terribly familiar with the field but able to grasp some technical information while managing their own [mine] ignorance). The posting and the article provide details about the foundational work for Lieber’s 2014 presentation at the ACS meeting.

Lieber will be speaking next at the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology sometime between August 18 – 21, 2014 in Toronto, Ontario, Canada.

As for some of Lieber’s latest published work, there’s more information in my Feb. 20, 2014 posting which features a link to a citation for the paper (behind a paywall) in question.

Cloud and molecular aesthetics; an art/science conference features a bionanotechnology speaker

Here’s a notice from a June 19, 2014 from OCR (Operational and Curatorial Research in Art Design Science and Technology) organization newsletter highlighting an upcoming conference in Istanbul, Turkey, which includes a nanotechnology speaker,

Lanfranco Aceti, the founder of OCR; Edward Colless Head of Critical and Theoretical Studies and Paul Thomas, Program Director of Fine Art at COFA, are the lead chairs and organizers of the conference Cloud & Molecular Aesthetics from June 26 to 28, 2014, at the Pera Museum.

We invite you to three stimulating days that explores new perspectives and evolutions in contemporary art were acclaimed professionals including curators,historians, creative arts practitioners, critics and theorists consider transdisciplinary imaging relating to the theme of cloud, dispersal, infinitesimally small and molecular aesthetics. The conference is free and open to all. The program is available here.

The conference keynotes are Professor Anne Balsamo, Dean of the School of Media Studies at The New School, Dr. Ljiljana Fruk co-author of Molecular Aesthetics, Dr. Jussi Parikka who authored Insect Media: An Archaeology of Animals and Technology; and Prof. Darren Tofts author of Alephbet: Essays on Ghost-writing, Nutshells & Infinite Space.

The notice doesn’t mention the most interesting aspect (for me, anyway) of Dr. Ljiljana Fruk’s work. Here’s more from her OCR Cloud and Molecular Aesthetics Keynote bio page,

Dr. Fruk is a scientist and lecturer at Karlsruhe Institute of Technology, Germany working on the development of photosensitive bio nano hybrid systems to be used in the design of new catalysts, artificial enzymes and biosensors for nanomedicinal applications. [emphases mine] She studied chemistry at University of Zagreb and continued to pursue her PhD at the University of Strathclyde in Glasgow, where she worked on the development of advanced tools for DNA detection. After award of Humboldt Fellowship and Marie Curie International Incoming Fellowship she conducted a postdoctoral research on artificial enzyme catalysts at the University of Dortmund in Germany. Since 2009 she leads her own research group and is also active in exploring the interface of art and science, in particular the cultural and societal impact of new technologies such as nanotechnology and synthetic biology. Besides number of scientific activities, she was also a co-organizer of the first symposium on Molecular Aesthetics (2011), 3D interactive exhibition on Molecules that Changed the World, and together with artist Peter Weibel, a co-editor of Molecular Aesthetic book (2013).

The official title for the conference is this: ‘The Third International Conference on Transdisciplinary Imaging at the Intersections of Art, Science and Culture’ although the organizers seem to be using the theme, Cloud and Molecular Aesthetics, as an easy way to refer to it. You can still register for the conference here: http://ocradst.org/cloudandmolecularaesthetics/registration/

I last mentioned the OCR in a March 24, 2014 posting about a call for papers for a conference on sound curation.

Oxford’s 2014 Nanotechnology Summer School

Here’s some information about Oxford’s sixth annual nanotechnology summer programme from a March 25, 2014 news item on Nanowerk (Note: A link has been removed),

The theme of the sixth annual Oxford Nanotechnology Summer School in 2014 will be ‘An Introduction to Bionanotechnology’.

Each year Oxford’s Nanotechnology Summer School focuses on applications of nanotechnologies in a different field. Comprising presentations from leading researchers and practitioners from the University of Oxford and beyond, the Nanotechnology Summer School is essential for anyone with an interest in these topics.

