Tag Archives: C60

It’s a very ‘carbony’ time: graphene jacket, graphene-skinned airplane, and schwarzite

In August 2018, I been stumbled across several stories about graphene-based products and a new form of carbon.

Graphene jacket

The company producing this jacket has as its goal “… creating bionic clothing that is both bulletproof and intelligent.” Well, ‘bionic‘ means biologically-inspired engineering and ‘intelligent‘ usually means there’s some kind of computing capability in the product. This jacket, which is the first step towards the company’s goal, is not bionic, bulletproof, or intelligent. Nonetheless, it represents a very interesting science experiment in which you, the consumer, are part of step two in the company’s R&D (research and development).

Onto Vollebak’s graphene jacket,

Courtesy: Vollebak

From an August 14, 2018 article by Jesus Diaz for Fast Company,

Graphene is the thinnest possible form of graphite, which you can find in your everyday pencil. It’s purely bi-dimensional, a single layer of carbon atoms that has unbelievable properties that have long threatened to revolutionize everything from aerospace engineering to medicine. …

Despite its immense promise, graphene still hasn’t found much use in consumer products, thanks to the fact that it’s hard to manipulate and manufacture in industrial quantities. The process of developing Vollebak’s jacket, according to the company’s cofounders, brothers Steve and Nick Tidball, took years of intensive research, during which the company worked with the same material scientists who built Michael Phelps’ 2008 Olympic Speedo swimsuit (which was famously banned for shattering records at the event).

The jacket is made out of a two-sided material, which the company invented during the extensive R&D process. The graphene side looks gunmetal gray, while the flipside appears matte black. To create it, the scientists turned raw graphite into something called graphene “nanoplatelets,” which are stacks of graphene that were then blended with polyurethane to create a membrane. That, in turn, is bonded to nylon to form the other side of the material, which Vollebak says alters the properties of the nylon itself. “Adding graphene to the nylon fundamentally changes its mechanical and chemical properties–a nylon fabric that couldn’t naturally conduct heat or energy, for instance, now can,” the company claims.

The company says that it’s reversible so you can enjoy graphene’s properties in different ways as the material interacts with either your skin or the world around you. “As physicists at the Max Planck Institute revealed, graphene challenges the fundamental laws of heat conduction, which means your jacket will not only conduct the heat from your body around itself to equalize your skin temperature and increase it, but the jacket can also theoretically store an unlimited amount of heat, which means it can work like a radiator,” Tidball explains.

He means it literally. You can leave the jacket out in the sun, or on another source of warmth, as it absorbs heat. Then, the company explains on its website, “If you then turn it inside out and wear the graphene next to your skin, it acts like a radiator, retaining its heat and spreading it around your body. The effect can be visibly demonstrated by placing your hand on the fabric, taking it away and then shooting the jacket with a thermal imaging camera. The heat of the handprint stays long after the hand has left.”

There’s a lot more to the article although it does feature some hype and I’m not sure I believe Diaz’s claim (August 14, 2018 article) that ‘graphene-based’ hair dye is perfectly safe ( Note: A link has been removed),

Graphene is the thinnest possible form of graphite, which you can find in your everyday pencil. It’s purely bi-dimensional, a single layer of carbon atoms that has unbelievable properties that will one day revolutionize everything from aerospace engineering to medicine. Its diverse uses are seemingly endless: It can stop a bullet if you add enough layers. It can change the color of your hair with no adverse effects. [emphasis mine] It can turn the walls of your home into a giant fire detector. “It’s so strong and so stretchy that the fibers of a spider web coated in graphene could catch a falling plane,” as Vollebak puts it in its marketing materials.

Not unless things have changed greatly since March 2018. My August 2, 2018 posting featured the graphene-based hair dye announcement from March 2018 and a cautionary note from Dr. Andrew Maynard (scroll down ab out 50% of the way for a longer excerpt of Maynard’s comments),

Northwestern University’s press release proudly announced, “Graphene finds new application as nontoxic, anti-static hair dye.” The announcement spawned headlines like “Enough with the toxic hair dyes. We could use graphene instead,” and “’Miracle material’ graphene used to create the ultimate hair dye.”

From these headlines, you might be forgiven for getting the idea that the safety of graphene-based hair dyes is a done deal. Yet having studied the potential health and environmental impacts of engineered nanomaterials for more years than I care to remember, I find such overly optimistic pronouncements worrying – especially when they’re not backed up by clear evidence.

These studies need to be approached with care, as the precise risks of graphene exposure will depend on how the material is used, how exposure occurs and how much of it is encountered. Yet there’s sufficient evidence to suggest that this substance should be used with caution – especially where there’s a high chance of exposure or that it could be released into the environment.

The full text of Dr. Maynard’s comments about graphene hair dyes and risk can be found here.

