Tag Archives: blue-green algae

Nano-photosynthesis in your brain as a stroke treatment?

A May 19, 2021 news item on phys.org sheds some light on a new approach to stroke treatments,

Blocked blood vessels in the brains of stroke patients prevent oxygen-rich blood from getting to cells, causing severe damage. Plants and some microbes produce oxygen through photosynthesis. What if there was a way to make photosynthesis happen in the brains of patients? Now, researchers reporting in ACS’ Nano Letters have done just that in cells and in mice, using blue-green algae and special nanoparticles, in a proof-of-concept demonstration.

A May 19, 2021 American Chemical Society (ACS) news release, which originated the news item, provides more information on strokes and how this new approach may prove useful,

Strokes result in the deaths of 5 million people worldwide every year, according to the World Health Organization. Millions more survive, but they often experience disabilities, such as difficulties with speech, swallowing or memory. The most common cause is a blood vessel blockage in the brain, and the best way to prevent permanent brain damage from this type of stroke is to dissolve or surgically remove the blockage as soon as possible. However, those options only work within a narrow time window after the stroke happens and can be risky. Blue-green algae, such as Synechococcus elongatus, have been studied previously to treat the lack of oxygen in heart tissue and tumors using photosynthesis. But the visible light needed to trigger the microbes can’t penetrate the skull, and although near-infrared light can pass through, it is insufficient to directly power photosynthesis. “Up-conversion” nanoparticles, often used for imaging, can absorb near-infrared photons and emit visible light. So, Lin Wang, Zheng Wang, Guobin Wang and colleagues at Huazhong University of Science and Technology wanted to see if they could develop a new approach that could someday be used for stroke patients by combining these parts — S. elongatus, nanoparticles and near-infrared light — in a new “nano-photosynthetic” system.

The researchers paired S. elongatus with neodymium up-conversion nanoparticles that transform tissue-penetrating near-infrared light to a visible wavelength that the microbes can use to photosynthesize. In a cell study, they found that the nano-photosynthesis approach reduced the number of neurons that died after oxygen and glucose deprivation. They then injected the microbes and nanoparticles into mice with blocked cerebral arteries and exposed the mice to near-infrared light. The therapy reduced the number of dying neurons, improved the animals’ motor function and even helped new blood vessels to start growing. Although this treatment is still in the animal testing stage, it has promise to advance someday toward human clinical trials, the researchers say.

The authors acknowledge funding from the National Key Basic Research Program of China, the National Natural Science Foundation of China, the Chinese Ministry of Education’s Science and Technology Program, the Major Scientific and Technological Innovation Projects in Hubei Province, and the Joint Fund of Ministry of Education for Equipment Pre-research.

Here’s a link to and a citation for the paper,

Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment by Jian Wang, Qiangfei Su, Qiying Lv, Bo Cai, Xiakeerzhati Xiaohalati, Guobin Wang, Zheng Wang, and Lin Wang. Nano Lett. 2021, 21, 11, 4654–4665 DOI: https://doi.org/10.1021/acs.nanolett.1c00719 Publication Date:May 19, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Algae factories could produce nanocellulose for biofuels and more

The American Chemical Society (ACS) is holding its 245th meeting April 7 – 11, 2013 and its first International Symposium on Bacterial Nanocellulose simultaneously. I have written about nanocellulose previously but it’s always been concerned with the type derived from plant matter; bacterial nanocellulose is new to me but not the scientific community as the Apr. 8, 2013 news item on Azonano notes,

In the 1800s, French scientist Louis Pasteur first discovered that vinegar-making [and Kombucha tea and nata de coco] bacteria make “a sort of moist skin, swollen, gelatinous and slippery” — a “skin” now known as bacterial nanocellulose. Nanocellulose made by bacteria has advantages, including ease of production and high purity that fostered the kind of scientific excitement reflected in the first international symposium on the topic, Brown [R. Malcolm Brown, Jr., Ph.D.] pointed out.

Before going on to this latest research, here’s a description of cellulose and nanocellulose as per its presence in plant material (from the news item),

Cellulose is the most abundant organic polymer on Earth, a material, like plastics, consisting of molecules linked together into long chains. Cellulose makes up tree trunks and branches, corn stalks and cotton fibers, and it is the main component of paper and cardboard. People eat cellulose in “dietary fiber,” the indigestible material in fruits and vegetables. Cows, horses and termites can digest the cellulose in grass, hay and wood.

Most cellulose consists of wood fibers and cell wall remains. Very few living organisms can actually synthesize and secrete cellulose in its native nanostructure form of microfibrils. At this level, nanometer-scale fibrils are very hydrophilic and look like jelly. A nanometer is one-millionth the thickness of a U.S. dime. Nevertheless, cellulose shares the unique properties of other nanometer-sized materials — properties much different from large quantities of the same material. Nanocellulose-based materials can be stronger than steel and stiffer than Kevlar. Great strength, light weight and other advantages has fostered interest in using it in everything from lightweight armor and ballistic glass to wound dressings and scaffolds for growing replacement organs for transplantation.

A new kind of bacteria actively entered the nanocellulose picture in 2001 (from the news item) allowing Brown to exploit research he had been pursuing since the 1970s (from the news item),

Brown recalled that in 2001, a discovery by David Nobles, Ph.D., a member of the research team at the University of Texas at Austin, refocused their research on nanocellulose, but with a different microbe. Nobles established that several kinds of blue-green algae, which are mainly photosynthetic bacteria much like the vinegar-making bacteria in basic structure; however, these blue-green algae, or cyanobacteria, as they are called, can produce nanocellulose. One of the largest problems with cyanobacterial nanocellulose is that it is not made in abundant amounts in nature. If it could be scaled up, Brown describes this as “one of the most important discoveries in plant biology.”

While I find the science interesting, it’s Brown’s comments about the policy and politics of commercializing nanocellulose-based fuels that intrigue me (from the news item),

In his report at the ACS meeting, Brown described how his team already has genetically engineered the cyanobacteria to produce one form of nanocellulose, the long-chain, or polymer, form of the material. And they are moving ahead with the next step, engineering the cyanobacteria to synthesize a more complete form of nanocellulose, one that is a polymer with a crystalline architecture. He also said that operations are being scaled up, with research moving from laboratory-sized tests to larger outdoor facilities.

Brown expressly pointed out that one of the major barriers to commercializing nanocellulose fuels involves national policy and politics, rather than science. Biofuels, he said, will face a difficult time for decades into the future in competing with the less-expensive natural gas now available with hydraulic fracturing, or “fracking.”  [emphasis mine] In the long run, the United States will need sustainable biofuels, he said, citing the importance of national energy policies that foster parallel development and commercialization of biofuels.