There’s more about the summer school on the University of Oxford’s Nanotechnology Summer School 2014’s course page,

This five-day intensive course provides a thorough introduction to the exciting and emerging field of bionanotechnology. Each of the five days of the Nanotechnology Summer School has a dedicated theme and is led by key researchers in the field. The course will be valuable to those seeking an introduction to current research and applications in the subject.

The first day of the Summer School gives an introduction to cell biology and bionanotechnology. The following four days focus on bioanalytical techniques; applied genomics and proteomics; nanoparticles, nanostructures and biomimetics; and the interaction of nanomaterials with biological systems, respectively.

The full Summer School programme will be as follows:

For those who like to know about the costs and attendance options (from the course page),

Payment

Summer School fees include electronic course materials, tuition, refreshments and three-course lunches. The price does not include accommodation. All courses are VAT exempt. There may also be some social events on certain days of the Summer School.

Student discounts

We offer a discounted fee to students in higher education. The student fee rate for five days of the Nanotechnology Summer School is £680.00. It is not possible to enrol online if you wish to take the course at a discounted rate. To apply at the discounted rate, please contact us for details: email [email protected].

Alumni Card-holders discount

Alumni Card-holders benefit from a 10% discount* on the Nanotechnology Summer School. If you wish to enrol, please remember to quote the code given in e-Pidge to ensure you receive your discount.

* This offer is subject to availability, cannot be used retrospectively or in conjunction with any other offers or concessions available from either the University of Oxford or the Department for Continuing Education.

Fee options

Programme Fee
Five Days – Standard Fee: £1340.00
Five Days – Student Fee: £680.00
One Day – Standard Rate: £295.00
One Day – Student Rate: £150.00

Here’s how you can apply,

Please note that we cannot accept applications from those who are under 18 years of age.

You can apply for this course in the following ways:

Apply online
enrol onlineto secure your place on this course now
Apply by post, email or fax
PDF application form PDF document.

Terms and Conditions (important: please read before applying) .
Guidance Notes (important: please read before applying) PDF document.

Good luck1

A twist in my DNA

Professor Hao Yan’s team at Arizona State University (ASU) has created some new 2D and 3D DNA objects according to a Mar. 21, 2013 news release on EurekAlert,

In their latest twist to the technology, Yan’s team made new 2-D and 3-D objects that look like wire-frame art of spheres as well as molecular tweezers, scissors, a screw, hand fan, and even a spider web.

The Yan lab, which includes ASU Biodesign Institute colleagues Dongran Han, Suchetan Pal, Shuoxing Jiang, Jeanette Nangreave and assistant professor Yan Liu, published their results in the March 22 issue of Science.

Here’s where the twist comes in,

The twist in their ‘bottom up,’ molecular Lego design strategy focuses on a DNA structure called a Holliday junction. In nature, this cross-shaped, double-stacked DNA structure is like the 4-way traffic stop of genetics — where 2 separate DNA helices temporality meet to exchange genetic information. The Holliday junction is the crossroads responsible for the diversity of life on Earth, and ensures that children are given a unique shuffling of traits from a mother and father’s DNA.

In nature, the Holliday junction twists the double-stacked strands of DNA at an angle of about 60-degrees, which is perfect for swapping genes but sometimes frustrating for DNA nanotechnology scientists, because it limits the design rules of their structures.

“In principal, you can use the scaffold to connect multiple layers horizontally,” [which many research teams have utilized since the development of DNA origami by Cal Tech's Paul Rothemund in 2006]. However, when you go in the vertical direction, the polarity of DNA prevents you from making multiple layers,” said Yan. “What we needed to do is rotate the angle and force it to connect.”

Making the new structures that Yan envisioned required re-engineering the Holliday junction by flipping and rotating around the junction point about half a clock face, or 150 degrees. Such a feat has not been considered in existing designs.

“The initial idea was the hardest part,” said Yan. “Your mind doesn’t always see the possibilities so you forget about it. We had to break the conceptual barrier that this could happen.”

