Tag Archives: buckminsterfullerenes

It’s a very ‘carbony’ time: graphene jacket, graphene-skinned airplane, and schwarzite

In August 2018, I been stumbled across several stories about graphene-based products and a new form of carbon.

Graphene jacket

The company producing this jacket has as its goal “… creating bionic clothing that is both bulletproof and intelligent.” Well, ‘bionic‘ means biologically-inspired engineering and ‘intelligent‘ usually means there’s some kind of computing capability in the product. This jacket, which is the first step towards the company’s goal, is not bionic, bulletproof, or intelligent. Nonetheless, it represents a very interesting science experiment in which you, the consumer, are part of step two in the company’s R&D (research and development).

Onto Vollebak’s graphene jacket,

Courtesy: Vollebak

From an August 14, 2018 article by Jesus Diaz for Fast Company,

Graphene is the thinnest possible form of graphite, which you can find in your everyday pencil. It’s purely bi-dimensional, a single layer of carbon atoms that has unbelievable properties that have long threatened to revolutionize everything from aerospace engineering to medicine. …

Despite its immense promise, graphene still hasn’t found much use in consumer products, thanks to the fact that it’s hard to manipulate and manufacture in industrial quantities. The process of developing Vollebak’s jacket, according to the company’s cofounders, brothers Steve and Nick Tidball, took years of intensive research, during which the company worked with the same material scientists who built Michael Phelps’ 2008 Olympic Speedo swimsuit (which was famously banned for shattering records at the event).

The jacket is made out of a two-sided material, which the company invented during the extensive R&D process. The graphene side looks gunmetal gray, while the flipside appears matte black. To create it, the scientists turned raw graphite into something called graphene “nanoplatelets,” which are stacks of graphene that were then blended with polyurethane to create a membrane. That, in turn, is bonded to nylon to form the other side of the material, which Vollebak says alters the properties of the nylon itself. “Adding graphene to the nylon fundamentally changes its mechanical and chemical properties–a nylon fabric that couldn’t naturally conduct heat or energy, for instance, now can,” the company claims.

The company says that it’s reversible so you can enjoy graphene’s properties in different ways as the material interacts with either your skin or the world around you. “As physicists at the Max Planck Institute revealed, graphene challenges the fundamental laws of heat conduction, which means your jacket will not only conduct the heat from your body around itself to equalize your skin temperature and increase it, but the jacket can also theoretically store an unlimited amount of heat, which means it can work like a radiator,” Tidball explains.

He means it literally. You can leave the jacket out in the sun, or on another source of warmth, as it absorbs heat. Then, the company explains on its website, “If you then turn it inside out and wear the graphene next to your skin, it acts like a radiator, retaining its heat and spreading it around your body. The effect can be visibly demonstrated by placing your hand on the fabric, taking it away and then shooting the jacket with a thermal imaging camera. The heat of the handprint stays long after the hand has left.”

There’s a lot more to the article although it does feature some hype and I’m not sure I believe Diaz’s claim (August 14, 2018 article) that ‘graphene-based’ hair dye is perfectly safe ( Note: A link has been removed),

Graphene is the thinnest possible form of graphite, which you can find in your everyday pencil. It’s purely bi-dimensional, a single layer of carbon atoms that has unbelievable properties that will one day revolutionize everything from aerospace engineering to medicine. Its diverse uses are seemingly endless: It can stop a bullet if you add enough layers. It can change the color of your hair with no adverse effects. [emphasis mine] It can turn the walls of your home into a giant fire detector. “It’s so strong and so stretchy that the fibers of a spider web coated in graphene could catch a falling plane,” as Vollebak puts it in its marketing materials.

Not unless things have changed greatly since March 2018. My August 2, 2018 posting featured the graphene-based hair dye announcement from March 2018 and a cautionary note from Dr. Andrew Maynard (scroll down ab out 50% of the way for a longer excerpt of Maynard’s comments),

Northwestern University’s press release proudly announced, “Graphene finds new application as nontoxic, anti-static hair dye.” The announcement spawned headlines like “Enough with the toxic hair dyes. We could use graphene instead,” and “’Miracle material’ graphene used to create the ultimate hair dye.”

From these headlines, you might be forgiven for getting the idea that the safety of graphene-based hair dyes is a done deal. Yet having studied the potential health and environmental impacts of engineered nanomaterials for more years than I care to remember, I find such overly optimistic pronouncements worrying – especially when they’re not backed up by clear evidence.

These studies need to be approached with care, as the precise risks of graphene exposure will depend on how the material is used, how exposure occurs and how much of it is encountered. Yet there’s sufficient evidence to suggest that this substance should be used with caution – especially where there’s a high chance of exposure or that it could be released into the environment.

The full text of Dr. Maynard’s comments about graphene hair dyes and risk can be found here.

Bearing in mind  that graphene-based hair dye is an entirely different class of product from the jacket, I wouldn’t necessarily dismiss risks; I would like to know what kind of risk assessment and safety testing has been done. Due to their understandable enthusiasm, the brothers Tidball have focused all their marketing on the benefits and the opportunity for the consumer to test their product (from graphene jacket product webpage),

While it’s completely invisible and only a single atom thick, graphene is the lightest, strongest, most conductive material ever discovered, and has the same potential to change life on Earth as stone, bronze and iron once did. But it remains difficult to work with, extremely expensive to produce at scale, and lives mostly in pioneering research labs. So following in the footsteps of the scientists who discovered it through their own highly speculative experiments, we’re releasing graphene-coated jackets into the world as experimental prototypes. Our aim is to open up our R&D and accelerate discovery by getting graphene out of the lab and into the field so that we can harness the collective power of early adopters as a test group. No-one yet knows the true limits of what graphene can do, so the first edition of the Graphene Jacket is fully reversible with one side coated in graphene and the other side not. If you’d like to take part in the next stage of this supermaterial’s history, the experiment is now open. You can now buy it, test it and tell us about it. [emphasis mine]

How maverick experiments won the Nobel Prize

While graphene’s existence was first theorised in the 1940s, it wasn’t until 2004 that two maverick scientists, Andre Geim and Konstantin Novoselov, were able to isolate and test it. Through highly speculative and unfunded experimentation known as their ‘Friday night experiments,’ they peeled layer after layer off a shaving of graphite using Scotch tape until they produced a sample of graphene just one atom thick. After similarly leftfield thinking won Geim the 2000 Ig Nobel prize for levitating frogs using magnets, the pair won the Nobel prize in 2010 for the isolation of graphene.