Bearing in mind  that graphene-based hair dye is an entirely different class of product from the jacket, I wouldn’t necessarily dismiss risks; I would like to know what kind of risk assessment and safety testing has been done. Due to their understandable enthusiasm, the brothers Tidball have focused all their marketing on the benefits and the opportunity for the consumer to test their product (from graphene jacket product webpage),

While it’s completely invisible and only a single atom thick, graphene is the lightest, strongest, most conductive material ever discovered, and has the same potential to change life on Earth as stone, bronze and iron once did. But it remains difficult to work with, extremely expensive to produce at scale, and lives mostly in pioneering research labs. So following in the footsteps of the scientists who discovered it through their own highly speculative experiments, we’re releasing graphene-coated jackets into the world as experimental prototypes. Our aim is to open up our R&D and accelerate discovery by getting graphene out of the lab and into the field so that we can harness the collective power of early adopters as a test group. No-one yet knows the true limits of what graphene can do, so the first edition of the Graphene Jacket is fully reversible with one side coated in graphene and the other side not. If you’d like to take part in the next stage of this supermaterial’s history, the experiment is now open. You can now buy it, test it and tell us about it. [emphasis mine]

How maverick experiments won the Nobel Prize

While graphene’s existence was first theorised in the 1940s, it wasn’t until 2004 that two maverick scientists, Andre Geim and Konstantin Novoselov, were able to isolate and test it. Through highly speculative and unfunded experimentation known as their ‘Friday night experiments,’ they peeled layer after layer off a shaving of graphite using Scotch tape until they produced a sample of graphene just one atom thick. After similarly leftfield thinking won Geim the 2000 Ig Nobel prize for levitating frogs using magnets, the pair won the Nobel prize in 2010 for the isolation of graphene.

Should you be interested, in beta-testing the jacket, it will cost you $695 (presumably USD); order here. One last thing, Vollebak is based in the UK.

Graphene skinned plane

An August 14, 2018 news item (also published as an August 1, 2018 Haydale press release) by Sue Keighley on Azonano heralds a new technology for airplans,

Haydale, (AIM: HAYD), the global advanced materials group, notes the announcement made yesterday from the University of Central Lancashire (UCLAN) about the recent unveiling of the world’s first graphene skinned plane at the internationally renowned Farnborough air show.

The prepreg material, developed by Haydale, has potential value for fuselage and wing surfaces in larger scale aero and space applications especially for the rapidly expanding drone market and, in the longer term, the commercial aerospace sector. By incorporating functionalised nanoparticles into epoxy resins, the electrical conductivity of fibre-reinforced composites has been significantly improved for lightning-strike protection, thereby achieving substantial weight saving and removing some manufacturing complexities.

Before getting to the photo, here’s a definition for pre-preg from its Wikipedia entry (Note: Links have been removed),

Pre-preg is “pre-impregnated” composite fibers where a thermoset polymer matrix material, such as epoxy, or a thermoplastic resin is already present. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture.

Haydale has supplied graphene enhanced prepreg material for Juno, a three-metre wide graphene-enhanced composite skinned aircraft, that was revealed as part of the ‘Futures Day’ at Farnborough Air Show 2018. [downloaded from https://www.azonano.com/news.aspx?newsID=36298]

A July 31, 2018 University of Central Lancashire (UCLan) press release provides a tiny bit more (pun intended) detail,

The University of Central Lancashire (UCLan) has unveiled the world’s first graphene skinned plane at an internationally renowned air show.

Juno, a three-and-a-half-metre wide graphene skinned aircraft, was revealed on the North West Aerospace Alliance (NWAA) stand as part of the ‘Futures Day’ at Farnborough Air Show 2018.

The University’s aerospace engineering team has worked in partnership with the Sheffield Advanced Manufacturing Research Centre (AMRC), the University of Manchester’s National Graphene Institute (NGI), Haydale Graphene Industries (Haydale) and a range of other businesses to develop the unmanned aerial vehicle (UAV), which also includes graphene batteries and 3D printed parts.

Billy Beggs, UCLan’s Engineering Innovation Manager, said: “The industry reaction to Juno at Farnborough was superb with many positive comments about the work we’re doing. Having Juno at one the world’s biggest air shows demonstrates the great strides we’re making in leading a programme to accelerate the uptake of graphene and other nano-materials into industry.

“The programme supports the objectives of the UK Industrial Strategy and the University’s Engineering Innovation Centre (EIC) to increase industry relevant research and applications linked to key local specialisms. Given that Lancashire represents the fourth largest aerospace cluster in the world, there is perhaps no better place to be developing next generation technologies for the UK aerospace industry.”

Previous graphene developments at UCLan have included the world’s first flight of a graphene skinned wing and the launch of a specially designed graphene-enhanced capsule into near space using high altitude balloons.