In the new study, by varying the length of the DNA between each Holliday junction, they could force the geometry at the Holliday junctions into an unconventional rearrangement, making the junctions more flexible to build for the first time in the vertical dimension. Yan calls the backyard barbeque grill-shaped structure a DNA Gridiron.

“We were amazed that it worked!” said Yan. “Once we saw that it actually worked, it was relatively easy to implement new designs. Now it seems easy in hindsight. If your mindset is limited by the conventional rules, it’s really hard to take the next step. Once you take that step, it becomes so obvious.”

The DNA Gridiron designs are programmed into a viral DNA, where a spaghetti-shaped single strand of DNA is spit out and folded together with the help of small ‘staple’ strands of DNA that help mold the final DNA structure. In a test tube, the mixture is heated, then rapidly cooled, and everything self-assembles and molds into the final shape once cooled. Next, using sophisticated AFM and TEM imaging technology, they are able to examine the shapes and sizes of the final products and determine that they had formed correctly.

This approach has allowed them to build multilayered, 3-D structures and curved objects for new applications.

In addition to the EurekAlert version, you can find the full text, images, and video about the team’s paper in the Mar. 21, 2013 news item on ScienceDaily (a citation and link to the team’s paper is also included) or you can read the original Mar. 21, 2013 ASU news release. (Hao Yan’s work was last mentioned here in an Aug. 7, 2012 post.)

All of this talk of twists reminded me of a song by Tanita Tikaram, Twist in My Sobriety. I found this video of an acoustic performance (two guitars and a bass [the musical instrument not the fish]) which is even more sultry than original hit version,

Happy weekend!

Protein cages, viruses, and nanoparticles

The Dec. 19, 2012 news release on EurekAlert about a study published by researchers at Aalto University (Finland) describes a project where virus particles are combined with nanoparticles to create new metamaterials,

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

… biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules.

The gold nanoparticles and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

Virus particles – the old foes of mankind – can do much more than infect living organisms. Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to hybrid materials that consist of both living and synthetic matter, Kostiainen [Mauri A. Kostiainen, postdoctoral researcher] trusts.

The article which has been published in Nature Nanotechnology is free,

Electrostatic assembly of binary nanoparticle superlattices using protein cages by Mauri A. Kostiainen, Panu Hiekkataipale, Ari Laiho, Vincent Lemieux, Jani Seitsonen, Janne Ruokolainen & Pierpaolo Ceci in Nature Nanotechnology (2012) doi:10.1038/nnano.2012.220  Published online 16 December 2012

There’s a video demonstrating the assembly,

From the YouTube page, here’s a description of what the video is demonstrating,

Aalto University-led research group shows that CCMV virus or ferritin protein cages can be used to guide the assembly of RNA molecules or iron oxide nanoparticles into three-dimensional binary superlattices. The lattices are formed through tuneable electrostatic interactions with charged gold nanoparticles.

Bravo and thank  you to  Kostiainen who seems to have written the news release and prepared all of the additional materials (image and video). There are university press offices that could take lessons from Kostiainen’s efforts to communicate about the work.

US Air Force takes baby steps toward shapeshifting materials

When I see information about US military futuristic projects it’s usually from the US Army’s DARPA (Defense Advanced Research Projects Agency).  Consequently, I was surprised to notice that this shapeshifting project is being funded by the US Air Force Office of Scientific Research according to the July 11, 2012 news item on phys.org,

An international research team has received a $2.9 million grant from the Air Force Office of Scientific Research to design nanomaterials whose internal structure changes shape in response to stimuli such as heat or light.

Each of these novel materials will be constructed from three types of components: inorganic nanoparticles with desired optical or electrical properties; peptides that bond to these nanoparticles; and special molecules called spacers, which sit between the peptides and bend in the presence of heat, light or other triggers.

When stimulated, the spacers will cause the arrangement of nanoparticles within the material to morph — a process that can lead to interesting and useful effects.

Shape-shifting materials of the kind the researchers are planning to create could have use in applications including color-changing sensors and plasmonic circuits that divert light in two directions.