Should you be interested, in beta-testing the jacket, it will cost you $695 (presumably USD); order here. One last thing, Vollebak is based in the UK.

Graphene skinned plane

An August 14, 2018 news item (also published as an August 1, 2018 Haydale press release) by Sue Keighley on Azonano heralds a new technology for airplans,

Haydale, (AIM: HAYD), the global advanced materials group, notes the announcement made yesterday from the University of Central Lancashire (UCLAN) about the recent unveiling of the world’s first graphene skinned plane at the internationally renowned Farnborough air show.

The prepreg material, developed by Haydale, has potential value for fuselage and wing surfaces in larger scale aero and space applications especially for the rapidly expanding drone market and, in the longer term, the commercial aerospace sector. By incorporating functionalised nanoparticles into epoxy resins, the electrical conductivity of fibre-reinforced composites has been significantly improved for lightning-strike protection, thereby achieving substantial weight saving and removing some manufacturing complexities.

Before getting to the photo, here’s a definition for pre-preg from its Wikipedia entry (Note: Links have been removed),

Pre-preg is “pre-impregnated” composite fibers where a thermoset polymer matrix material, such as epoxy, or a thermoplastic resin is already present. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture.

Haydale has supplied graphene enhanced prepreg material for Juno, a three-metre wide graphene-enhanced composite skinned aircraft, that was revealed as part of the ‘Futures Day’ at Farnborough Air Show 2018. [downloaded from https://www.azonano.com/news.aspx?newsID=36298]

A July 31, 2018 University of Central Lancashire (UCLan) press release provides a tiny bit more (pun intended) detail,

The University of Central Lancashire (UCLan) has unveiled the world’s first graphene skinned plane at an internationally renowned air show.

Juno, a three-and-a-half-metre wide graphene skinned aircraft, was revealed on the North West Aerospace Alliance (NWAA) stand as part of the ‘Futures Day’ at Farnborough Air Show 2018.

The University’s aerospace engineering team has worked in partnership with the Sheffield Advanced Manufacturing Research Centre (AMRC), the University of Manchester’s National Graphene Institute (NGI), Haydale Graphene Industries (Haydale) and a range of other businesses to develop the unmanned aerial vehicle (UAV), which also includes graphene batteries and 3D printed parts.

Billy Beggs, UCLan’s Engineering Innovation Manager, said: “The industry reaction to Juno at Farnborough was superb with many positive comments about the work we’re doing. Having Juno at one the world’s biggest air shows demonstrates the great strides we’re making in leading a programme to accelerate the uptake of graphene and other nano-materials into industry.

“The programme supports the objectives of the UK Industrial Strategy and the University’s Engineering Innovation Centre (EIC) to increase industry relevant research and applications linked to key local specialisms. Given that Lancashire represents the fourth largest aerospace cluster in the world, there is perhaps no better place to be developing next generation technologies for the UK aerospace industry.”

Previous graphene developments at UCLan have included the world’s first flight of a graphene skinned wing and the launch of a specially designed graphene-enhanced capsule into near space using high altitude balloons.

UCLan engineering students have been involved in the hands-on project, helping build Juno on the Preston Campus.

Haydale supplied much of the material and all the graphene used in the aircraft. Ray Gibbs, Chief Executive Officer, said: “We are delighted to be part of the project team. Juno has highlighted the capability and benefit of using graphene to meet key issues faced by the market, such as reducing weight to increase range and payload, defeating lightning strike and protecting aircraft skins against ice build-up.”

David Bailey Chief Executive of the North West Aerospace Alliance added: “The North West aerospace cluster contributes over £7 billion to the UK economy, accounting for one quarter of the UK aerospace turnover. It is essential that the sector continues to develop next generation technologies so that it can help the UK retain its competitive advantage. It has been a pleasure to support the Engineering Innovation Centre team at the University in developing the world’s first full graphene skinned aircraft.”

The Juno project team represents the latest phase in a long-term strategic partnership between the University and a range of organisations. The partnership is expected to go from strength to strength following the opening of the £32m EIC facility in February 2019.

The next step is to fly Juno and conduct further tests over the next two months.

Next item, a new carbon material.


I love watching this gif of a schwarzite,

The three-dimensional cage structure of a schwarzite that was formed inside the pores of a zeolite. (Graphics by Yongjin Lee and Efrem Braun)

An August 13, 2018 news item on Nanowerk announces the new carbon structure,

The discovery of buckyballs [also known as fullerenes, C60, or buckminsterfullerenes] surprised and delighted chemists in the 1980s, nanotubes jazzed physicists in the 1990s, and graphene charged up materials scientists in the 2000s, but one nanoscale carbon structure – a negatively curved surface called a schwarzite – has eluded everyone. Until now.

University of California, Berkeley [UC Berkeley], chemists have proved that three carbon structures recently created by scientists in South Korea and Japan are in fact the long-sought schwarzites, which researchers predict will have unique electrical and storage properties like those now being discovered in buckminsterfullerenes (buckyballs or fullerenes for short), nanotubes and graphene.

An August 13, 2018 UC Berkeley news release by Robert Sanders, which originated the news item, describes how the Berkeley scientists and the members of their international  collaboration from Germany, Switzerland, Russia, and Italy, have contributed to the current state of schwarzite research,

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide – sand – more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting properties, though the creators were unaware of their identity as schwarzites, which theoretical chemists have worked on for decades.

Based on this theoretical work, chemists predict that schwarzites will have unique electronic, magnetic and optical properties that would make them useful as supercapacitors, battery electrodes and catalysts, and with large internal spaces ideal for gas storage and separation.

UC Berkeley postdoctoral fellow Efrem Braun and his colleagues identified these ZTC materials as schwarzites based of their negative curvature, and developed a way to predict which zeolites can be used to make schwarzites and which can’t.

“We now have the recipe for how to make these structures, which is important because, if we can make them, we can explore their behavior, which we are working hard to do now,” said Berend Smit, an adjunct professor of chemical and biomolecular engineering at UC Berkeley and an expert on porous materials such as zeolites and metal-organic frameworks.

Smit, the paper’s corresponding author, Braun and their colleagues in Switzerland, China, Germany, Italy and Russia will report their discovery this week in the journal Proceedings of the National Academy of Sciences. Smit is also a faculty scientist at Lawrence Berkeley National Laboratory.