UCLan engineering students have been involved in the hands-on project, helping build Juno on the Preston Campus.

Haydale supplied much of the material and all the graphene used in the aircraft. Ray Gibbs, Chief Executive Officer, said: “We are delighted to be part of the project team. Juno has highlighted the capability and benefit of using graphene to meet key issues faced by the market, such as reducing weight to increase range and payload, defeating lightning strike and protecting aircraft skins against ice build-up.”

David Bailey Chief Executive of the North West Aerospace Alliance added: “The North West aerospace cluster contributes over £7 billion to the UK economy, accounting for one quarter of the UK aerospace turnover. It is essential that the sector continues to develop next generation technologies so that it can help the UK retain its competitive advantage. It has been a pleasure to support the Engineering Innovation Centre team at the University in developing the world’s first full graphene skinned aircraft.”

The Juno project team represents the latest phase in a long-term strategic partnership between the University and a range of organisations. The partnership is expected to go from strength to strength following the opening of the £32m EIC facility in February 2019.

The next step is to fly Juno and conduct further tests over the next two months.

Next item, a new carbon material.

Schwarzite

I love watching this gif of a schwarzite,

The three-dimensional cage structure of a schwarzite that was formed inside the pores of a zeolite. (Graphics by Yongjin Lee and Efrem Braun)

An August 13, 2018 news item on Nanowerk announces the new carbon structure,

The discovery of buckyballs [also known as fullerenes, C60, or buckminsterfullerenes] surprised and delighted chemists in the 1980s, nanotubes jazzed physicists in the 1990s, and graphene charged up materials scientists in the 2000s, but one nanoscale carbon structure – a negatively curved surface called a schwarzite – has eluded everyone. Until now.

University of California, Berkeley [UC Berkeley], chemists have proved that three carbon structures recently created by scientists in South Korea and Japan are in fact the long-sought schwarzites, which researchers predict will have unique electrical and storage properties like those now being discovered in buckminsterfullerenes (buckyballs or fullerenes for short), nanotubes and graphene.

An August 13, 2018 UC Berkeley news release by Robert Sanders, which originated the news item, describes how the Berkeley scientists and the members of their international  collaboration from Germany, Switzerland, Russia, and Italy, have contributed to the current state of schwarzite research,

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide – sand – more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting properties, though the creators were unaware of their identity as schwarzites, which theoretical chemists have worked on for decades.

Based on this theoretical work, chemists predict that schwarzites will have unique electronic, magnetic and optical properties that would make them useful as supercapacitors, battery electrodes and catalysts, and with large internal spaces ideal for gas storage and separation.

UC Berkeley postdoctoral fellow Efrem Braun and his colleagues identified these ZTC materials as schwarzites based of their negative curvature, and developed a way to predict which zeolites can be used to make schwarzites and which can’t.

“We now have the recipe for how to make these structures, which is important because, if we can make them, we can explore their behavior, which we are working hard to do now,” said Berend Smit, an adjunct professor of chemical and biomolecular engineering at UC Berkeley and an expert on porous materials such as zeolites and metal-organic frameworks.

Smit, the paper’s corresponding author, Braun and their colleagues in Switzerland, China, Germany, Italy and Russia will report their discovery this week in the journal Proceedings of the National Academy of Sciences. Smit is also a faculty scientist at Lawrence Berkeley National Laboratory.

Playing with carbon

Diamond and graphite are well-known three-dimensional crystalline arrangements of pure carbon, but carbon atoms can also form two-dimensional “crystals” — hexagonal arrangements patterned like chicken wire. Graphene is one such arrangement: a flat sheet of carbon atoms that is not only the strongest material on Earth, but also has a high electrical conductivity that makes it a promising component of electronic devices.

schwarzite carbon cage

The cage structure of a schwarzite that was formed inside the pores of a zeolite. The zeolite is subsequently dissolved to release the new material. (Graphics by Yongjin Lee and Efrem Braun)

Graphene sheets can be wadded up to form soccer ball-shaped fullerenes – spherical carbon cages that can store molecules and are being used today to deliver drugs and genes into the body. Rolling graphene into a cylinder yields fullerenes called nanotubes, which are being explored today as highly conductive wires in electronics and storage vessels for gases like hydrogen and carbon dioxide. All of these are submicroscopic, 10,000 times smaller than the width of a human hair.

To date, however, only positively curved fullerenes and graphene, which has zero curvature, have been synthesized, feats rewarded by Nobel Prizes in 1996 and 2010, respectively.

In the 1880s, German physicist Hermann Schwarz investigated negatively curved structures that resemble soap-bubble surfaces, and when theoretical work on carbon cage molecules ramped up in the 1990s, Schwarz’s name became attached to the hypothetical negatively curved carbon sheets.

