Tag Archives: bioprinting

Autodesk in the tissue printing business

I came across the information about Autodesk’s venture into tissue printing in a Dec. 19, 2012 article by Kelsey Campbell-Dollaghan for Fast Company Co.Design.com (Note: Links have been removed),

Bioprinters–or 3-D printing hybrids that can print human tissue–have been around for a few years now. As the technology emerged, a single nagging question stuck out in the mind of this post-architecture school student: what’s the software of choice for a scientist modeling a human organ?

Today, an announcement from biomedical startup Organovo and software giant Autodesk goes a long way towards answering it. …

The Organovo Dec. 18, 2012 press release provides some detail about the deal,

Organovo Holdings, Inc. (OTCQX: ONVO) (“Organovo”), a creator and manufacturer of functional, three-dimensional human tissues for medical research and therapeutic applications, is working together with researchers at Autodesk, Inc., the leader in cloud-based design and engineering software, to create the first 3D design software for bioprinting.

The software, which will be used to control Organovo’s NovoGen MMX bioprinter, will represent a major step forward in usability and functionality for designing three-dimensional human tissues, and has the potential to open up bioprinting to a broader group of users.

This looks like it’s going to be a proprietary system, i.e., the software is designed for one type of hardware, Organovo’s hardware, reminiscent of the  late 1990s where printers in the graphic arts field were, in some cases, were trapped into proprietary computer-to-plate printing systems. There was an open source vs. proprietary systems competition which was eventually won by open source systems.

Organovo’s press release describes the technology they’ve developed,

Organovo’s 3D bioprinting technology is used to create living human tissues that are three-dimensional, architecturally correct, and made entirely of living human cells. The resulting structures can function like native human tissues, and represent an opportunity for advancement in medical research, drug discovery and development, and in the future, surgical therapies and transplantation.

The Dec. 17, 2012 article by Kim-Mai Cutler for TechCrunch adds more technical and business detail (Note: Link removed.),

Organovo, which went public earlier this year through a small cap offering and has a market cap of $98 million, manufactures a bioprinter that can create 1 millimeter-thick tissues. Based on research out of the University of Missouri, the company’s technology creates a bio-ink from cells and deposits new cells in a layer-by-layer matrix according to a computer design.

The Dec. 18, 2012 article by Joseph Flaherty for Wired magazine offers an analysis of the business advantages for both companies (Note: Links removed.),

Autodesk, the industry leader in CAD software, has announced it is partnering with biological printer manufacturer Organovo to create 3-D design software for designing and printing living tissue.

It’s an area of interest to Autodesk, whose software runs the industrial design and architecture worlds, allowing them to expand further into new fields by helping researchers interface with new tools.

“Autodesk is an excellent fit for developing new software for 3D bioprinters,” Organovo CEO Keith Murphy says in a press release. “This partnership will lead to advances in bioprinting, including both greater flexibility and throughput internally, and the potential long-term ability for customers to design their own 3D tissues for production by Organovo.”Jeff Kowalski, senior VP/CTO at Autodesk, echoes Murphy’s sentiment. “Bioprinting has the potential to change the world,” he says. “It’s a blend of engineering, biology and 3D printing, which makes it a natural for Autodesk. I think working with Organovo to explore and evolve this emerging field will yield some fascinating and radical advances in medical research.”

While this announcement is certainly big news, we’re multiple revisions away from 3-D printing replacement body parts. Even after the technical difficulties of printing organs or even tissue for live human use are worked through, any resulting process will need to be validated through complex clinical trials and a long review by the FDA and international authorities. Still, it will be exciting to see what medical researchers and DIY biohackers will do with these tools.

Oddly, as of today (Dec. 26, 2012) Autodesk has yet to post a press release about this deal on its own website.

Printing new knee cartilage

I was reminded of the 1992 Olympics in Barcelona while reading the Nov. 22, 2012 news item on Nanowerk about printing cartilage for knees. Some years ago I knew a Canadian wrestler who’d participated in those games and he had a story about knee cartilage that featured amputation.

Apparently, wrestlers in earlier generations had knee surgeries that involved removal of cartilage for therapeutic purposes. Unfortunately, decades later, these retired wrestlers found that whatever cartilage had remained was now worn through and bones were grinding on bones causing such pain that more than one wrestler agreed to amputation. I never did check out the story but it rang true largely because I’d come across a similar story from a physiotherapist regarding  a shoulder joint and the consequences of losing cartilage in there (very, very painful).

It seems that scientists are now working on a solution for those of us unlucky enough to have damaged or worn through cartilage in our joints, from the Nov. 22, 2012 IOP science news release, (Institute of Physics) which originated the news item,

The printing of 3D tissue has taken a major step forward with the creation of a novel hybrid printer that simplifies the process of creating implantable cartilage.


The printer is a combination of two low-cost fabrication techniques: a traditional ink jet printer and an electrospinning machine. Combining these systems allowed the scientists to build a structure made from natural and synthetic materials. …

In this study, the hybrid system produced cartilage constructs with increased mechanical stability compared to those created by an ink jet printer using gel material alone. The constructs were also shown to maintain their functional characteristics in the laboratory and a real-life system.

The key to this was the use of the electrospinning machine, which uses an electrical current to generate very fine fibres from a polymer solution. Electrospinning allows the composition of polymers to be easily controlled and therefore produces porous structures that encourage cells to integrate into surrounding tissue.

