Tag Archives: blindness

Talking about brains in Vancouver, Canada

I have two items, one featuring past events and one featuring an upcoming January 2019 event.

Brain Talks

The Brain Talks series folks featuring a bunch of Dept. of Psychiatry types and their ilk at the School of Medicine at the University of British Columbia sent me a December 21, 2018 announcement (via email) about videos featuring past talks,

Haven’t been able to make one of the last severals BrainTalks? Luckily,
we’ve been filming!


Luckily, we’ve been filming the recent talks and several are now
accessible! Follow our Facebook page @UBCBraintalks to stay up-to-date
with the most recent videos. Our October series on Epigenetics and Early
Life Experiences is now live.

Otherwise, video content will be uploaded to our website at
braintalks.ubc.ca as made available, under the ‘past events’ tab.

Event announcements for 2019 coming soon!

Before leaping off to the video of past events (A Christmas Carol, anyone?), here’s more about Brain Talks from their homepage,

BrainTalks is a series of talks inviting you to contemplate emerging research about the brain. Researchers studying the brain, from various disciplines including psychiatry, neuroscience, neuroimaging, and neurology, gather to discuss current leading edge topics on the mind.

As an audience member, you join the discussion at the end of the talk, both in the presence of the entire audience, and with an opportunity afterwards to talk with the speaker more informally in a catered networking session. The talks also serve as a connecting place for those interested in similar topics, potentially launching new endeavours or simply connecting people in discussions on how to approach their research, their knowledge, or their clinical practice.

For the general public, these talks serve as a channel where by knowledge usually sequestered in inaccessible journals or university classrooms, is now available, potentially allowing people to better understand their brains and minds, how they work, and how to optimize brain health.

Here’s a partial list of what you’ll find on the past events video page,

Trauma Recovery and the Nervous System
… Leslie Wilkin, MSW – The Importance of Engaging Social-Relational Systems in Trauma Treatment Edward Dangerfield – Trauma and Subconscious Breathing Patterns November 27, 2018 Speakers: Dr. Lynn Alden // Current Treatment Perspectives of PTSD PTSD has been described as a […

How to Prevent Burnout
… Dr. Maia Love – Preventing Burnout Dr. Marlon Danilewitz – Burnout in Health Care Professionals Speakers: Dr. Maia Love – Burnout prevention Dr. Marlon Danilewitz – Burnout in Health Care Professionals Tuesday, April 24th at 6pm at Paetzold Auditorium, VGH

Epigenetics and Early Life Experiences
… Dr. Michael Kobor – Epigenetic Consequences for Chronic Disease and Mental Health Dr. Liisa Galea – Maternal Adversity: different effects on sons and daughters Dr. Adele Diamond – Adverse Childhood Experiences and the Brain October 22, 2018 Speakers: Dr. Michael […

Pain: The Mind Body Connection
Mar 24, 2016 @ 6pm Speakers: Dr Tim Oberlander, Dr Theresa Newlove, Dr Elizabeth Stanford, & Dr Murat Aydede

Enjoy these videos and more here

Shaping the brain

Israeli research Amir Amedi is coming to town for a Wednesday, January 16, 2019 talk according to a poster on the Congregation Schara Tzedeck website,

I found a little more information about Amedi on his Hebrew University of Jerusalem profile page,

Short bio sketch:

Amir is an internationally acclaimed brain scientist with 15 years of experience in the field of brain plasticity and multisensory integration. He has a particular interest in visual rehabilitation. He is an Associate Professor at the Department of Medical Neurobiology at the Hebrew University and the ELSC brain center, He is an Adjoint research Professor in the Sorbonne Universités UPMC Univ Paris 06, Institut de la Vision. He holds a PhD in Computational Neuroscience (ICNC, Hebrew University) and Postdoctoral and Instructor of Neurology (Harvard Medical School). He won several international awards and fellowships such as The Krill Prize for Excellence in Scientific Research, the Wolf Foundation (2011), The international Human Frontiers Science Program Organization Post docatoral fellowship and later a Career Development award (2004, 2009), the JSMF Scholar Award in Understanding Human Cognition (2011),  and was recently selected as a European Research Council (ERC) fellow (2013).

If you want to get a sense of what type of speaker he is, Amedi’s profile page also hosts his (circa 2012) TED X jerusalem talk. Enjoy!