“The experimental validation of schwarzites thus completes the triumvirate of possible curvatures to graphene; positively curved, flat, and now negatively curved,” Braun added.

Minimize me

Like soap bubbles on wire frames, schwarzites are topologically minimal surfaces. When made inside a zeolite, a vapor of carbon-containing molecules is injected, allowing the carbon to assemble into a two-dimensional graphene-like sheet lining the walls of the pores in the zeolite. The surface is stretched tautly to minimize its area, which makes all the surfaces curve negatively, like a saddle. The zeolite is then dissolved, leaving behind the schwarzite.

soap bubble schwarzite structure

A computer-rendered negatively curved soap bubble that exhibits the geometry of a carbon schwarzite. (Felix Knöppel image)

“These negatively-curved carbons have been very hard to synthesize on their own, but it turns out that you can grow the carbon film catalytically at the surface of a zeolite,” Braun said. “But the schwarzites synthesized to date have been made by choosing zeolite templates through trial and error. We provide very simple instructions you can follow to rationally make schwarzites and we show that, by choosing the right zeolite, you can tune schwarzites to optimize the properties you want.”

Researchers should be able to pack unusually large amounts of electrical charge into schwarzites, which would make them better capacitors than conventional ones used today in electronics. Their large interior volume would also allow storage of atoms and molecules, which is also being explored with fullerenes and nanotubes. And their large surface area, equivalent to the surface areas of the zeolites they’re grown in, could make them as versatile as zeolites for catalyzing reactions in the petroleum and natural gas industries.

Braun modeled ZTC structures computationally using the known structures of zeolites, and worked with topological mathematician Senja Barthel of the École Polytechnique Fédérale de Lausanne in Sion, Switzerland, to determine which of the minimal surfaces the structures resembled.

The team determined that, of the approximately 200 zeolites created to date, only 15 can be used as a template to make schwarzites, and only three of them have been used to date to produce schwarzite ZTCs. Over a million zeolite structures have been predicted, however, so there could be many more possible schwarzite carbon structures made using the zeolite-templating method.

Other co-authors of the paper are Yongjin Lee, Seyed Mohamad Moosavi and Barthel of the École Polytechnique Fédérale de Lausanne, Rocio Mercado of UC Berkeley, Igor Baburin of the Technische Universität Dresden in Germany and Davide Proserpio of the Università degli Studi di Milano in Italy and Samara State Technical University in Russia.

Here’s a link to and a citation for the paper,

Generating carbon schwarzites via zeolite-templating by Efrem Braun, Yongjin Lee, Seyed Mohamad Moosavi, Senja Barthel, Rocio Mercado, Igor A. Baburin, Davide M. Proserpio, and Berend Smit. PNAS August 14, 2018. 201805062; published ahead of print August 14, 2018. https://doi.org/10.1073/pnas.1805062115

This paper appears to be open access.

Nano-saturn

It’s a bit of a stretch but I really appreciate how the nanoscale (specifically a fullerene) is being paired with the second largest planet (the largest is Jupiter) in our solar system. (See Nola Taylor Redd’s November 14, 2012 article on space.com for more about the planet Saturn.)

From a June 8, 2018 news item on ScienceDaily,

Saturn is the second largest planet in our solar system and has a characteristic ring. Japanese researchers have now synthesized a molecular “nano-Saturn.” As the scientists report in the journal Angewandte Chemie, it consists of a spherical C(60) fullerene as the planet and a flat macrocycle made of six anthracene units as the ring. The structure is confirmed by spectroscopic and X-ray analyses.

A June 8, 2018  Wiley Publications press release (also on EurekAlert), which originated the news item, fills in some details,

Nano-Saturn systems with a spherical molecule and a macrocyclic ring have been a fascinating structural motif for researchers. The ring must have a rigid, circular form, and must hold the molecular sphere firmly in its midst. Fullerenes are ideal candidates for the nano-sphere. They are made of carbon atoms linked into a network of rings that form a hollow sphere. The most famous fullerene, C60, consists of 60 carbon atoms arranged into 5- and 6-membered rings like the leather patches of a classic soccer ball. The electrons in their double bonds, knows as the π-electrons, are in a kind of “electron cloud”, able to freely move about and have binding interactions with other molecules, such as a macrocycle that also has a “cloud” of π-electrons. The attractive interactions between the electron clouds allow fullerenes to lodge in the cavities of such macrocycles.

A series of such complexes has previously been synthesized. Because of the positions of the electron clouds around the macrocycles, it was previously only possible to make rings that surround the fullerene like a belt or a tire. The ring around Saturn, however, is not like a “belt” or “tire”, it is a very flat disc. Researchers working at the Tokyo Institute of Technology and Okayama University of Science (Japan) wanted to properly imitate this at nanoscale.

