Tag Archives: bosons

Simulating elementary physics in a quantum simulation (particle zoo in a quantum computer?)

Whoever wrote the news release used a very catchy title “Particle zoo in a quantum computer”; I just wish they’d explained it. Looking up the definition for a ‘particle zoo’ didn’t help as much as I’d hoped. From the particle zoo entry on Wikipedia (Note: Links have been removed),

In particle physics, the term particle zoo[1][2] is used colloquially to describe a relatively extensive list of the then known “elementary particles” that almost look like hundreds of species in the zoo.

In the history of particle physics, the situation was particularly confusing in the late 1960s. Before the discovery of quarks, hundreds of strongly interacting particles (hadrons) were known, and believed to be distinct elementary particles in their own right. It was later discovered that they were not elementary particles, but rather composites of the quarks. The set of particles believed today to be elementary is known as the Standard Model, and includes quarks, bosons and leptons.

I believe the writer used the term to indicate that the simulation undertaken involved elementary particles. If you have a better explanation, please feel free to add it to the comments for this post.

Here’s the news from a June 22, 2016 news item on ScienceDaily,

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The discovery of the Higgs boson at the CERN in 2012 constitutes a further step towards the confirmation of the Standard Model. However, many aspects of this theory are still not understood because their complexity makes it hard to investigate them with classical computers. Quantum computers may provide a way to overcome this obstacle as they can simulate certain aspects of elementary particle physics in a well-controlled quantum system. Physicists from the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have now done exactly that: In an international first, Rainer Blatt’s and Peter Zoller’s research teams have simulated lattice gauge theories in a quantum computer. …

A June 23, 2016 University of Innsbruck (Universität Innsbruck) press release, which seems  to have originated the news item, provides more detail,

Gauge theories describe the interaction between elementary particles, such as quarks and gluons, and they are the basis for our understanding of fundamental processes. “Dynamical processes, for example, the collision of elementary particles or the spontaneous creation of particle-antiparticle pairs, are extremely difficult to investigate,” explains Christine Muschik, theoretical physicist at the IQOQI. “However, scientists quickly reach a limit when processing numerical calculations on classical computers. For this reason, it has been proposed to simulate these processes by using a programmable quantum system.” In recent years, many interesting concepts have been proposed, but until now it was impossible to realize them. “We have now developed a new concept that allows us to simulate the spontaneous creation of electron-positron pairs out of the vacuum by using a quantum computer,” says Muschik. The quantum system consists of four electromagnetically trapped calcium ions that are controlled by laser pulses. “Each pair of ions represent a pair of a particle and an antiparticle,” explains experimental physicist Esteban A. Martinez. “We use laser pulses to simulate the electromagnetic field in a vacuum. Then we are able to observe how particle pairs are created by quantum fluctuations from the energy of this field. By looking at the ion’s fluorescence, we see whether particles and antiparticles were created. We are able to modify the parameters of the quantum system, which allows us to observe and study the dynamic process of pair creation.”

Combining different fields of physics

With this experiment, the physicists in Innsbruck have built a bridge between two different fields in physics: They have used atomic physics experiments to study questions in high-energy physics. While hundreds of theoretical physicists work on the highly complex theories of the Standard Model and experiments are carried out at extremely expensive facilities, such as the Large Hadron Collider at CERN, quantum simulations may be carried out by small groups in tabletop experiments. “These two approaches complement one another perfectly,” says theoretical physicist Peter Zoller. “We cannot replace the experiments that are done with particle colliders. However, by developing quantum simulators, we may be able to understand these experiments better one day.” Experimental physicist Rainer Blatt adds: “Moreover, we can study new processes by using quantum simulation. For example, in our experiment we also investigated particle entanglement produced during pair creation, which is not possible in a particle collider.” The physicists are convinced that future quantum simulators will potentially be able to solve important questions in high-energy physics that cannot be tackled by conventional methods.