Eye implants inspired by glasswing butterflies

Glasswinged butterfly. Greta oto. Credit: David Tiller/CC BY-SA 3.0

My jaw dropped on seeing this image and I still have trouble believing it’s real. (You can find more image of glasswinged butterflies here in an Cot. 25, 2014 posting on thearkinspace. com and there’s a video further down in the post.)

As for the research, an April 30, 2018 news item on phys.org announces work that could improve eye implants,

Inspired by tiny nanostructures on transparent butterfly wings, engineers at Caltech have developed a synthetic analogue for eye implants that makes them more effective and longer-lasting. A paper about the research was published in Nature Nanotechnology.

An April 30, 2018 California Institute of Technology (CalTech) news release (also on EurekAlert) by Robert Perkins, which originated the news item, goes into more detail,

Sections of the wings of a longtail glasswing butterfly are almost perfectly transparent. Three years ago, Caltech postdoctoral researcher Radwanul Hasan Siddique–at the time working on a dissertation involving a glasswing species at Karlsruhe Institute of Technology in Germany–discovered the reason why: the see-through sections of the wings are coated in tiny pillars, each about 100 nanometers in diameter and spaced about 150 nanometers apart. The size of these pillars–50 to 100 times smaller than the width of a human hair–gives them unusual optical properties. The pillars redirect the light that strikes the wings so that the rays pass through regardless of the original angle at which they hit the wings. As a result, there is almost no reflection of the light from the wing’s surface.

In effect, the pillars make the wings clearer than if they were made of just plain glass.

That redirection property, known as angle-independent antireflection, attracted the attention of Caltech’s Hyuck Choo. For the last few years Choo has been developing an eye implant that would improve the monitoring of intra-eye pressure in glaucoma patients. Glaucoma is the second leading cause of blindness worldwide. Though the exact mechanism by which the disease damages eyesight is still under study, the leading theory suggests that sudden spikes in the pressure inside the eye damages the optic nerve. Medication can reduce the increased eye pressure and prevent damage, but ideally it must be taken at the first signs of a spike in eye pressure.

“Right now, eye pressure is typically measured just a couple times a year in a doctor’s office. Glaucoma patients need a way to measure their eye pressure easily and regularly,” says Choo, assistant professor of electrical engineering in the Division of Engineering and Applied Science and a Heritage Medical Research Institute Investigator.

Choo has developed an eye implant shaped like a tiny drum, the width of a few strands of hair. When inserted into an eye, its surface flexes with increasing eye pressure, narrowing the depth of the cavity inside the drum. That depth can be measured by a handheld reader, giving a direct measurement of how much pressure the implant is under.

One weakness of the implant, however, has been that in order to get an accurate measurement, the optical reader has to be held almost perfectly perpendicular–at an angle of 90 degrees (plus or minus 5 degrees)–with respect to the surface of the implant. At other angles, the reader gives an incorrect measurement.

And that’s where glasswing butterflies come into the picture. Choo reasoned that the angle-independent optical property of the butterflies’ nanopillars could be used to ensure that light would always pass perpendicularly through the implant, making the implant angle-insensitive and providing an accurate reading regardless of how the reader is held.

He enlisted Siddique to work in his lab, and the two, working along with Caltech graduate student Vinayak Narasimhan, figured out a way to stud the eye implant with pillars approximately the same size and shape of those on the butterfly’s wings but made from silicon nitride, an inert compound often used in medical implants. Experimenting with various configurations of the size and placement of the pillars, the researchers were ultimately able to reduce the error in the eye implants’ readings threefold.

“The nanostructures unlock the potential of this implant, making it practical for glaucoma patients to test their own eye pressure every day,” Choo says.

The new surface also lends the implants a long-lasting, nontoxic anti-biofouling property.

In the body, cells tend to latch on to the surface of medical implants and, over time, gum them up. One way to avoid this phenomenon, called biofouling, is to coat medical implants with a chemical that discourages the cells from attaching. The problem is that such coatings eventually wear off.

The nanopillars created by Choo’s team, however, work in a different way. Unlike the butterfly’s nanopillars, the lab-made nanopillars are extremely hydrophilic, meaning that they attract water. Because of this, the implant, once in the eye, is soon encased in a coating of water. Cells slide off instead of gaining a foothold.