The news item originated from a July 11, 2012 news release from the State University of New York (SUNY) at Buffalo,

The project is being led by Paras Prasad, SUNY Distinguished Professor in the University at Buffalo’s departments of chemistry, physics, electrical engineering and medicine, and executive director of UB’s Institute for Lasers, Photonics and Biophotonics (ILPB). …

Prasad’s fellow investigators include Aidong Zhang, professor and chair of the Department of Computer Science and Engineering at UB; Mark T. Swihart, professor of chemical and biological engineering at UB and director of the UB 2020 Integrated Nanostructured Systems Strategic Strength; Tiffany R. Walsh, associate professor at the Institute for Frontier Materials at Deakin University in Australia; and Marc R. Knecht, associate professor of chemistry at the University of Miami.

The palette of parts the team will use to build the nanomaterials includes spacers of different sizes, along with seven types of nanoparticles — gold, silver, silica, iron-oxide, iron-platinum, cadmium-sulfide and zinc-sulfide.

To identify the combinations of components that will produce the most interesting materials, the scientists will use high-throughput experiments and data-mining techniques to screen and analyze the vast number of possible combinations of nanostructures, biomolecular linking elements (the peptides) and assembly conditions.

“One of our goals is to contribute to the fundamental understanding of how the spatial arrangement of nanoscale components in materials affects their optical, magnetic and plasmonic properties,” Prasad said. “The high-throughput techniques we are using were pioneered in the field of bioinformatics, but also have extraordinary promise in the exploration of advanced materials.”

Zhang said, “The computational capabilities offered by informatics and data mining will enable us to maximize the value of our data regarding the nanoassemblies, to generate and to construct new assemblies that span a wide range of inorganic and bimolecular components so as to achieve desired combinatorics-based properties.”

It’s not exactly the shapeshifting one sees in science fiction but this will be the real stuff (not to be confused with The Right Stuff, a 1983 movie about the US space travel programme of the late 1950s to 1960s).

Music, math, and spiderwebs

I pricked up my ears when I saw the word ‘analogy’. As a writer, I tend to be quite interested in analogies and metaphors, especially as they relate to science. I certainly never expected to find an analogy established by mathematical rigour—it never occurred to the poet in my soul. Thankfully, mathematicians at MIT (Massachusetts Institute of Technology) were not constrained by my lack of imagination. From the Dec. 8, 2011 news item written by Denise Brehm on Nanowerk,

Using a new mathematical methodology, researchers at MIT have created a scientifically rigorous analogy that shows the similarities between the physical structure of spider silk and the sonic structure of a melody, proving that the structure of each relates to its function in an equivalent way.

The step-by-step comparison begins with the primary building blocks of each item — an amino acid and a sound wave — and moves up to the level of a beta sheet nanocomposite (the secondary structure of a protein consisting of repeated hierarchical patterns) and a musical riff (a repeated pattern of notes or chords). The study explains that structural patterns are directly related to the functional properties of lightweight strength in the spider silk and, in the riff, sonic tension that creates an emotional response in the listener.

The Dec. 8, 2011 news release at MIT goes on to explain,

While likening spider silk to musical composition may appear to be more novelty than breakthrough, the methodology behind it represents a new approach to comparing research findings from disparate scientific fields. Such analogies could help engineers develop materials that make use of the repeating patterns of simple building blocks found in many biological materials that, like spider silk, are lightweight yet extremely failure-resistant. The work also suggests that engineers may be able to gain new insights into biological systems through the study of the structure-function relationships found in music and other art forms.

The MIT researchers — David Spivak, a postdoc in the Department of Mathematics, Associate Professor Markus Buehler of the Department of Civil and Environmental Engineering (CEE) and CEE graduate student Tristan Giesa — published their findings in the December issue of BioNanoScience.

Here’s part of how they developed the analogy between spider silk and music using mathematics (from the MIT news release),

They created the analogy using ontology logs, or “ologs,” a concept introduced about a year ago by Spivak, who specializes in a branch of mathematics called category theory. Ologs provide an abstract means for categorizing the general properties of a system — be it a material, mathematical concept or phenomenon — and showing inherent relationships between function and structure.