Foundation for a new research field

It was only a few years ago that the idea to combine high-energy and atomic physics was proposed. With this work it has been implemented experimentally for the first time. “This approach is conceptually very different from previous quantum simulation experiments studying many-body physics or quantum chemistry. The simulation of elementary particle processes is theoretically very complex and, therefore, has to satisfy very specific requirements. For this reason it is difficult to develop a suitable protocol,” underlines Zoller. The conditions for the experimental physicists were equally demanding: “This is one of the most complex experiments that has ever been carried out in a trapped-ion quantum computer,” says Blatt. “We are still figuring out how these quantum simulations work and will only gradually be able to apply them to more challenging phenomena.” The great theoretical as well as experimental expertise of the physicists in Innsbruck was crucial for the breakthrough. Both Blatt and Zoller emphasize that they have been doing research on quantum computers for many years now and have gained a lot of experience in their implementation. Innsbruck has become one of the leading centers for research in quantum physics; here, the theoretical and experimental branches work together at an extremely high level, which enables them to gain novel insights into fundamental phenomena.

Here’s a link to and a citation for the paper,

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer by Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, & Rainer Blatt.  Nature 534, 516–519 (23 June 2016)  doi:10.1038/nature18318 Published online 22 June 2016

This paper is behind a paywall.

There is a soundcloud audio file featuring an explanation of the work from the lead author, Esteban A. Martinez,

Graphene, Perimeter Institute, and condensed matter physics

In short, researchers at Canada’s Perimeter Institute are working on theoretical models involving graphene. which could lead to quantum computing. A July 3, 2014 Perimeter Institute news release by Erin Bow (also on EurekAlert) provides some insight into the connections between graphene and condensed matter physics (Note: Bow has included some good basic explanations of graphene, quasiparticles, and more for beginners),

One of the hottest materials in condensed matter research today is graphene.

Graphene had an unlikely start: it began with researchers messing around with pencil marks on paper. Pencil “lead” is actually made of graphite, which is a soft crystal lattice made of nothing but carbon atoms. When pencils deposit that graphite on paper, the lattice is laid down in thin sheets. By pulling that lattice apart into thinner sheets – originally using Scotch tape – researchers discovered that they could make flakes of crystal just one atom thick.

The name for this atom-scale chicken wire is graphene. Those folks with the Scotch tape, Andre Geim and Konstantin Novoselov, won the 2010 Nobel Prize for discovering it. “As a material, it is completely new – not only the thinnest ever but also the strongest,” wrote the Nobel committee. “As a conductor of electricity, it performs as well as copper. As a conductor of heat, it outperforms all other known materials. It is almost completely transparent, yet so dense that not even helium, the smallest gas atom, can pass through it.”

Developing a theoretical model of graphene

Graphene is not just a practical wonder – it’s also a wonderland for theorists. Confined to the two-dimensional surface of the graphene, the electrons behave strangely. All kinds of new phenomena can be seen, and new ideas can be tested. Testing new ideas in graphene is exactly what Perimeter researchers Zlatko Papić and Dmitry (Dima) Abanin set out to do.

“Dima and I started working on graphene a very long time ago,” says Papić. “We first met in 2009 at a conference in Sweden. I was a grad student and Dima was in the first year of his postdoc, I think.”

The two young scientists got to talking about what new physics they might be able to observe in the strange new material when it is exposed to a strong magnetic field.

“We decided we wanted to model the material,” says Papić. They’ve been working on their theoretical model of graphene, on and off, ever since. The two are now both at Perimeter Institute, where Papić is a postdoctoral researcher and Abanin is a faculty member. They are both cross-appointed with the Institute for Quantum Computing (IQC) at the University of Waterloo.

In January 2014, they published a paper in Physical Review Letters presenting new ideas about how to induce a strange but interesting state in graphene – one where it appears as if particles inside it have a fraction of an electron’s charge.

It’s called the fractional quantum Hall effect (FQHE), and it’s head turning. Like the speed of light or Planck’s constant, the charge of the electron is a fixed point in the disorienting quantum universe.

Every system in the universe carries whole multiples of a single electron’s charge. When the FQHE was first discovered in the 1980s, condensed matter physicists quickly worked out that the fractionally charged “particles” inside their semiconductors were actually quasiparticles – that is, emergent collective behaviours of the system that imitate particles.

Graphene is an ideal material in which to study the FQHE. “Because it’s just one atom thick, you have direct access to the surface,” says Papić. “In semiconductors, where FQHE was first observed, the gas of electrons that create this effect are buried deep inside the material. They’re hard to access and manipulate. But with graphene you can imagine manipulating these states much more easily.”