“Cells attach to an implant by binding with proteins that are adhered to the implant’s surface. The water, however, prevents those proteins from establishing a strong connection on this surface,” says Narasimhan. Early testing suggests that the nanopillar-equipped implant reduces biofouling tenfold compared to previous designs, thanks to this anti-biofouling property.

Being able to avoid biofouling is useful for any implant regardless of its location in the body. The team plans to explore what other medical implants could benefit from their new nanostructures, which can be inexpensively mass produced.

As if the still image wasn’t enough,

Here’s a link to and a citation for the paper,

Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices by Vinayak Narasimhan, Radwanul Hasan Siddique, Jeong Oen Lee, Shailabh Kumar, Blaise Ndjamen, Juan Du, Natalie Hong, David Sretavan, & Hyuck Choo. Nature Nanotechnology (2018) doi:10.1038/s41565-018-0111-5 Published: 30 April 2018

This paper is behind a paywall.

ETA May 25, 2018:  I’m obsessed. Here’s one more glasswing image,

Caption: The clear wings make this South-American butterfly hard to see in flight, a succesfull defense mechanism. Credit: Eddy Van 3000 from in Flanders fields – Belgiquistan – United Tribes ov Europe Date: 7 October 2007, 14:35 his file is licensed under the Creative Commons Attribution-Share Alike 2.0 Generic license. [downloaded from https://commons.wikimedia.org/wiki/File:E3000_-_the_wings-become-windows_butterfly._(by-sa).jpg]

Implanting a synthetic cornea in your eye

For anyone who needs a refresher, Simon Shapiro in a Nov. 5, 2017 posting on the Sci/Why blog offers a good introduction to how eyes work and further in his post describes Corneat Vision’s corneal implants,

A quick summary of how our eyes work: they refract (bend) light and focus it on the retina. The job of doing the refraction is split between the cornea and the lens. Two thirds of the refraction is done by the cornea, so it’s critical in enabling vision. After light passes through the cornea, it passes through the pupil (in the centre of the iris) to reach the lens. Muscles in the eye (the ciliary muscle) can change the shape of the lens and allow the eye to focus nearer or further. The lens focuses light on the retina, which passes signals to the brain via the optic nerve.

It’s all pretty neat, but some things can go wrong, especially as you get older. Common problems are that the lens and/or the cornea can become cloudy.

CoreNeat Vision, the Israeli ophthalmic devices startup company, released an Oct. 6, 2017 press release about their corneal implant on BusinessWire (Note: Links have been removed),

The CorNeat KPro implant is a patent-pending synthetic cornea that utilizes advanced cell technology to integrate artificial optics within resident ocular tissue. The CorNeat KPro is produced using nanoscale chemical engineering that stimulates cellular growth. Unlike previous devices, which attempted to integrate optics into the native cornea, the CorNeat KPro leverages a virtual space under the conjunctiva that is rich with fibroblast cells that heals quickly and provides robust long-term integration. Combined with a novel and simple 30-minute surgical procedure, the CorNeat KPro provides an esthetic, efficient, scalable remedy for millions of people with cornea-related visual impairments and is far superior to any available biological and synthetic alternatives.

A short animated movie that demonstrates the implantation and integration of the CorNeat KPro device to the human eye is available in the following link: www.corneat.com/product-animation.

“Corneal pathology is the second leading cause of blindness worldwide with 20-30 million patients in need of a remedy and around 2 million new cases/year, said CorNeat Vision CEO and VP R&D, Mr. Almog Aley-Raz. “Though a profound cause of distress and disability, existing solutions, such as corneal transplantation, are carried out only about 200,000 times/year worldwide. Together, corneal transplantation, and to a much lesser extent artificial implants (KPros), address only 5%-10% of cases, “There exists an urgent need for an efficient, long-lasting and affordable solution to corneal pathology, injury and blindness, which would alleviate the suffering and disability of millions of people. We are very excited to reach this important milestone in the development of our solution and are confident that the CorNeat KPro will enable millions to regain their sight”, he added.

“The groundbreaking results obtained in our proof of concept which is backed by conclusive histopathological evidence, are extremely encouraging. We are entering the next phase with great confidence that CorNeat KPro will address corneal blindness just like IOLs (Intra Ocular Lens) addressed cataract”, commented Dr. Gilad Litvin, CorNeat Vision’s Chief Medical Officer and founder and the CorNeat KPro inventor. “Our novel IP, now cleared by the European Patent Office, ensures long-term retention, robust integration into the eye and an operation that is significantly shorter and simpler than Keratoplasty (Corneal transplantation).