Their success resulted from a different type of bonding between the “nano-planet” and its “nano-ring”. Instead of using the attraction between the π-electron clouds of the fullerene and macrocycle, the team working with Shinji Toyota used the weak attractive interactions between the π-electron cloud of the fullerene and non- π-electron of the carbon-hydrogen groups of the macrocycle.

To construct their “Saturn ring”, the researchers chose to use anthracene units, molecules made of three aromatic six-membered carbon rings linked along their edges. They linked six of these units into a macrocycle whose cavity was the perfect size and shape for a C60 fullerene. Eighteen hydrogen atoms of the macrocycle project into the middle of the cavity. In total, their interactions with the fullerene are enough to give the complex enough stability, as shown by computer simulations. By using X-ray analysis and NMR spectroscopy, the team was able to prove experimentally that they had produced Saturn-shaped complexes.

Here’s an illustration of the ‘nano-saturn’,

Courtesy: Wiley Publications

Here’s a link to and a citation for the paper,

Nano‐Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60 by Yuta Yamamoto, Dr. Eiji Tsurumaki, Prof. Dr. Kan Wakamatsu, Prof. Dr. Shinji Toyota. Angewandte Chemie https://doi.org/10.1002/anie.201804430 First published: 30 May 2018

This paper is behind a paywall.

Psst: secret marriage … Buckyballs and Graphene get together!

A March 1, 2018 news item on Nanowerk announces  a new coupling,

Scientists combined buckyballs, [also known as buckminsterfullerenes, fullerenes, or C60] which resemble tiny soccer balls made from 60 carbon atoms, with graphene, a single layer of carbon, on an underlying surface. Positive and negative charges can transfer between the balls and graphene depending on the nature of the surface as well as the structural order and local orientation of the carbon ball. Scientists can use this architecture to develop tunable junctions for lightweight electronic devices.

The researchers have made this illustration of their work available,

Researchers are developing new, lightweight electronics that rapidly conduct electricity by covering a sheet of carbon (graphene) with buckyballs. Electricity is the flow of electrons. On these lightweight structures, electrons as well as positive holes (missing electrons) transfer between the balls and graphene. The team showed that the crystallinity and orientation of the balls, as well as the underlying layer, affected this charge transfer. The top image shows a calculation of the charge density for a specific orientation of the balls on graphene. The blue represents positive charges, while the red is negative. The bottom image shows that the balls are in a close-packed structure. The bright dots correspond to the projected images of columns of buckyball molecules. Courtesy: US Department of Energy Office of Science

A February 28, 2018 US Department of Energy (DoE) Office of Science news release, which originated the news item, provides more detail,

The Impact

Fast-moving electrons and their counterpart, holes, were preserved in graphene with crystalline buckyball overlayers. Significantly, the carbon ball provides charge transfer to the graphene. Scientists expect the transfer to be highly tunable with external voltages. This marriage has ramifications for smart electronics that run longer and do not break as easily, bringing us closer to sensor-embedded smart clothing and robotic skin.

Summary

Charge transfer at the interface between dissimilar materials is at the heart of almost all electronic technologies such as transistors and photovoltaic devices. In this study, scientists studied charge transfer at the interface region of buckyball molecules deposited on graphene, with and without a supporting substrate, such as hexagonal boron nitride. They employed ab initio density functional theory with van der Waals interactions to model the structure theoretically. Van der Waals interactions are weak connections between neutral molecules. The team used high-resolution transmission electron microscopy and electronic transport measurements to characterize experimentally the properties of the interface. The researchers observed that charge transfer between buckyballs and the graphene was sensitive to the nature of the underlying substrate, in addition, to the crystallinity and local orientation of the buckyballs. These studies open an avenue to devices where buckyball layers on top of graphene can serve as electron acceptors and other buckyball layers as electron donors. Even at room temperature, buckyball molecules were orientationally locked into position. This is in sharp contrast to buckyball molecules in un-doped bulk crystalline configurations, where locking occurs only at low temperature. High electron and hole mobilities are preserved in graphene with crystalline buckyball overlayers. This finding has ramifications for the development of organic high-mobility field-effect devices and other high mobility applications.