To build the ologs, the researchers used information from Buehler’s previous studies of the nanostructure of spider silk and other biological materials.

“There is mounting evidence that similar patterns of material features at the nanoscale, such as clusters of hydrogen bonds or hierarchical structures, govern the behavior of materials in the natural environment, yet we couldn’t mathematically show the analogy between different materials,” Buehler says. “The olog lets us compile information about how materials function in a mathematically rigorous way and identify those patterns that are universal to a very broad class of materials. Its potential for engineering the built environment — in the design of new materials, structures or infrastructure — is immense.”

“This work is very exciting because it brings forth an approach founded on category theory to bridge music (and potentially other aspects of the fine arts) to a new field of materiomics,” says Associate Professor of Biomedical Engineering Joyce Wong of Boston University, a biomaterials scientist and engineer, as well as a musician. “This approach is particularly appropriate for the hierarchical design of proteins, as they show in the silk example. What is particularly exciting is the opportunity to reveal new relationships between seemingly disparate fields with the aim of improving materials engineering and design.”

I always like to have a visual,

Graphic: Christine Daniloff

You can get more details from either the Nanowerk website or the MIT website.

Since it’s a Friday I thought I’d include a video of a song about spiderwebs and found this on YouTube,

Happy Friday!

Aptamers and Maria DeRosa

Today’s (Oct. 25, 2011) next interview is with Maria DeRosa of the DeRosa Lab at Carleton University (Ottawa, Canada) where she and her colleagues work on bionanotechnology projects. (The Highlighting the 2011 Dance Your Ph.D. contest posting featured a Ph.D student from her lab who is one of this year’s contest finalists.)

Before proceeding to the interview, here’s a little bit about the DeRosa Lab (from the website homepage),

The first step in the rational design of novel bionanotechnology is to find the right molecular components for the task. Our group seeks to investigate the use of chemically-modified nucleic acid aptamers, single stranded DNA or RNA sequences that specifically bind to a diverse variety of targets, in biosensing and catalysis.

Here’s some information about Dr. DeRosa,

Dr. Maria DeRosa’s research examines a type of nucleic acid called ‘aptamers’ that can fold into 3D nanoscale shapes capable of binding tightly to a specific molecular target.  Her group is focused on developing a better understanding of how these systems and using this information to design useful nanotechnology, like biosensors or “smart” delivery devices.  Dr. DeRosa received her Ph.D in Chemistry from Carleton University in 2003 and was presented with a University Senate Medal. She was awarded an NSERC Postdoctoral Fellowship to do research at the California Institute of Technology from 2004-2005 with Prof. Jackie Barton, a world-leader in DNA sensor research. In 2005, she returned to Carleton as a faculty member in the Chemistry Department. Her research group has received funding from the Natural Sciences and Engineering Research Council (NSERC), the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), the Canada Foundation for Innovation (CFI) and Alberta Innovates Biosolutions.  DeRosa was a recipient of the John Charles Polanyi Research Award for new researchers in 2006 and an Ontario Early Researcher Award in 2010.

Here’s the interview,

*   Are you one of those people who always wanted to be a scientist or was this something you discovered later?

I was never one of those people who knew what they wanted to do from an early age.  I thought about being a doctor, pharmacist, plumber, engineer, bank teller…  In high school, I had many great math and science teachers that inspired me to go into science when I started at Carleton University.  Then, in my third year I got a summer job working in Dr. Bob Crutchley’s research lab.  He was a great mentor and it was then that I started seriously thinking about a career as a scientist.  I loved the idea of research, that I was working on a problem and no one knew what the answer would be.  I wanted the answers!

*   How did you get interested in aptamers (and could you briefly describe what they are)?

Aptamers are synthetic pieces of DNA that can recognize and stick to a molecular target.  The targets can vary from things that are very small, like a drug molecule to something much larger, like bacteria or viruses.  Because they can recognize and stick to other molecules, people are interested in using them as receptors for sensors.  I had never even heard of them until about 2005.