“The innovative approach behind CorNeat KPro coupled by the team’s execution ability present a unique opportunity to finally address the global corneal blindness challenge”, added Prof. Ehud Assia., head of the ophthalmic department at the Meir Hospital in Israel, a serial ophthalmic innovator, and a member of CorNeat Vision scientific advisory board. “I welcome our new advisory board members, Prof. David Rootman, a true pioneer in ophthalmic surgery and one of the top corneal specialist surgeons from the University of Toronto, Canada, and Prof. Eric Gabison., who’s a leading cornea surgeon at the Rothschild Ophthalmic Foundation research center at Bichat hospital – Paris, France. We are all looking forward to initiating the clinical trial later in 2018.”

About CorNeat Vision

CorNeat Vision is an ophthalmic medical device company with an overarching mission to promote human health, sustainability and equality worldwide. The objective of CorNeat Vision is to produce, test and market an innovative, safe and long-lasting scalable medical solution for corneal blindness, pathology and injury, a bio-artificial organ: The CorNeat KPro. For more information on CorNeat Vision and the CorNeat KPro device, visit us at www.corneat.com.

Unfortunately, I cannot find any more detail. Presumably the company principals are making sure that no competitive advantages are given away.

Using CRISPR to reverse retinosa pigmentosa (eye disease)

Years ago I worked as a publicist for the BC (British Columbia) Motorcycle Federation’s Ride for Sight; they were raising funds for research into retinitis pigmentosa (RP). I hadn’t thought about that in years but it all came back when I saw this April 21, 2017 news item on ScienceDaily,

Using the gene-editing tool CRISPR/Cas9, researchers at University of California San Diego [UCSD] School of Medicine and Shiley Eye Institute at UC San Diego Health, with colleagues in China, have reprogrammed mutated rod photoreceptors to become functioning cone photoreceptors, reversing cellular degeneration and restoring visual function in two mouse models of retinitis pigmentosa.

Caption: This is a confocal micrograph of mouse retina depicting optic fiber layer. Credit: Image courtesy of National Center for Microscopy and Imaging Research, UC San Diego.

An April 21, 2017 UCSD news release by Scott LaFee (also on EurekAlert), which originated the news item, delves further into retinitis pigmentosa and this CRISPR research,

Retinitis pigmentosa (RP) is a group of inherited vision disorders caused by numerous mutations in more than 60 genes. The mutations affect the eyes’ photoreceptors, specialized cells in the retina that sense and convert light images into electrical signals sent to the brain. There are two types: rod cells that function for night vision and peripheral vision, and cone cells that provide central vision (visual acuity) and discern color. The human retina typically contains 120 million rod cells and 6 million cone cells.

In RP, which affects approximately 100,000 Americans and 1 in 4,000 persons worldwide, rod-specific genetic mutations cause rod photoreceptor cells to dysfunction and degenerate over time. Initial symptoms are loss of peripheral and night vision, followed by diminished visual acuity and color perception as cone cells also begin to fail and die. There is no treatment for RP. The eventual result may be legal blindness.

In their published research, a team led by senior author Kang Zhang, MD, PhD, chief of ophthalmic genetics, founding director of the Institute for Genomic Medicine and co-director of biomaterials and tissue engineering at the Institute of Engineering in Medicine, both at UC San Diego School of Medicine, used CRISPR/Cas9 to deactivate a master switch gene called Nrl and a downstream transcription factor called Nr2e3.

CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats, allows researchers to target specific stretches of genetic code and edit DNA at precise locations, modifying select gene functions. Deactivating either Nrl or Nr2e3 reprogrammed rod cells to become cone cells.

“Cone cells are less vulnerable to the genetic mutations that cause RP,” said Zhang. “Our strategy was to use gene therapy to make the underlying mutations irrelevant, resulting in the preservation of tissue and vision.”

The scientists tested their approach in two different mouse models of RP. In both cases, they found an abundance of reprogrammed cone cells and preserved cellular architecture in the retinas. Electroretinography testing of rod and cone receptors in live mice show improved function.

Zhang said a recent independent study led by Zhijian Wu, PhD, at National Eye Institute, part of the National Institutes of Health, also reached similar conclusions.