Playing with carbon

Diamond and graphite are well-known three-dimensional crystalline arrangements of pure carbon, but carbon atoms can also form two-dimensional “crystals” — hexagonal arrangements patterned like chicken wire. Graphene is one such arrangement: a flat sheet of carbon atoms that is not only the strongest material on Earth, but also has a high electrical conductivity that makes it a promising component of electronic devices.

schwarzite carbon cage

The cage structure of a schwarzite that was formed inside the pores of a zeolite. The zeolite is subsequently dissolved to release the new material. (Graphics by Yongjin Lee and Efrem Braun)

Graphene sheets can be wadded up to form soccer ball-shaped fullerenes – spherical carbon cages that can store molecules and are being used today to deliver drugs and genes into the body. Rolling graphene into a cylinder yields fullerenes called nanotubes, which are being explored today as highly conductive wires in electronics and storage vessels for gases like hydrogen and carbon dioxide. All of these are submicroscopic, 10,000 times smaller than the width of a human hair.

To date, however, only positively curved fullerenes and graphene, which has zero curvature, have been synthesized, feats rewarded by Nobel Prizes in 1996 and 2010, respectively.

In the 1880s, German physicist Hermann Schwarz investigated negatively curved structures that resemble soap-bubble surfaces, and when theoretical work on carbon cage molecules ramped up in the 1990s, Schwarz’s name became attached to the hypothetical negatively curved carbon sheets.

“The experimental validation of schwarzites thus completes the triumvirate of possible curvatures to graphene; positively curved, flat, and now negatively curved,” Braun added.

Minimize me

Like soap bubbles on wire frames, schwarzites are topologically minimal surfaces. When made inside a zeolite, a vapor of carbon-containing molecules is injected, allowing the carbon to assemble into a two-dimensional graphene-like sheet lining the walls of the pores in the zeolite. The surface is stretched tautly to minimize its area, which makes all the surfaces curve negatively, like a saddle. The zeolite is then dissolved, leaving behind the schwarzite.

soap bubble schwarzite structure

A computer-rendered negatively curved soap bubble that exhibits the geometry of a carbon schwarzite. (Felix Knöppel image)

“These negatively-curved carbons have been very hard to synthesize on their own, but it turns out that you can grow the carbon film catalytically at the surface of a zeolite,” Braun said. “But the schwarzites synthesized to date have been made by choosing zeolite templates through trial and error. We provide very simple instructions you can follow to rationally make schwarzites and we show that, by choosing the right zeolite, you can tune schwarzites to optimize the properties you want.”

Researchers should be able to pack unusually large amounts of electrical charge into schwarzites, which would make them better capacitors than conventional ones used today in electronics. Their large interior volume would also allow storage of atoms and molecules, which is also being explored with fullerenes and nanotubes. And their large surface area, equivalent to the surface areas of the zeolites they’re grown in, could make them as versatile as zeolites for catalyzing reactions in the petroleum and natural gas industries.

Braun modeled ZTC structures computationally using the known structures of zeolites, and worked with topological mathematician Senja Barthel of the École Polytechnique Fédérale de Lausanne in Sion, Switzerland, to determine which of the minimal surfaces the structures resembled.

The team determined that, of the approximately 200 zeolites created to date, only 15 can be used as a template to make schwarzites, and only three of them have been used to date to produce schwarzite ZTCs. Over a million zeolite structures have been predicted, however, so there could be many more possible schwarzite carbon structures made using the zeolite-templating method.

Other co-authors of the paper are Yongjin Lee, Seyed Mohamad Moosavi and Barthel of the École Polytechnique Fédérale de Lausanne, Rocio Mercado of UC Berkeley, Igor Baburin of the Technische Universität Dresden in Germany and Davide Proserpio of the Università degli Studi di Milano in Italy and Samara State Technical University in Russia.

Here’s a link to and a citation for the paper,

Generating carbon schwarzites via zeolite-templating by Efrem Braun, Yongjin Lee, Seyed Mohamad Moosavi, Senja Barthel, Rocio Mercado, Igor A. Baburin, Davide M. Proserpio, and Berend Smit. PNAS August 14, 2018. 201805062; published ahead of print August 14, 2018. https://doi.org/10.1073/pnas.1805062115

This paper appears to be open access.

Soccer balls with no resistance (superconductivity)

Known as a fullerene (also buckminsterfullerene, buckyballs, and/or C60), the soccer ball in question is helping scientists to better understand how to develop materials that are superconductive at room temperature. A Feb. 9, 2016 news item on Nanotechnology Now describes the latest in ‘soccer ball’ research,

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes resistance-free is minus 70 degrees Celsius. Nowadays they are mainly used in magnets for nuclear magnetic resonance tomographs, fusion devices and particle accelerators. Physicists from the Max Planck Institute for the Structure and Dynamics of Matter at the Center for Free-Electron Laser Science (CFEL) in Hamburg shone laser pulses at a material made up from potassium atoms and carbon atoms arranged in bucky ball structures. For a small fraction of a second, they found it to become superconducting at more than 100 degrees Kelvin – around minus 170 degrees Celsius. A similar effect was already discovered in 2013 by scientists of the same group in a different material, a ceramic oxide belonging to the family of so-called “cuprates”. As fullerenes have a relatively simple chemical structure, the researchers hope to be able to gain a better understanding of the phenomenon of light-induced superconductivity at high temperatures through their new experiments. Such insights could help in the development of a material which conducts electricity at room temperature without losses, and without optical excitation.

A Feb. 8, 2016 Max Planck Institute press release (also on EurekAlert but dated Feb. 9, 2016), which originated the news item, expands on the theme of superconductivity at room temperature,

Andrea Cavalleri, Director at the Max Planck Institute for the Structure and Dynamics of Matter, and his colleagues aim at paving the way for the development of materials that lose their electrical resistance at room temperature. Their observation that fullerenes, when excited with laser pulses, can become superconductive at minus 170 degrees Celsius, takes them a step closer to achieving this goal. This discovery could contribute to establishing a more comprehensive understanding of light-induced superconductivity, because it is easier to formulate a theoretical explanation for fullerenes than for cuprates. A complete explanation of this effect could, in turn, help the scientists to gain a better understanding of the phenomenon of high-temperature superconductivity and provide a recipe for an artificial superconductor that conducts electricity without resistance losses at room temperature.