In the January paper, Abanin and Papić reported novel types of FQHE states that could arise in bilayer graphene – that is, in two sheets of graphene laid one on top of another – when it is placed in a strong perpendicular magnetic field. In an earlier work from 2012, they argued that applying an electric field across the surface of bilayer graphene could offer a unique experimental knob to induce transitions between FQHE states. Combining the two effects, they argued, would be an ideal way to look at special FQHE states and the transitions between them.

Once the scientists developed their theory they went to work on some experiments,

Two experimental groups – one in Geneva, involving Abanin, and one at Columbia, involving both Abanin and Papić – have since put the electric field + magnetic field method to good use. The paper by the Columbia group appears in the July 4 issue of Science. A third group, led by Amir Yacoby of Harvard, is doing closely related work.

“We often work hand-in-hand with experimentalists,” says Papić. “One of the reasons I like condensed matter is that often even the most sophisticated, cutting-edge theory stands a good chance of being quickly checked with experiment.”

Inside both the magnetic and electric field, the electrical resistance of the graphene demonstrates the strange behaviour characteristic of the FQHE. Instead of resistance that varies in a smooth curve with voltage, resistance jumps suddenly from one level to another, and then plateaus – a kind of staircase of resistance. Each stair step is a different state of matter, defined by the complex quantum tangle of charges, spins, and other properties inside the graphene.

“The number of states is quite rich,” says Papić. “We’re very interested in bilayer graphene because of the number of states we are detecting and because we have these mechanisms – like tuning the electric field – to study how these states are interrelated, and what happens when the material changes from one state to another.”

For the moment, researchers are particularly interested in the stair steps whose “height” is described by a fraction with an even denominator. That’s because the quasiparticles in that state are expected to have an unusual property.

There are two kinds of particles in our three-dimensional world: fermions (such as electrons), where two identical particles can’t occupy one state, and bosons (such as photons), where two identical particles actually want to occupy one state. In three dimensions, fermions are fermions and bosons are bosons, and never the twain shall meet.

But a sheet of graphene doesn’t have three dimensions – it has two. It’s effectively a tiny two-dimensional universe, and in that universe, new phenomena can occur. For one thing, fermions and bosons can meet halfway – becoming anyons, which can be anywhere in between fermions and bosons. The quasiparticles in these special stair-step states are expected to be anyons.

In particular, the researchers are hoping these quasiparticles will be non-Abelian anyons, as their theory indicates they should be. That would be exciting because non-Abelian anyons can be used in the making of qubits.

Graphene qubits?

Qubits are to quantum computers what bits are to ordinary computers: both a basic unit of information and the basic piece of equipment that stores that information. Because of their quantum complexity, qubits are more powerful than ordinary bits and their power grows exponentially as more of them are added. A quantum computer of only a hundred qubits can tackle certain problems beyond the reach of even the best non-quantum supercomputers. Or, it could, if someone could find a way to build stable qubits.

The drive to make qubits is part of the reason why graphene is a hot research area in general, and why even-denominator FQHE states – with their special anyons – are sought after in particular.

“A state with some number of these anyons can be used to represent a qubit,” says Papić. “Our theory says they should be there and the experiments seem to bear that out – certainly the even-denominator FQHE states seem to be there, at least according to the Geneva experiments.”

That’s still a step away from experimental proof that those even-denominator stair-step states actually contain non-Abelian anyons. More work remains, but Papić is optimistic: “It might be easier to prove in graphene than it would be in semiconductors. Everything is happening right at the surface.”

It’s still early, but it looks as if bilayer graphene may be the magic material that allows this kind of qubit to be built. That would be a major mark on the unlikely line between pencil lead and quantum computers.

Here are links for further research,

January PRL paper mentioned above: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.046602

Experimental paper from the Geneva graphene group, including Abanin: http://pubs.acs.org/doi/abs/10.1021/nl5003922

Experimental paper from the Columbia graphene group, including both Abanin and Papić: http://arxiv.org/abs/1403.2112. This paper is featured in the journal Science.

Related experiment on bilayer graphene by Amir Yacoby’s group at Harvard: http://www.sciencemag.org/content/early/2014/05/28/science.1250270

The Nobel Prize press release on graphene, mentioned above: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html

I recently posted a piece about some research into the ‘scotch-tape technique’ for isolating graphene (June 30, 2014 posting). Amusingly, Geim argued against coining the technique as the ‘scotch-tape’ technique, something I found out only recently.