After my Ph.D., I went to Caltech to do something called a postdoctoral fellowship.  It was a research position in the lab of Dr. Jackie Barton, one of the world’s top DNA researchers (she just won a National Medal of Science a couple days ago).  She wasn’t working with aptamers but she opened me up to the idea of using DNA in an “unnatural” way.  Most of us, when we are thinking of DNA, we think of our genes and that it is the blueprint for life.  But from a chemistry point of view, DNA is just another material that has certain chemical properties that can be useful for other applications.  In Jackie’s lab, I learned how to make synthetic DNA and I started reading about aptamers.  I found the whole field fascinating and I knew that I wanted to be a part of it.

*   What applications are there for your work? (I noticed that you discussed fertilizers in your TEDxCarleton talk. Is agriculture an area of particular interest?)

Applications for aptamers mostly stem from their ability to bind tightly and selectively to other molecules.  So, they are typically used in technology such as biosensors where they can serve to detect low levels of something, like a toxin or a virus for example, in another matrix.  We’re developing aptamers for the detection of mycotoxins (toxins that come from moulds) in crops and food.  We’re also working on aptamers for norovirus (the virus that causes Norwalk, that awful stomach bug) so that we can catch it if it is in meat and other foods before they get sent off to stores.

We are also trying to use aptamers for triggered delivery of drugs and/or nutrients.  In many cases with drugs, we want them to act on certain cells or tissues and not on others.  So, we need to be able to control where the drug is released in the body.  There is a similar problem in agriculture.  We want to give crops certain nutrients from fertilizers but if we deliver them at the wrong time, they will be washed away and not taken up by the crop.  This leads to major economic losses for the farmer and problems for the environment.  With our work, the idea is that we use the aptamer to control the release of whatever we are delivering.  We incorporate the aptamer into a coating that covers the drug or nutrient.  The aptamer is there to recognize a stimulus that we want to use to release the contents.  For drug delivery, that stimulus might be a cancer cell or a disease biomarker.  For fertilizers, that stimulus might a be a plant signal that corresponds to the plant’s need for nutrients.  (We are working with Dr.Carlos Monreal from Agriculture and Agrifood Canada on the fertilizer project, and he is an expert in these plant signals and ‘smart fertilizers’.)  In the absence of that signal, the coating does not allow the release of the drug or nutrient.  But, once the aptamer recognizes that key signal, the aptamer distorts or destroys the coating and it allows the nutrient to be released.

*   According to the information on your lab website, you are the recipient of Canada Foundation for Innovation (CFI) Leaders Opportunity Fund (LOF) monies. Are these funds being applied to a particular project in your lab or are they used to support your general area of research?

CFI funds helped us to build our facility called the LADDER (Laboratory for Aptamer Discovery and Development of Emerging Research applications).  That funding allowed us to get the state-of-the-art equipment we need to support all of our research projects.  Without CFI funding, our work would not be possible!

*   Given your TEDxCarleton talk and your involvement in the 2011 Canadian Science Writers conference (researchers’ speed dating [I couldn't confirm it but I'm pretty sure I saw your name listed for this event]), I gather you’re quite interested in public outreach. Why do you think it’s important?

Yes, I was at that ‘speed dating’ event and I am very committed to science outreach.  The public helps to support my research through funding like NSERC and CFI, so I think it is critical that I can explain to them what it is that I do, why it is important, and why their money is well-spent.  The general public may not know what an aptamer is, but they all realize the importance of keeping our food free of toxins or the need to make drugs that are better able to target disease.

*   I noticed that one of your students is a finalist in the Dance your Ph.D 2011 contest. And it’s not the first time. Do you find a lot of scientists with ‘dance’ tendencies are attracted to your lab? Are you one of those scientists?

My students won the competition last year and then they were finalists again this year!  I’m not sure if dancers are attracted to my lab or if my students are just as committed to outreach as I am!  My students are very excited to talk about their research with anyone who will listen.  This contest is a fun way to explain their work to everyday people.  Friends and family, after watching these dances online, have told me that they finally understand what is going on in my lab.  Maybe I should dance more!  (I’m not a dancer and you will not find me in either video…I support them from the sidelines!)