In 2013, researchers from Cavalleri’s group demostrated that under certain conditions it may be possible for a material to conduct electricity at room temperature without resistance loss. A ceramic oxide belonging to the family of cuprates was shown to become superconductive without any cooling for a few trillionths of a second when the scientists excited it using an infrared laser pulse. One year later, the Hamburg-based scientists presented a possible explanation for this effect.

They observed that, following excitation with the flash of light, the atoms in the crystal lattice change position. This shift in position persists as does the superconducting state of the material. Broadly speaking, the light-induced change in the structure clears the way for the electrons so that they can move through the ceramic without losses. However, the explanation is very dependent on the highly specific crystalline structure of cuprates. As the process was understood at the time, it could have involved a phenomenon that only arises in this kind of materials.

The researchers have included in the press release an image illustrating the latest work being described in the press release excerpt which follows this,

Intense laser flashes remove the electrical resistance of a crystal layer of the alkali fulleride K3C60, a football-like molecule containing 60 carbon atoms. This is observed at temperatures at least as high as minus 170 degrees Celsius. © J.M. Harms/MPI for the Structure and Dynamics of Matter

Intense laser flashes remove the electrical resistance of a crystal layer of the alkali fulleride K3C60, a football-like molecule containing 60 carbon atoms. This is observed at temperatures at least as high as minus 170 degrees Celsius.
© J.M. Harms/MPI for the Structure and Dynamics of Matter

The press release goes on to provide some technical details about the most recent research,

The team headed by Cavalleri therefore asked themselves whether light could also break the electrical resistance of more traditional superconductors, the physics of which is better understood. The researchers from the Max Planck Institute for the Structure and Dynamics of Matter, among which Daniele Nicoletti and Matteo Mitrano, have now hit the jackpot using a substance that is very different to cuprates: the fulleride K3C60, a metal composed of so-called Buckminster fullerenes. These hollow molecules consist of 60 carbon atoms which bond in the shape of a football: a sphere comprising pentagons and hexagons. With the help of intercalated positively charged potassium ions, which work like a kind of cement, the negatively charged fullerenes stick to each other to form a solid. This so-called alkali fulleride is a metal which becomes superconductive below a critical temperature of around minus 250 degrees Celsius.

The researchers then irradiated the alkali fulleride with infrared light pulses of just a few billionths of a microsecond and repeated their experiment for a range of temperatures between the critical temperature and room temperature. They set the frequency of the light source so that it excited the fullerenes to produce vibrations. This causes the carbon atoms to oscillate in such a way that the pentagons in the football expand and contract. It was hoped that this change in the structure could generate transient superconductivity at high temperatures in a similar way to the process in cuprates.

To test this, the scientists irradiated the sample with a second light pulse at the same time as the infrared pulse, albeit at a frequency in the terahertz range. The strength at which this pulse is reflected indicates the conductivity of the material to the researchers, meaning how easily electrons move through the alkali fulleride. The result here was an extremely high conductivity. “We are pretty confident that we have induced superconductivity at temperatures at least as high as minus 170 degrees Celsius,” says Daniele Nicoletti. This means that the experiment in Hamburg presents one of the highest ever-observed critical temperatures outside of the material class of cuprates.

“We are now planning to carry out other experiments which should enable us to reach a more detailed understanding of the processes at work here,” says Nicoletti. What they would like to do next is analyze the crystal structure during excitation with the infrared light. As was previously the case with the cuprate, this should help to explain the phenomenon. The researchers would then like to irradiate the material with light pulses that last much longer. “Although this is technically very complicated, it could extend the lifetime of superconductivity, making it potentially relevant for applications,” concludes Nicoletti.

Here’s a link to and a citation for the paper,

Possible light-induced superconductivity in K3C60 at high temperature by M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, & A. Cavalleri. Nature (2016) doi:10.1038/nature16522 Published online 08 February 2016

This paper is behind a paywall.

University of New Brunswick (Canada), ‘sun in a can’, and buckyballs

Cutting the cost for making solar cells could be a step in the right direction for more widespread adoption. At any rate, that seems to be the motivation for Dr. Felipe Chibante of the University of New Brunswick  and his team as they’ve worked for the past three years or so on cutting production costs for fullerenes (also known as, buckminsterfullerenes, C60, and buckyballs). From a Dec. 23, 2015 article by Michael Tutton for Canadian Press,

A heating system so powerful it gave its creator a sunburn from three metres away is being developed by a New Brunswick engineering professor as a method to sharply reduce the costs of making the carbon used in some solar cells.

Felipe Chibante says his “sun in a can” method of warming carbon at more than 5,000 degrees Celsius helps create the stable carbon 60 needed in more flexible forms of photovoltaic panels.

Tutton includes some technical explanations in his article,

Chibante and senior students at the University of New Brunswick created the system to heat baseball-sized lumps of plasma — a form of matter composed of positively charged gas particles and free-floating negatively charged electrons — at his home and later in a campus lab.

According to a May 22, 2012 University of New Brunswick news release received funding of almost $1.5M from the Atlantic Canada Opportunities Agency for his work with fullerenes,

Dr. Felipe Chibante, associate professor in UNB’s department of chemical engineering, and his team at the Applied Nanotechnology Lab received nearly $1.5 million to lower the cost of fullerenes, which is the molecular form of pure carbon and is a critical ingredient for the plastic solar cell market.

Dr. Chibante and the collaborators on the project have developed fundamental synthesis methods that will be integrated in a unique plasma reactor to result in a price reduction of 50-75 per cent.

Dr. Chibante and his work were also featured in a June 10, 2013 news item on CBC (Canadian Broadcasting Corporation) news online,

Judges with the New Brunswick Innovation Fund like the idea and recently awarded Chibante $460,000 to continue his research at the university’s Fredericton campus.

Chibante has a long history of working with fullerenes — carbon molecules that can store the sun’s energy. He was part of the research team that discovered fullerenes in 1985 [the three main researchers at Rice University, Texas, received Nobel Prizes for the work].

He says they can be added to liquid, spread over plastic and shingles and marketed as a cheaper way to convert sunlight into electricity.

“What we’re trying to do in New Brunswick with the science research and innovation is we’re really trying to get the maximum bang for the buck,” said Chibante.

As it stands, fullerenes cost about $15,000 per kilogram. Chibante hopes to lower the cost by a factor of 10.

The foundation investment brings Chibante’s research funding to about $6.2 million.