Here’s a link to and a citation for the paper,

Molecular Arrangement and Charge Transfer in C60 /Graphene Heterostructures by Claudia Ojeda-Aristizabal, Elton J. G. Santos, Seita Onishi, Aiming Yan, Haider I. Rasool, Salman Kahn, Yinchuan Lv, Drew W. Latzke, Jairo Velasco Jr., Michael F. Crommie, Matthew Sorensen, Kenneth Gotlieb, Chiu-Yun Lin, Kenji Watanabe, Takashi Taniguchi, Alessandra Lanzara, and Alex Zettl. ACS Nano, 2017, 11 (5), pp 4686–4693 DOI: 10.1021/acsnano.7b00551 Publication Date (Web): April 24, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Interstellar fullerenes

This work from Russia on fullerenes (also known as buckministerfullerenes, C60, and/or buckyballs) is quite interesting and dates back more than a year. I’m not sure why the work is being publicized now but nanotechnology and interstellar space is not covered here often enough so, here goes, (from a January 29, 2018 Kazan Federal University press release (also on EurekAlert), Note: Links have been removed,

Here’s a link to and a citation for the paper,

C60+ – looking for the bucky-ball in interstellar space by G. A. Galazutdinov, V. V. Shimansky, A. Bondar, G. Valyavin, J. Krełowski. Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 4, 11 March 2017, Pages 3956–3964, https://doi.org/10.1093/mnras/stw2948 Published: 22 December 2016

This paper is behind a paywall.

h/t January 29, 2018 news item on Nanowerk

Inhaling buckyballs (C60 fullerenes)

Carbon nanotubes (also known as buckytubes) have attracted most of the attention where carbon nanomaterials and health and safety are concerned. But, University of Michigan researchers opted for a change of pace and focused their health and safety research on buckyballs (also known as C60 or fullerenes) according to a Feb. 24, 2016 news item on Nanowerk,

Scientists at the University of Michigan have found evidence that some carbon nanomaterials can enter into immune cell membranes, seemingly going undetected by the cell’s built-in mechanisms for engulfing and disposing of foreign material, and then escape through some unidentified pathway. [emphasis mine]

The researchers from the School of Public Health and College of Engineering say their findings of a more passive entry of the materials into cells is the first research to show that the normal process of endocytosis-phagocytosis isn’t always activated when cells are confronted with tiny Carbon 60 (C60 ) molecules.

A Feb. 23, 2016 University of Michigan news release (also on EurekAlert but dated Feb. 24, 2016), which originated the news item, provides more detail about the research,

… This study examined nanomaterials known as carbon fullerenes, in this case C60, which has a distinct spherical shape.

Over the last decade, scientists have found these carbon-based materials useful in a number of commercial products, including drugs, medical devices, cosmetics, lubricants, antimicrobial agents and more. Fullerenes also are produced in nature through events like volcanic eruptions and wildfires.

The concern is that however exposed, commercially or naturally, little is known about how inhaling these materials impacts health.

“It’s entirely possible that even tiny amounts of some nanomaterials could cause altered cellular signaling,” said Martin Philbert, dean and professor of toxicology at the U-M School of Public Health.

Philbert said much of the previously published research bombarded cells with large amounts of particle clusters, unlike a normal environmental exposure.

The U-M researchers examined various mechanisms of cell entry through a combination of classical biological, biophysical and newer computational techniques, using models developed by a team led by Angela Violi to determine how C60 molecules find their way into living immune cells of mice.

They found that the C60 particles in low concentrations were entering the membrane individually, without perturbing the structure of the cell enough to trigger its normal response.

“Computational modeling of C60 interacting with lipid bilayers, representative of the cellular membrane, show that particles readily diffuse into biological membranes and find a thermodynamically stable equilibrium in an eccentric position within the bilayer,” said Violi, U-M professor of mechanical engineering, chemical engineering, biomedical engineering, and macromolecular science and engineering.

“The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research, as we still don’t know exactly what are the mechanisms that cause this crossing.”

So, while the buckyballs enter cells, they also escape from them somehow. I wonder if the mechanisms that allow them to enter the cells are similar to the ones that allow them to escape. Regardless, here’s a link to and a citation for the paper,

C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages by K. A. Russ, P. Elvati, T. L. Parsonage, A. Dews, J. A. Jarvis, M. Ray, B. Schneider, P. J. S. Smith, P. T. F. Williamson, A. Violi and M. A. Philbert. Nanoscale, 2016, 8, 4134-4144 DOI: 10.1039/C5NR07003A First published online 25 Jan 2016

This paper is behind a paywall.

Soccer balls with no resistance (superconductivity)

Known as a fullerene (also buckminsterfullerene, buckyballs, and/or C60), the soccer ball in question is helping scientists to better understand how to develop materials that are superconductive at room temperature. A Feb. 9, 2016 news item on Nanotechnology Now describes the latest in ‘soccer ball’ research,

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes resistance-free is minus 70 degrees Celsius. Nowadays they are mainly used in magnets for nuclear magnetic resonance tomographs, fusion devices and particle accelerators. Physicists from the Max Planck Institute for the Structure and Dynamics of Matter at the Center for Free-Electron Laser Science (CFEL) in Hamburg shone laser pulses at a material made up from potassium atoms and carbon atoms arranged in bucky ball structures. For a small fraction of a second, they found it to become superconducting at more than 100 degrees Kelvin – around minus 170 degrees Celsius. A similar effect was already discovered in 2013 by scientists of the same group in a different material, a ceramic oxide belonging to the family of so-called “cuprates”. As fullerenes have a relatively simple chemical structure, the researchers hope to be able to gain a better understanding of the phenomenon of light-induced superconductivity at high temperatures through their new experiments. Such insights could help in the development of a material which conducts electricity at room temperature without losses, and without optical excitation.