*   Is there anything you would like to add?

Thanks for profiling me and it has been fun!

Maria, thank you for this intriguing peek into your research, the field of DNA nanotechnology, and your (and shared by your students) commitment to public science outreach. I’m very happy you managed to cram the time to answer these questions into your schedule.

Science policy, innovation and more on the Canadian 2010 federal budget; free access in the true north; no nano for Van Gogh’s The Bedroom; frogs, foam and biofuels

There are more comments about Canada’s 2010 federal budget on the Canadian Science Policy Centre website along with listings of relevant news articles which they update regularly. There’s also a federal budget topic in the forums section but it doesn’t seem have attracted much commentary yet.

The folks at The Black Hole blog offer some pointed commentary with regard to the budget’s treatment of post doctorate graduates. If I understand the comments correctly, the budget has clarified the matter of taxation, i. e., post doctoral grants are taxable income, which means that people who were getting a break on taxes are now losing part of their income. The government has also created a new class of $70,000 post doctoral grants but this will account for only 140 fellowships. With some 6000 post doctoral fellows this means only 2% of the current pool of applicants will receive these awards. Do read The Black Hole post as they clarify what this means in very practical terms.

There’s been another discussion outcome from the 2010 budget, a renewed interest in innovation. I’m kicking off my ‘innovation curation efforts’ with this from an editorial piece by Carol Goar in the Toronto Star,

Five Canadian finance ministers have tried to crack the productivity puzzle. All failed. Now Jim Flaherty is taking a stab at it.

Here is the conundrum: We don’t use our brainpower to create new wealth. We have a highly educated population, generous tax incentives for research and development and lower corporate tax rates than any leading economic power. Yet our businesses remain reluctant to invest in new products and technologies (with a few honourable exceptions such as Research in Motion, Bombardier and Magna). They don’t even capitalize on the exciting discoveries made in our universities and government laboratories.

Economists are starting to ask what’s wrong. Canada ranked 14th in business spending on research and development – behind all the world’s leading industrial powers and even smaller nations such as Belgium and Ireland – in the latest statistical roundup by the Organization for Economic Cooperation and Development.

I believe she’s referring to the 2009 OECD scorecard in that last bit (you can find the Canada highlights here).

There are many parts to this puzzle about why Canadians and their companies are not innovative.  Getting back to Goar’s piece,

Kevin Lynch, who served as Stephen Harper’s top adviser from 2006 to 2009 [and is now the vice-chair of the Bank of Montreal Financial Group], has just written an article in Policy Options, an influential magazine, laying the blame squarely on corporate Canada. He argues that, unless business leaders do their part, it makes little sense to go on spending billions of dollars on research and development. “In an era of fiscal constraint, there has to be a compelling narrative to justify new public investments when other areas are being constrained,” he says.

Here’s a possible puzzle piece, in yesterday’s (March 15, 2010) posting I noted a study by academic, Mary J. Benner, where she pointed out that securities analysts do not reward/encourage established US companies such as Polaroid (now defunct) and Kodak to adopt new technologies. I would imagine that the same situation exists here in Canada.

For another puzzle piece: I’ve made mention of the mentality that a lot of entrepreneurs (especially in Canadian high tech) have and see confirmation  in a Globe and Mail article by Simon Avery about the continuing impact of the 2000 dot com meltdown where he investigates some of the issues with venture capital and investment as well as this,

“It’s a little bit about getting into the culture of winning, like the Olympics we just had,” says Ungad Chadda, senior vice-president of the Toronto Stock Exchange. “I don’t think the technology entrepreneurs around here are encouraged and supported to think beyond the $250-million cheque that a U.S. company can give them.”

One last comment from  Kevin Lynch (mentioned in the second of the Goar excerpts) about innovation and Canada from his recent opinion piece in the Globe and Mail,

A broader public dialogue is essential. We need to make the question “What would it take for Canada to be an innovative economy for the 21st century?” part of our public narrative – partly because our innovation deficit is a threat to our competitiveness and living standards, and partly because we can be a world leader in innovation. We should aspire to be a nation of innovators. We should rebrand Canada as technologically savvy, entrepreneurial and creative.