In this study, flexible mats of electrospun synthetic polymer were combined, layer-by-layer, with a solution of cartilage cells from a rabbit ear that were deposited using the traditional ink jet printer. The constructs were square with a 10cm diagonal and a 0.4mm thickness.

The researchers tested their strength by loading them with variable weights and, after one week, tested to see if the cartilage cells were still alive.

The constructs were also inserted into mice for two, four and eight weeks to see how they performed in a real life system. After eight weeks of implantation, the constructs appeared to have developed the structures and properties that are typical of elastic cartilage, demonstrating their potential for insertion into a patient.

The researchers state that in a future scenario, cartilage constructs could be clinically applied by using an MRI scan of a body part, such as the knee, as a blueprint for creating a matching construct. A careful selection of scaffold material for each patient’s construct would allow the implant to withstand mechanical forces while encouraging new cartilage to organise and fill the defect.

The researchers’ article in the IOP science jouBiofrarnal, Biofabrication, is freely available for 30 days after its date of publication, Nov. 21, 2012. You do need to register with IOP science to gain access. Here’s the citation and a link,

Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications by Tao Xu, Kyle W Binder, Mohammad Z Albanna, Dennis Dice, Weixin Zhao, James J Yoo and Anthony Atala in 2013 Biofabrication 5 015001 doi:10.1088/1758-5082/5/1/015001

I believe all of the scientists involved in this bioprinting project are with the Wake Forest Institute for Regenerative Medicine.

A new bio-ink, inkjet printers, and printing human cells at Australia’s University of Wollongong

Sometimes I look at my printer and just shake my head at the thought that one day it might produce living cells if the researchers at University of  Wollongong (New South Wales, Australia) have their way. From the Nov. 16, 2012 news item on phys.org,

Researchers have been aware for some time of the potential for using commercially available inkjet printer heads to print living human cells into 3D structures, but design of the actual ink capable of carrying cells through the printer has been a challenge.

The ARC Centre of Excellence for Electromaterials Science at UOW has led a team of scientists including Cameron Ferris, Dr Kerry Gilmore, Dr Stephen Beirne, Dr Donald McCallum, Professor Gordon Wallace and Associate Professor Marc in het Panhuis to develop a new bio-ink that improves the viability of living cells and allows better control of cell positioning through the printing process.

“To date, none of the available inks has been optimised in terms of both printability and cell suspending ability,” according to ACES Associate Researcher Cameron Ferris.

“Our new bio-ink is printable and cell-friendly, preventing cell settling and allowing controlled deposition of cells.”

The Nov. 15, 2012 University of Wollogong news release, which originated the news item, provides some detail about what makes this new bio-ink exciting,

The 2D structures being printed with the bio-ink enables exquisite control over cell distribution and this already presents exciting opportunities to improve drug screening and toxicology testing processes. Building on this, 3D bio-printing, with which patient-specific tissue replacements could be fabricated, is within the grasp of researchers.

The abstract for the researchers’ paper in Biomaterials helped me to build my understanding of this innovation,

Drop-on-demand bioprinting allows the controlled placement of living cells, and will benefit research in the fields of tissue engineering, drug screening and toxicology. We show that a bio-ink based on a novel microgel suspension in a surfactant-containing tissue culture medium can be used to reproducibly print several different cell types, from two different commercially available drop-on-demand printing systems, over long printing periods. The bio-ink maintains a stable cell suspension, preventing the settling and aggregation of cells that usually impedes cell printing, whilst meeting the stringent fluid property requirements needed to enable printing even from many-nozzle commercial inkjet print heads. This innovation in printing technology may pave the way for the biofabrication of multi-cellular structures and functional tissue.

You can access the paper (free access) but you must be registered (it’s free) with RSC (Royal Society of Chemistry) Publishing. Here’s a link and the citation,

Bio-ink for on-demand printing of living cells

Cameron J. Ferris ,  Kerry J. Gilmore ,  Stephen Beirne ,  Donald McCallum ,  Gordon G. Wallace and Marc in het Panhuis

Biomater. Sci., 2013, Advance Article

DOI: 10.1039/C2BM00114D
Received 09 Aug 2012, Accepted 11 Oct 2012
First published on the web 05 Nov 2012

Even more helpful than the abstract and assuming you’re not ready to read the paper is Jennifer Newton’s Nov. 7, 2012 article for the RSC’s Chemistry World,

‘The first bio-inks used in drop-on-demand cell printing were simple salt solutions,’ says Marc in het Panhuis, who was part of the research team at the University of Wollongong. ‘The cells in these inks settled and aggregated quickly, which impeded printing. Cell viability can also be compromised if the salt concentration is too high.’

Other bio-inks include low viscosity biopolymer solutions, which are known to slow cell settling. The team’s bio-ink consists of a biopolymer – gellan gum – and two surfactants in a standard tissue culture medium. The surfactants – Novec FC4430 and Poloxamer 188 – reduce surface tension, allowing optimal inkjet printing, and protect the cells from fluid-mechanical damage.

The cells do not settle and aggregate because the biopolymer creates a structured network of micro-gel particles that keep the cells suspended in the gel. However, the bio-ink remains printable as the network is not rigid and is easily broken down during printing. ‘Our bio-ink allowed us to print multiple cell types over long printing periods without changing print heads or replenishing ink solutions,’ says in het Panhuis.

There are more details in Newton’s article and the image that accompanies it is quite striking.