Not everyone is entirely sold on this approach to encouraging solar energy adoption (from the CBC news item),

The owner of Urban Pioneer, a Fredericton [New Brunswick] company that sells alternative energy products, likes the concept, but doubts there’s much of a market in New Brunswick.

“We have conventional solar panels right now and they’re not that popular,” said Tony Craft.

“So I can’t imagine, like, when you throw something completely brand new into it, I don’t know how people are going to respond to that even, so it may be a very tough sell,” he said.

Getting back to Chibante’s breakthrough (from Tutton’s Dec. 23, 2015 article),

The 52-year-old researcher says he first set up the system to operate in his garage.

He installed optical filters to watch the melting process but said the light from the plasma was so intense that he later noticed a sunburn on his neck.

The plasma is placed inside a container that can contain and cool the extremely hot material without exposing it to the air.

The conversion technology has the advantage of not using solvents and doesn’t produce the carbon dioxide that other baking systems use, says Chibante.

He says the next stage is finding commercial partners who can help his team further develop the system, which was originally designed and patented by French researcher Laurent Fulcheri.

Chibante said he doesn’t believe the carbon-based, thin-film solar cells will displace the silicon-based cells because they capture less energy.

But he nonetheless sees a future for the more flexible sheets of solar cells.

“You can make fibres, you can make photovoltaic threads and you get into wearable, portable forms of power that makes it more ubiquitous rather than having to carry a big, rigid structure,” he said.

The researcher says the agreement earlier this month [Nov. 30 – Dec. 12, 2015] in Paris among 200 countries to begin reducing the use of fossil fuels and slow global warming may help his work.

By the way,  Chibante estimates production costs for fullerenes, when using his system, would be less that $50/kilogram for what is now the highest priced component of carbon-based solar cells.

There is another researcher in Canada who works in the field of solar energy, Dr. Ted Sargent at the University of Toronto (Ontario). He largely focuses on harvesting solar energy by using quantum dots. I last featured Sargent’s quantum dot work in a Dec. 9, 2014 posting.

Carbon sequestration and buckyballs (aka C60 or buckminsterfullerenes)

Sometime in the last few years I was asked about carbon sequestration (or carbon capture) and nanotechnology and had no answer for the question until now (drat!). A July 13, 2015 Rice University (Texas, US) news release (also on EurekAlert) describes some research into buckyballs and the possibility they could be used to confine greenhouse gases,

Rice University scientists are forging toward tunable carbon-capture materials with a new study that shows how chemical changes affect the abilities of enhanced buckyballs to confine greenhouse gases.

The lab of Rice chemist Andrew Barron found last year that carbon-60 molecules (aka buckyballs, discovered at Rice in the 1980s) gain the ability to sequester carbon dioxide when combined with a polymer known as polyethyleneimine (PEI).

Two critical questions – how and how well – are addressed in a new paper in the American Chemical Society journal Energy and Fuels.

The news release expands on the theme,

The amine-rich combination of C60 and PEI showed its potential in the previous study to capture emissions of carbon dioxide, a greenhouse gas, from such sources as industrial flue gases and natural-gas wells.

In the new study, the researchers found pyrolyzing the material – heating it in an oxygen-free environment – changes its chemical composition in ways that may someday be used to tune what the scientists call PEI-C60 for specific carbon-capture applications.

“One of the things we wanted to see is at what point, chemically, it converts from being something that absorbed best at high temperature to something that absorbed best at low temperature,” Barron said. “In other words, at what point does the chemistry change from one to the other?”

Lead author Enrico Andreoli pyrolyzed PEI-C60 in argon at various temperatures from 100 to 1,000 degrees Celsius (212 to 1,832 degrees Fahrenheit) and then evaluated each batch for carbon uptake.

He discovered the existence of a transition point at 200 C, a boundary between the material’s ability to soak in carbon dioxide through chemical means as opposed to physical absorption.

The material that was pyrolyzed at low temperatures became gooey and failed at pulling in carbon from high-temperature sources by chemical means. The opposite was true for PEI-C60 pyrolyzed at high heat. The now-porous, brittle material became better in low-temperature environments, physically soaking up carbon dioxide molecules.

At 200 C, they found the heat treatment breaks the polymer’s carbon-nitrogen bonds, leading to a drastic decrease in carbon capture by any means.

“One of the goals was to see if can we make this a little less gooey and still have chemical uptake, and the answer is, not really,” Barron said. “It flips from one process to the other. But this does give us a nice continuum of how to get from one to the other.”

Andreoli found that at its peak, untreated PEI-C60 absorbed more than a 10th of its weight in carbon dioxide at high temperatures (0.13 grams per gram of material at 90 C). Pyrolyzed PEI-C60 did nearly as well at low temperatures (0.12 grams at 25 C).

The researchers, with an eye on potential environmental benefits, continue to refine their process. “This has definitely pointed us in the right direction,” Barron said.

Here’s a link to and a citation for the paper,

Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60 by Enrico Andreoli and Andrew R. Barron. Energy Fuels, Article ASAP DOI: 10.1021/acs.energyfuels.5b00778 Publication Date (Web): July 2, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

A use for fullerenes—inside insulation plastic for high-voltage cables

A Jan. 27, 2015 news item on Nanowerk, describes research which suggests that there may a new use for buckminsterfullerenes (or what they’re calling ‘carbon nanoballs’),

Researchers at Chalmers University of Technology [Sweden] have discovered that the insulation plastic used in high-voltage cables can withstand a 26 per cent higher voltage if nanometer-sized carbon balls are added. This could result in enormous efficiency gains in the power grids of the future, which are needed to achieve a sustainable energy system.

The renewable energy sources of tomorrow will often be found far away from the end user. Wind turbines, for example, are most effective when placed out at sea. Solar energy will have the greatest impact on the European energy system if focus is on transport of solar power from North Africa and Southern Europe to Northern Europe.

“Reducing energy losses during electric power transmission is one of the most important factors for the energy systems of the future,” says Chalmers researcher Christian Müller. “The other two are development of renewable energy sources and technologies for energy storage.”

The Jan. 27, 2015 Chalmers University of Technology press release (also on EurekAlert) by Johanna Wilde, which originated the news item, provides more information about the research,

Together with colleagues from Chalmers and the company Borealis in Stenungsund, he [Müller] has found a powerful method for reducing energy losses in alternating current cables.  The results were recently published in Advanced Materials, a highly ranked scientific journal.