Yes, Mr. Lynch a broader dialogue would be delightful but there does seem to be an extraordinary indifference to the notion from many quarters. Do I seem jaundiced? Well, maybe that’s because I’ve been trying to get some interest in having a Canadian science policy debate and not getting very far with it. In principle, people call for more dialogue but that requires some effort to organize and a willingness to actually participate.

(As for “rebranding”, is anyone else tired of hearing that word or its cousin branding?)

On a completely other note, the University of Ottawa has announced that it is supporting open access to its faculty’s papers with institutional funding. From the news release,

According to Leslie Weir, U of Ottawa’s chief librarian, the program encompasses several elements, including a new Open Access (or OA) repository for peer-reviewed papers and other “learning objects”; an “author fund” for U of Ottawa researchers to help them cover open-access fees charged by journal publishers; a $50,000-a-year budget to digitize course materials and make them available to anyone through the repository; and support for the University of Ottawa Press’s OA journals.

But the university stopped short of requiring faculty members to deposit their papers with the new repository. “We all agreed that incentives and encouragement was the best way to go,” said Ms. Weir, who worked on the program with an internal group of backers, including Michael Geist, professor of intellectual property law, and Claire Kendall, a professor in the faculty of medicine who has been active in OA medical journals.

There is some criticism of the decision to make the programme voluntary. Having noticed the lack of success that voluntary reporting of nanomaterials has had, I’m inclined to agree with the critics. (Thanks to Pasco Phronesis for pointing me to the item.)

If you’ve ever been interested in art restoration (how do they clean and return the colours of an old painting to its original hues?, then the Van Gogh blog is for you. A member of the restoration team is blogging each step of The Bedroom’s (a famous Van Gogh painting) restoration. I was a little surprised that they don’t seem to be using any of the new nano-enabled techniques for examining the painting or doing the restoration work.

Given the name for this website, I have to mention the work done with frogs in pursuit of developing new biofuels by scientists at the University of Cincinnati. From the news item on Nanotechnology Now,

In natural photosynthesis, plants take in solar energy and carbon dioxide and then convert it to oxygen and sugars. The oxygen is released to the air and the sugars are dispersed throughout the plant — like that sweet corn we look for in the summer. Unfortunately, the allocation of light energy into products we use is not as efficient as we would like. Now engineering researchers at the University of Cincinnati are doing something about that.

The researchers are finding ways to take energy from the sun and carbon from the air to create new forms of biofuels, thanks to a semi-tropical frog species [Tungara frog].

Their work focused on making a new artificial photosynthetic material which uses plant, bacterial, frog and fungal enzymes, trapped within a foam housing, to produce sugars from sunlight and carbon dioxide.

Here’s an illustration of the frog by Megan Gundrum, 5th year DAAP student (I tried find out what DAAP stands for but was unsuccessful, ETA: Mar.31.10, it is the Design, art, and architecture program at the University of Cincinnati),

illustration by Megan Gundrum, 5th year DAAP student

Thank you to the University of Cincinnati for making the image available.

India-Canada Confab in Edmonton

Just got a notice from Nanotech BC that there’s going to be a Canada-India Nanotechnology Bionanotechnology workshop Aug. 10-11, 2008 in Edmonton at the National Institute of Nanotechnology. 10 scientists from India will be there and Nanotech BC is leading a delegation from BC attendees. If you want to collaborate with scientists in India, you can join the BC delegation by contacting:

  • Darren Frew, Executive Director, BC Nanotech Alliance at 604.602.5260 or [email protected]

I can’t find this info. on the Nanotech BC website (which is here if you’re curious) or on the National Institute of Nanotechnoloy website here in their newsroom.

This comes in the wake of a new Canada-India Science and Technology agreement which launched 10 initiatives totalling $17M and was announced in June 2008.  Details here.