The researchers used adeno-associated virus (AAV) to perform the gene therapy, which they said should help advance their work to human clinical trials quicker. “AAV is a common cold virus and has been used in many successful gene therapy treatments with a relatively good safely profile,” said Zhang. “Human clinical trials could be planned soon after completion of preclinical study. There is no treatment for RP so the need is great and pressing. In addition, our approach of reprogramming mutation-sensitive cells to mutation-resistant cells may have broader application to other human diseases, including cancer.”

Here’s a link to and a citation for the paper,

Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors by Jie Zhu, Chang Ming, Xin Fu, Yaou Duan, Duc Anh Hoang, Jeffrey Rutgard, Runze Zhang, Wenqiu Wang, Rui Hou, Daniel Zhang, Edward Zhang, Charlotte Zhang, Xiaoke Hao, Wenjun Xiong, and Kang Zhang. Cell Research advance online publication 21 April 2017; doi: 10.1038/cr.2017.57

This paper (it’s in the form of a letter to the editor) is open access.

Solar-powered graphene skin for more feeling in your prosthetics

A March 23, 2017 news item on Nanowerk highlights research that could put feeling into a prosthetic limb,

A new way of harnessing the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs capable of returning the sense of touch to amputees.

Engineers from the University of Glasgow, who have previously developed an ‘electronic skin’ covering for prosthetic hands made from graphene, have found a way to use some of graphene’s remarkable physical properties to use energy from the sun to power the skin.

Graphene is a highly flexible form of graphite which, despite being just a single atom thick, is stronger than steel, electrically conductive, and transparent. It is graphene’s optical transparency, which allows around 98% of the light which strikes its surface to pass directly through it, which makes it ideal for gathering energy from the sun to generate power.

A March 23, 2017 University of Glasgow press release, which originated the news item, details more about the research,

Ravinder Dahiya

Dr Ravinder Dahiya

A new research paper, published today in the journal Advanced Functional Materials, describes how Dr Dahiya and colleagues from his Bendable Electronics and Sensing Technologies (BEST) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

Dr Dahiya, from the University of Glasgow’s School of Engineering, said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors which carry signals from the skin to the brain.

“My colleagues and I have already made significant steps in creating prosthetic prototypes which integrate synthetic skin and are capable of making very sensitive pressure measurements. Those measurements mean the prosthetic hand is capable of performing challenging tasks like properly gripping soft materials, which other prosthetics can struggle with. We are also using innovative 3D printing strategies to build more affordable sensitive prosthetic limbs, including the formation of a very active student club called ‘Helping Hands’.

“Skin capable of touch sensitivity also opens the possibility of creating robots capable of making better decisions about human safety. A robot working on a construction line, for example, is much less likely to accidentally injure a human if it can feel that a person has unexpectedly entered their area of movement and stop before an injury can occur.”

The new skin requires just 20 nanowatts of power per square centimetre, which is easily met even by the poorest-quality photovoltaic cells currently available on the market. And although currently energy generated by the skin’s photovoltaic cells cannot be stored, the team are already looking into ways to divert unused energy into batteries, allowing the energy to be used as and when it is required.

Dr Dahiya added: “The other next step for us is to further develop the power-generation technology which underpins this research and use it to power the motors which drive the prosthetic hand itself. This could allow the creation of an entirely energy-autonomous prosthetic limb.

“We’ve already made some encouraging progress in this direction and we’re looking forward to presenting those results soon. We are also exploring the possibility of building on these exciting results to develop wearable systems for affordable healthcare. In this direction, recently we also got small funds from Scottish Funding Council.”

For more information about this advance and others in the field of prosthetics you may want to check out Megan Scudellari’s March 30, 2017 article for the IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum (Note: Links have been removed),

Cochlear implants can restore hearing to individuals with some types of hearing loss. Retinal implants are now on the market to restore sight to the blind. But there are no commercially available prosthetics that restore a sense of touch to those who have lost a limb.

Several products are in development, including this haptic system at Case Western Reserve University, which would enable upper-limb prosthetic users to, say, pluck a grape off a stem or pull a potato chip out of a bag. It sounds simple, but such tasks are virtually impossible without a sense of touch and pressure.