The researchers have shown that different variants of the C60 carbon ball, a nanomaterial in the fullerene molecular group, provide strong protection against breakdown of the insulation plastic used in high-voltage cables. Today the voltage in the cables has to be limited to prevent the insulation layer from getting damaged. The higher the voltage the more electrons can leak out into the insulation material, a process which leads to breakdown.

It is sufficient to add very small amounts of fullerene to the insulation plastic for it to withstand a voltage that is 26 per cent higher, without the material breaking down, than the voltage that plastic without the additive can withstand.

“Being able to increase the voltage to this extent would result in enormous efficiency gains in power transmission all over the world,” says Christian Müller. “A major issue in the industry is how transmission efficiency can be improved without making the power cables thicker, since they are already very heavy and difficult to handle.”

Using additives to protect the insulation plastic has been a known concept since the 1970s, but until now it has been unknown exactly what and how much to add. Consequently, additives are currently not used at all for the purpose, and the insulation material is manufactured with the highest possible degree of chemical purity.

In recent years, other researchers have experimented with fullerenes in the electrically conductive parts of high-voltage cables. Until now, though, it has been unknown that the substance can be beneficial for the insulation material.

The Chalmers researchers have now demonstrated that fullerenes are the best voltage stabilizers identified for insulation plastic thus far. This means they have a hitherto unsurpassed ability to capture electrons and thus protect other molecules from being destroyed by the electrons.

To arrive at these findings, the researchers tested a number of molecules that are also used within organic solar cell research at Chalmers. The molecules were tested using several different methods, and were added to pieces of insulation plastic used for high-voltage cables. The pieces of plastic were then subjected to an increasing electric field until they crackled. Fullerenes turned out to be the type of additive that most effectively protects the insulation plastic.

The press release includes some facts about buckyballs or buckminsterfullerenes or fullerenes or C60 or carbon nanoballs, depending on what you want to call them,

 Facts: Carbon ball C60

  • The C60 carbon ball is also called buckminsterfullerene. It consists of 60 carbon atoms that are placed so that the molecule resembles a nanometer-sized football. C60 is included in the fullerene molecular class.
  • Fullerenes were discovered in 1985, which resulted in the Nobel Prize in Chemistry in 1996. They have unique electronic qualities and have been regarded as very promising material for several applications. Thus far, however, there have been few industrial usage areas.
  • Fullerenes are one of the five forms of pure carbon that exist. The other four are graphite, graphene/carbon nanotubes, diamond and amorphous carbon, for example soot.

Here’s a link to and a citation for the research paper,

A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation by Markus Jarvid, Anette Johansson, Renee Kroon, Jonas M. Bjuggren, Harald Wutzel, Villgot Englund, Stanislaw Gubanski, Mats R. Andersson, and Christian Müller. Advanced Materials DOI: 10.1002/adma.201404306 Article first published online: 12 DEC 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Here’s an image of wind turbines, an example of equipment which could benefit greatly from better insulation.,

Images: Lina Bertling, Jan-Olof Yxell, Carolina Eek Jaworski, Anette Johansson, Markus Jarvid, Christian Müller

Images: Lina Bertling, Jan-Olof Yxell, Carolina Eek Jaworski, Anette Johansson, Markus Jarvid, Christian Müller

You can find this image and others by clicking on the Chalmers University press release link (assuming the page hasn’t been moved). You can find more information about Borealis (the company Müller is working with) here.

Watching buckyballs (buckminsterfullerenes) self-assemble in real-time

For the 5% or less of the world who need this explanation, the reference to a football later in this post is, in fact, a reference to a soccer ball. Moving on to a Nov. 5, 2014 news item on Nanowerk (Note: A link has been removed),

Using DESY’s ultrabright X-ray source PETRA III, researchers have observed in real-time how football-shaped carbon molecules arrange themselves into ultra-smooth layers. Together with theoretical simulations, the investigation reveals the fundamentals of this growth process for the first time in detail, as the team around Sebastian Bommel (DESY and Humboldt Universität zu Berlin) and Nicola Kleppmann (Technische Universität Berlin) reports in the scientific journal Nature Communications (“Unravelling the multilayer growth of the fullerene C60 in real-time”).

This knowledge will eventually enable scientists to tailor nanostructures from these carbon molecules for certain applications, which play an increasing role in the promising field of plastic electronics. The team consisted of scientists from Humboldt-Universität zu Berlin, Technische Universität Berlin, Universität Tübingen and DESY.

Here’s an image of the self-assembling materials,

Caption: This is an artist's impression of the multilayer growth of buckyballs. Credit: Nicola Kleppmann/TU Berlin

Caption: This is an artist’s impression of the multilayer growth of buckyballs.
Credit: Nicola Kleppmann/TU Berlin

A Nov. 5, 2014 DESY (Deutsches Elektronen-Synchrotron) press release (also on EurekAlert), describes the work further,

The scientists studied so called buckyballs. Buckyballs are spherical molecules, which consist of 60 carbon atoms (C60). Because they are reminiscent of American architect Richard Buckminster Fuller’s geodesic domes, they were christened buckminsterfullerenes or “buckyballs” for short. With their structure of alternating pentagons and hexagons, they also resemble tiny molecular footballs. [emphasis mine]

Using DESY’s X-ray source PETRA III, the researchers observed how buckyballs settle on a substrate from a molecular vapour. In fact, one layer after another, the carbon molecules grow predominantly in islands only one molecule high and barely form tower-like structures..“The first layer is 99% complete before 1% of the second layer is formed,” explains DESY researcher Bommel, who is completing his doctorate in Prof. Stefan Kowarik’s group at the Humboldt Universität zu Berlin. This is how extremely smooth layers form.

“To really observe the growth process in real-time, we needed to measure the surfaces on a molecular level faster than a single layer grows, which takes place in about a minute,” says co-author Dr. Stephan Roth, head of the P03 measuring station, where the experiments were carried out. “X-ray investigations are well suited, as they can trace the growth process in detail.”

“In order to understand the evolution of the surface morphology at the molecular level, we carried out extensive simulations in a non-equilibrium system. These describe the entire growth process of C60 molecules into a lattice structure,” explains Kleppmann, PhD student in Prof. Sabine Klapp’s group at the Institute of Theoretical Physics, Technische Universität Berlin. “Our results provide fundamental insights into the molecular growth processes of a system that forms an important link between the world of atoms and that of colloids.”