A Feb. 8, 2016 Max Planck Institute press release (also on EurekAlert but dated Feb. 9, 2016), which originated the news item, expands on the theme of superconductivity at room temperature,

Andrea Cavalleri, Director at the Max Planck Institute for the Structure and Dynamics of Matter, and his colleagues aim at paving the way for the development of materials that lose their electrical resistance at room temperature. Their observation that fullerenes, when excited with laser pulses, can become superconductive at minus 170 degrees Celsius, takes them a step closer to achieving this goal. This discovery could contribute to establishing a more comprehensive understanding of light-induced superconductivity, because it is easier to formulate a theoretical explanation for fullerenes than for cuprates. A complete explanation of this effect could, in turn, help the scientists to gain a better understanding of the phenomenon of high-temperature superconductivity and provide a recipe for an artificial superconductor that conducts electricity without resistance losses at room temperature.

In 2013, researchers from Cavalleri’s group demostrated that under certain conditions it may be possible for a material to conduct electricity at room temperature without resistance loss. A ceramic oxide belonging to the family of cuprates was shown to become superconductive without any cooling for a few trillionths of a second when the scientists excited it using an infrared laser pulse. One year later, the Hamburg-based scientists presented a possible explanation for this effect.

They observed that, following excitation with the flash of light, the atoms in the crystal lattice change position. This shift in position persists as does the superconducting state of the material. Broadly speaking, the light-induced change in the structure clears the way for the electrons so that they can move through the ceramic without losses. However, the explanation is very dependent on the highly specific crystalline structure of cuprates. As the process was understood at the time, it could have involved a phenomenon that only arises in this kind of materials.

The researchers have included in the press release an image illustrating the latest work being described in the press release excerpt which follows this,

Intense laser flashes remove the electrical resistance of a crystal layer of the alkali fulleride K3C60, a football-like molecule containing 60 carbon atoms. This is observed at temperatures at least as high as minus 170 degrees Celsius. © J.M. Harms/MPI for the Structure and Dynamics of Matter

Intense laser flashes remove the electrical resistance of a crystal layer of the alkali fulleride K3C60, a football-like molecule containing 60 carbon atoms. This is observed at temperatures at least as high as minus 170 degrees Celsius.
© J.M. Harms/MPI for the Structure and Dynamics of Matter

The press release goes on to provide some technical details about the most recent research,

The team headed by Cavalleri therefore asked themselves whether light could also break the electrical resistance of more traditional superconductors, the physics of which is better understood. The researchers from the Max Planck Institute for the Structure and Dynamics of Matter, among which Daniele Nicoletti and Matteo Mitrano, have now hit the jackpot using a substance that is very different to cuprates: the fulleride K3C60, a metal composed of so-called Buckminster fullerenes. These hollow molecules consist of 60 carbon atoms which bond in the shape of a football: a sphere comprising pentagons and hexagons. With the help of intercalated positively charged potassium ions, which work like a kind of cement, the negatively charged fullerenes stick to each other to form a solid. This so-called alkali fulleride is a metal which becomes superconductive below a critical temperature of around minus 250 degrees Celsius.

The researchers then irradiated the alkali fulleride with infrared light pulses of just a few billionths of a microsecond and repeated their experiment for a range of temperatures between the critical temperature and room temperature. They set the frequency of the light source so that it excited the fullerenes to produce vibrations. This causes the carbon atoms to oscillate in such a way that the pentagons in the football expand and contract. It was hoped that this change in the structure could generate transient superconductivity at high temperatures in a similar way to the process in cuprates.

To test this, the scientists irradiated the sample with a second light pulse at the same time as the infrared pulse, albeit at a frequency in the terahertz range. The strength at which this pulse is reflected indicates the conductivity of the material to the researchers, meaning how easily electrons move through the alkali fulleride. The result here was an extremely high conductivity. “We are pretty confident that we have induced superconductivity at temperatures at least as high as minus 170 degrees Celsius,” says Daniele Nicoletti. This means that the experiment in Hamburg presents one of the highest ever-observed critical temperatures outside of the material class of cuprates.