Now, a team at the University of Glasgow that previously developed a flexible ‘electronic skin’ capable of making sensitive pressure measurements, has figured out how to power their skin with sunlight. …

Here’s a link to and a citation for the paper,

Energy-Autonomous, Flexible, and Transparent Tactile Skin by Carlos García Núñez, William Taube Navaraj, Emre O. Polat and Ravinder Dahiya. Advanced Functional Materials DOI: 10.1002/adfm.201606287 Version of Record online: 22 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

With over 150 partners from over 20 countries, the European Union’s Graphene Flagship research initiative unveils its work package devoted to biomedical technologies

An April 11, 2016 news item on Nanowerk announces the Graphene Flagship’s latest work package,

With a budget of €1 billion, the Graphene Flagship represents a new form of joint, coordinated research on an unprecedented scale, forming Europe’s biggest ever research initiative. It was launched in 2013 to bring together academic and industrial researchers to take graphene from the realm of academic laboratories into European society in the timeframe of 10 years. The initiative currently involves over 150 partners from more than 20 European countries. The Graphene Flagship, coordinated by Chalmers University of Technology (Sweden), is implemented around 15 scientific Work Packages on specific science and technology topics, such as fundamental science, materials, health and environment, energy, sensors, flexible electronics and spintronics.

Today [April 11, 2016], the Graphene Flagship announced in Barcelona the creation of a new Work Package devoted to Biomedical Technologies, one emerging application area for graphene and other 2D materials. This initiative is led by Professor Kostas Kostarelos, from the University of Manchester (United Kingdom), and ICREA Professor Jose Antonio Garrido, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain). The Kick-off event, held in the Casa Convalescència of the Universitat Autònoma de Barcelona (UAB), is co-organised by ICN2 (ICREA Prof Jose Antonio Garrido), Centro Nacional de Microelectrónica (CNM-IMB-CSIC, CIBER-BBN; CSIC Tenured Scientist Dr Rosa Villa), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS; ICREA Prof Mavi Sánchez-Vives).

An April 11, 2016 ICN2 press release, which originated the news item, provides more detail about the Biomedical Technologies work package and other work packages,

The new Work Package will focus on the development of implants based on graphene and 2D-materials that have therapeutic functionalities for specific clinical outcomes, in disciplines such as neurology, ophthalmology and surgery. It will include research in three main areas: Materials Engineering; Implant Technology & Engineering; and Functionality and Therapeutic Efficacy. The objective is to explore novel implants with therapeutic capacity that will be further developed in the next phases of the Graphene Flagship.

The Materials Engineering area will be devoted to the production, characterisation, chemical modification and optimisation of graphene materials that will be adopted for the design of implants and therapeutic element technologies. Its results will be applied by the Implant Technology and Engineering area on the design of implant technologies. Several teams will work in parallel on retinal, cortical, and deep brain implants, as well as devices to be applied in the periphery nerve system. Finally, The Functionality and Therapeutic Efficacy area activities will centre on development of devices that, in addition to interfacing the nerve system for recording and stimulation of electrical activity, also have therapeutic functionality.

Stimulation therapies will focus on the adoption of graphene materials in implants with stimulation capabilities in Parkinson’s, blindness and epilepsy disease models. On the other hand, biological therapies will focus on the development of graphene materials as transport devices of biological molecules (nucleic acids, protein fragments, peptides) for modulation of neurophysiological processes. Both approaches involve a transversal innovation environment that brings together the efforts of different Work Packages within the Graphene Flagship.

A leading role for Barcelona in Graphene and 2D-Materials

The kick-off meeting of the new Graphene Flagship Work Package takes place in Barcelona because of the strong involvement of local institutions and the high international profile of Catalonia in 2D-materials and biomedical research. Institutions such as the Catalan Institute of Nanoscience and Nanotechnology (ICN2) develop frontier research in a supportive environment which attracts talented researchers from abroad, such as ICREA Research Prof Jose Antonio Garrido, Group Leader of the ICN2 Advanced Electronic Materials and Devices Group and now also Deputy Leader of the Biomedical Technologies Work Package. Until summer 2015 he was leading a research group at the Technische Universität München (Germany).

Further Graphene Flagship events in Barcelona are planned; in May 2016 ICN2 will also host a meeting of the Spintronics Work Package. ICREA Prof Stephan Roche, Group Leader of the ICN2 Theoretical and Computational Nanoscience Group, is the deputy leader of this Work Package led by Prof Bart van Wees, from the University of Groningen (The Netherlands). Another Work Package, on optoelectronics, is led by Prof Frank Koppens from the Institute of Photonic Sciences (ICFO, Spain), with Prof Andrea Ferrari from the University of Cambridge (United Kingdom) as deputy. Thus a number of prominent research institutes in Barcelona are deeply involved in the coordination of this European research initiative.