Through the combination of experimental observations and theoretical simulations, the scientists determined for the first time three major energy parameters simultaneously for such a system: the binding energy between the football molecules, the so-called “diffusion barrier,” which a molecule must overcome if it wants to move on the surface, and the Ehrlich-Schwoebel barrier, which a molecule must overcome if it lands on an island and wants to hop down from that island.

“With these values, we now really understand for the first time how such nanostructures come into existence,” stresses Bommel. “Using this knowledge, it is conceivable that these structures can selectively be grown in the future: How must I change my temperature and deposition rate parameters so that an island of a particular size will grow. This could, for example, be interesting for organic solar cells, which contain C60.” The researchers intend to explore the growth of other molecular systems in the future using the same methods.

Here’s a link to and a citation for the paper,

Unravelling the multilayer growth of the ​fullerene C60 in real time by S. Bommel, N. Kleppmann, C. Weber, H. Spranger, P. Schäfer, J. Novak, S.V. Roth, F. Schreiber, S.H.L. Klapp, & S. Kowarik. Nature Communications 5, Article number: 5388 doi:10.1038/ncomms6388 Published 05 November 2014

This article is open access.

I was not able to find any videos of these buckyballs assembling in real-time. Presumably, there are technical issues with recording the process, financial issues, or some combination thereof. Still, I can’t help but feel teased (tongue in cheek) by these scientists who give me an artist’s concept instead. Hopefully, budgets and/or technology will allow the rest of us to view this process at some time in the future.

Buckydiamondoids steer electron flow

One doesn’t usually think about buckyballs (Buckminsterfullerenes) and diamondoids as being together in one molecule but that has not stopped scientists from trying to join them and, in this case, successfully. From a Sept. 9, 2014 news item on ScienceDaily,

Scientists have married two unconventional forms of carbon — one shaped like a soccer ball, the other a tiny diamond — to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

Here’s an illustration the scientists have provided,

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

A Sept. 9, 2014 Stanford University news release by Glenda Chui (also on EurekAlert), which originated the news item, provides some information about this piece of international research along with background information on buckyballs and diamondoids (Note: Links have been removed),

“We wanted to see what new, emergent properties might come out when you put these two ingredients together to create a ‘buckydiamondoid,'” said Hari Manoharan of the Stanford Institute for Materials and Energy Sciences (SIMES) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory. “What we got was basically a one-way valve for conducting electricity – clearly more than the sum of its parts.”

The research team, which included scientists from Stanford University, Belgium, Germany and Ukraine, reported its results Sept. 9 in Nature Communications.

Many electronic circuits have three basic components: a material that conducts electrons; rectifiers, which commonly take the form of diodes, to steer that flow in a single direction; and transistors to switch the flow on and off. Scientists combined two offbeat ingredients – buckyballs and diamondoids – to create the new diode-like component.

Buckyballs – short for buckminsterfullerenes – are hollow carbon spheres whose 1985 discovery earned three scientists a Nobel Prize in chemistry. Diamondoids are tiny linked cages of carbon joined, or bonded, as they are in diamonds, with hydrogen atoms linked to the surface, but weighing less than a billionth of a billionth of a carat. Both are subjects of a lot of research aimed at understanding their properties and finding ways to use them.

In 2007, a team led by researchers from SLAC and Stanford discovered that a single layer of diamondoids on a metal surface can emit and focus electrons into a tiny beam. Manoharan and his colleagues wondered: What would happen if they paired an electron-emitting diamondoid with another molecule that likes to grab electrons? Buckyballs are just that sort of electron-grabbing molecule.

Details are then provided about this specific piece of research (from the Stanford news release),

For this study, diamondoids were produced in the SLAC laboratory of SIMES researchers Jeremy Dahl and Robert Carlson, who are world experts in extracting the tiny diamonds from petroleum. The diamondoids were then shipped to Germany, where chemists at Justus-Liebig University figured out how to attach them to buckyballs.

The resulting buckydiamondoids, which are just a few nanometers long, were tested in SIMES laboratories at Stanford. A team led by graduate student Jason Randel and postdoctoral researcher Francis Niestemski used a scanning tunneling microscope to make images of the hybrid molecules and measure their electronic behavior. They discovered that the hybrid is an excellent rectifier: The electrical current flowing through the molecule was up to 50 times stronger in one direction, from electron-spitting diamondoid to electron-catching buckyball, than in the opposite direction. This is something neither component can do on its own.

While this is not the first molecular rectifier ever invented, it’s the first one made from just carbon and hydrogen, a simplicity researchers find appealing, said Manoharan, who is an associate professor of physics at Stanford. The next step, he said, is to see if transistors can be constructed from the same basic ingredients.

“Buckyballs are easy to make – they can be isolated from soot – and the type of diamondoid we used here, which consists of two tiny cages, can be purchased commercially,” he said. “And now that our colleagues in Germany have figured out how to bind them together, others can follow the recipe. So while our research was aimed at gaining fundamental insights about a novel hybrid molecule, it could lead to advances that help make molecular electronics a reality.”

Other research collaborators came from the Catholic University of Louvain in Belgium and Kiev Polytechnic Institute in Ukraine. The primary funding for the work came from U.S. the Department of Energy Office of Science (Basic Energy Sciences, Materials Sciences and Engineering Divisions).

Here’s a link to and a citation for the paper,

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids by Jason C. Randel, Francis C. Niestemski,    Andrés R. Botello-Mendez, Warren Mar, Georges Ndabashimiye, Sorin Melinte, Jeremy E. P. Dahl, Robert M. K. Carlson, Ekaterina D. Butova, Andrey A. Fokin, Peter R. Schreiner, Jean-Christophe Charlier & Hari C. Manoharan. Nature Communications 5, Article number: 4877 doi:10.1038/ncomms5877 Published 09 September 2014

This paper is open access. The scientists provided not only a standard illustration but a pretty picture of the buckydiamondoid,

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules -- diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right -- to create "buckydiamondoids," center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices. Credit: Manoharan Lab/Stanford University

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules — diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right — to create “buckydiamondoids,” center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices.
Credit: Manoharan Lab/Stanford University

The evolution of molecules as observed with femtosecond stimulated Raman spectroscopy

A July 3, 2014 news item on Azonano features some recent research from the Université de Montréal (amongst other institutions),

Scientists don’t fully understand how ‘plastic’ solar panels work, which complicates the improvement of their cost efficiency, thereby blocking the wider use of the technology. However, researchers at the University of Montreal, the Science and Technology Facilities Council, Imperial College London and the University of Cyprus have determined how light beams excite the chemicals in solar panels, enabling them to produce charge.

A July 2, 2014 University of Montreal news release, which originated the news item, provides a fascinating description of the ultrafast laser process used to make the observations,

 “We used femtosecond stimulated Raman spectroscopy,” explained Tony Parker of the Science and Technology Facilities Council’s Central Laser Facility. “Femtosecond stimulated Raman spectroscopy is an advanced ultrafast laser technique that provides details on how chemical bonds change during extremely fast chemical reactions. The laser provides information on the vibration of the molecules as they interact with the pulses of laser light.” Extremely complicated calculations on these vibrations enabled the scientists to ascertain how the molecules were evolving. Firstly, they found that after the electron moves away from the positive centre, the rapid molecular rearrangement must be prompt and resemble the final products within around 300 femtoseconds (0.0000000000003 s). A femtosecond is a quadrillionth of a second – a femtosecond is to a second as a second is to 3.7 million years. This promptness and speed enhances and helps maintain charge separation.  Secondly, the researchers noted that any ongoing relaxation and molecular reorganisation processes following this initial charge separation, as visualised using the FSRS method, should be extremely small.

As for why the researchers’ curiosity was stimulated (from the news release),

The researchers have been investigating the fundamental beginnings of the reactions that take place that underpin solar energy conversion devices, studying the new brand of photovoltaic diodes that are based on blends of polymeric semiconductors and fullerene derivatives. Polymers are large molecules made up of many smaller molecules of the same kind – consisting of so-called ‘organic’ building blocks because they are composed of atoms that also compose molecules for life (carbon, nitrogen, sulphur). A fullerene is a molecule in the shape of a football, made of carbon. “In these and other devices, the absorption of light fuels the formation of an electron and a positive charged species. To ultimately provide electricity, these two attractive species must separate and the electron must move away. If the electron is not able to move away fast enough then the positive and negative charges simple recombine and effectively nothing changes. The overall efficiency of solar devices compares how much recombines and how much separates,” explained Sophia Hayes of the University of Cyprus, last author of the study.

… “Our findings open avenues for future research into understanding the differences between material systems that actually produce efficient solar cells and systems that should as efficient but in fact do not perform as well. A greater understanding of what works and what doesn’t will obviously enable better solar panels to be designed in the future,” said the University of Montreal’s Carlos Silva, who was senior author of the study.

Here’s a link to and a citation for the paper,

Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions by Françoise Provencher, Nicolas Bérubé, Anthony W. Parker, Gregory M. Greetham, Michael Towrie, Christoph Hellmann, Michel Côté, Natalie Stingelin, Carlos Silva & Sophia C. Hayes. Nature Communications 5, Article number: 4288 doi:10.1038/ncomms5288 Published 01 July 2014

This article is behind a paywall but there is a free preview available vie ReadCube Access.

Isis Innovation (University of Oxford, UK) spins out buckyball company, Designer Carbon Materials

Buckyballs are also known as Buckminsterfullerenes. The name is derived from Buckminster Fuller who designed something he called geodesic domes, from the Wikipedia entry (Note: Links have been removed),

Buckminsterfullerene (or bucky-ball) is a spherical fullerene molecule with the formula C60 [C = carbon; 60 is the number of carbon atoms in the molecule]. It has a cage-like fused-ring structure (truncated icosahedron) which resembles a soccer ball, made of twenty hexagons and twelve pentagons, with a carbon atom at each vertex of each polygon and a bond along each polygon edge.

It was first generated in 1985 by Harold Kroto, James R. Heath, Sean O’Brien, Robert Curl, and Richard Smalley at Rice University.[2] Kroto, Curl and Smalley were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of buckminsterfullerene and the related class of molecules, the fullerenes. The name is a reference to Buckminster Fuller, as C60 resembles his trademark geodesic domes. Buckminsterfullerene is the most commonly naturally occurring fullerene molecule, as it can be found in small quantities in soot.[3][4] Solid and gaseous forms of the molecule have been detected in deep space.[5]

Here’s a model of a buckyball,

Courtesy: Isis Innovation (Oxford University)

Courtesy: Isis Innovation (Oxford University)

An April 15, 2014 University of Oxford (Isis Innovation) news release (h/t phys.org) describes the news research and some technical details while avoiding any mention of how they’ve tackled the production problems (a major issue, which has seriously constrained their commercial use),

The firm, Designer Carbon Materials, has been established by Isis Innovation, the University of Oxford’s technology commercialisation company, and will cost-effectively manufacture commercially useful quantities of the spherical carbon cage structures. Designer Carbon Materials is based on research from Dr Kyriakos Porfyrakis of Oxford University’s Department of Materials.

‘It is possible to insert a variety of useful atoms or atomic clusters into the hollow interior of these ball-like molecules, giving them new and intriguing abilities. Designer Carbon Materials will focus on the production of these value-added materials for a range of applications,’ said Dr Porfyrakis.

‘For instance, fullerenes are currently used as electron acceptors in polymer-based solar cells achieving some of the highest power conversion efficiencies known for these kinds of solar cells. Our endohedral fullerenes are even better electron-acceptors and therefore have the potential to lead to efficiencies exceeding 10 per cent.

‘The materials could also be developed as superior MRI contrast agents for medical imaging and as diagnostics for Alzheimer’s and Parkinson’s, as they are able to detect the presence of superoxide free radical molecules which may cause these conditions. We are receiving fantastic interest from organisations developing these applications, who until now have been unable to access useful quantities of these materials.’

The manufacturing process, patented by Isis Innovation, will continue to be developed by Designer Carbon Materials as it also makes its first sales of these extremely high-value materials.

Tom Hockaday, managing director of Isis Innovation, said: ‘This is a great example of an Isis spin-out which is both looking at exciting future applications for its technology and also answering a real market need. There is already significant demand for these nanomaterials and we expect the first customer orders will be fulfilled over the next few months.’

Investment in the company has been led by Oxford Technology Management and the Oxford Invention Fund. Lucius Carey from Oxford Technology Management said: ‘We are delighted to be investing in Designer Carbon Materials. The purposes of the investment will be to move into commercial premises and to scale up.’

Isis Innovation is a University of Oxford initiative and you can find out more about Isis Innovation here. As for the new spin-out company, Designer Carbon Materials, they have no website that I’ve been able to find but there is this webpage on the Isis Innovation website.