Kostas Kostarelos, the leader of the Biomedical Technologies Graphene Flagship work package, has been mentioned here before in the context of his blog posts for The Guardian science blog network (see my Aug. 7, 2014 post for a link to his post on metaphors used in medicine).

TED 2014 ‘pre’ opening with prosthetics made better by 3D printing, interdisciplinary network, an app for vision testing and the Internet of Things made open

Here’s today’s (March 17, 2014) second session and a list of the fellows along with a link to their TED 2014 biography (list and links from the TED 2014 schedule),

Somi Kakoma Vocalist + Composer + Culturist
Steve Boyes conservation biologist
David Sengeh biomechatronics engineer
Eric Berlow Ecologist
Uldus Bakhtiozina photographer + visual artist
Laurel Braitman science historian + writer
Eman Mohammed Photojournalist
Andrew Bastawrous eye surgeon + innovator
Kathryn Hunt Paleopathologist
Ayah Bdeir Engineer and artist
Will Potter Investigative journalist
Kitra Cahana Vagabond photojournalist + conceptual artist
Shih Chieh Huang Artist

David Moinina Sengeh, from the MIT (Massachusetts Institute of Technology) Media Lab, focuses on biomechatronics and, more specifically, prosthetics. He was born and raised (till age 12?) in Sierra Leone where a civil war raged from 1991 to January 2002 when the war was declared finished. One of the legacies from the war has been war amputees resulting in a need for prosthetics and Sengher’s commitment to creating better prosthetics.

Even in wealthy parts of the world, an amputee may experience great discomfort from wearing a prosthetic that despite a number of fittings and adjustments never feels right and causes blisters and sores. In countries with fewer resources, getting a prosthetic that fits well is even more unlikely.

Sengeh has worked out a new way to create prosthetics that fit better and feel better, using magnetic resonance imaging (MRI) to scan the residual limb more accurately, followed by a finite-element analysis, then utilizing computer-aided design to create a  multilayer 3-D printed variable-resistance socket. One of Sengeh’s test subjects described his prosthetic socket as feeling like ‘pillows’. (You can read more about Sengeh and his work at MIT in a Dec. 18, 2012 MIT article by David L. Chandler.)  Sengeh has also founded a program in Sierra Leone to encourage and foster home-grown innovation and solutions in situations where resources are limited.

Andrew Bastawrous, Research Fellow in International Eye Health at the London School of Hygiene and Tropical Medicine, talked about his work in Kenya where he has developed an app for vision testing and diagnosis with an inexpensive device which can be clipped onto a smartphone. He demonstrated the app, Peek Vision, during his presentation.

The whole thing reminded me of Aravind, another project designed to save sight, but this one was created in India, from the Aravind Wikipedia entry (Note: Links have been removed),

Aravind Eye Care Hospital is an ophthalmological hospital with several locations in India. It was founded by Dr. Govindappa Venkataswamy in 1976. Since then it has grown into a network of eye hospitals that have seen a total of nearly 32 million patients in 36 years and performed nearly 4 million eye surgeries, the majority of them being very cheap or free. The model of Aravind Eye Care hospitals has been applauded all over the world and has become a subject for numerous case studies.[1] [2][3]

My last fellow description for this session features Ayah Bdeir and the Internet of Things.  Bdeir has developed a modular approach to creating your own electronics and, today (March 17, 2014) she was introducing a new module, the Cloud Module which would allow you to create your own internet of things. (Last week I covered a webinar with Tim O’Reilly and Jim Stogdil in a March 13, 2014 posting where they discussed big data, the Internet of Things, maker culture and other components of an upcoming Solid Conference. OReilly & Stogdil discussed two options for the Internet of Things, a proprietary approach or an open  approach.) Bdeir’s modules facilitate an open approach. Bdeir will be speaking at the Solid Conference,

Ayah Bdeir is the founder and CEO of littleBits, an award-winning library of electronics dubbed “LEGOs for the iPad generation.” Bdeir is an engineer, interactive artist, and one of the leaders of the open source hardware movement. Bdeir’s career and education have centered on advancing open source hardware to make education and innovation more accessible to people around the world.

You can find out more about littleBits and the Cloud Module here.