“We are now planning to carry out other experiments which should enable us to reach a more detailed understanding of the processes at work here,” says Nicoletti. What they would like to do next is analyze the crystal structure during excitation with the infrared light. As was previously the case with the cuprate, this should help to explain the phenomenon. The researchers would then like to irradiate the material with light pulses that last much longer. “Although this is technically very complicated, it could extend the lifetime of superconductivity, making it potentially relevant for applications,” concludes Nicoletti.

Here’s a link to and a citation for the paper,

Possible light-induced superconductivity in K3C60 at high temperature by M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, & A. Cavalleri. Nature (2016) doi:10.1038/nature16522 Published online 08 February 2016

This paper is behind a paywall.

#BCTECH: being at the Summit (Jan. 18-19, 2016)

#BCTECH Summit 2016*, a joint event between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia, launched on Jan. 18, 2016. I have written a preview (Jan. 17, 2016 post) and a commentary on the new #BCTECH strategy (Jan. 19, 2016 posting) announced by British Columbia Premier, Christy Clark, on the opening day (Jan. 18, 2016) of the summit.

I was primarily interested in the trade show/research row/technology showcase aspect of the summit focusing (but not exclusively) on nanotechnology. Here’s what I found,

Nano at the Summit

  • Precision NanoSystems: fabricates equipment which allows researchers to create polymer nanoparticles for delivering medications.

One of the major problems with creating nanoparticles is ensuring a consistent size and rapid production. According to Shell Ip, a Precision NanoSystems field application scientist, their NanoAssemblr Platform has solved the consistency problem and a single microfluidic cartridge can produce 15 ml in two minutes. Cartridges can run in parallel for maximum efficiency when producing nanoparticles in greater quantity.

The NanoAssemblr Platform is in use in laboratories around the world (I think the number is 70) and you can find out more on the company’s About our technology webpage,

The NanoAssemblr™ Platform

The microfluidic approach to particle formulation is at the heart of the NanoAssemblr Platform. This well-controlled process mediates bottom-up self-assembly of nanoparticles with reproducible sizes and low polydispersity. Users can control size by process and composition, and adjust parameters such as mixing ratios, flow rate and lipid composition in order to fine-tune nanoparticle size, encapsulation efficiency and much more. The system technology enables manufacturing scale-up through microfluidic reactor parallelization similar to the arraying of transistors on an integrated chip. Superior design ensures that the platform is fast and easy to use with a software controlled manufacturing process. This usability allows for the simplified transfer of manufacturing protocols between sites, which accelerates development, reduces waste and ultimately saves money. Precision NanoSystems’ flagship product is the NanoAssemblr™ Benchtop Instrument, designed for rapid prototyping of novel nanoparticles. Preparation time on the system is streamlined to approximately one minute, with the ability to complete 30 formulations per day in the hands of any user.

The company is located on property known as the Endowment Lands or, more familiarly, the University of British Columbia (UBC).

A few comments before moving on, being able to standardize the production of medicine-bearing nanoparticles is a tremendous step forward which is going to help scientists dealing with other issues. Despite all the talk in the media about delivering nanoparticles with medication directly to diseased cells, there are transport issues: (1) getting the medicine to the right location/organ and (2) getting the medicine into the cell. My Jan. 12, 2016 posting featured a project with Malaysian scientists and a team at Harvard University who are tackling the transport and other nanomedicine) issues as they relate to the lung. As well, I have a Nov. 26, 2015 posting which explores a controversy about nanoparticles getting past the ‘cell walls’ into the nucleus of the cell.

The next ‘nano’ booths were,

  • 4D Labs located at Simon Fraser University (SFU) was initially hailed as a nanotechnology facility but these days they’re touting themselves as an ‘advanced materials’ facility. Same thing, different branding.

They advertise services including hands-on training for technology companies and academics. There is a nanoimaging facility and nanofabrication facility, amongst others.

I spoke with their operations manager, Nathaniel Sieb who mentioned a few of the local companies that use their facilities. (1) Nanotech Security (featured here most recently in a Dec. 29, 2015 post), an SFU spinoff company, does some of their anticounterfeiting research work at 4D Labs. (2) Switch Materials (a smart window company, electrochromic windows if memory serves) also uses the facilities. It is Neil Branda’s (4D Labs Executive Director) company and I have been waiting impatiently (my May 14, 2010 post was my first one about Switch) for either his or someone else’s electrochromic windows (they could eliminate or reduce the need for air conditioning during the hotter periods and reduce the need for heat in the colder periods) to come to market. Seib tells me, I’ll have to wait longer for Switch. (3) A graduate student was presenting his work at the booth, a handheld diagnostic device that can be attached to a smartphone to transmit data to the cloud. While the first application is for diabetics, there are many other possibilities. Unfortunately, glucose means you need to produce blood for the test when I suggested my preference for saliva the student explained some of the difficulties. Apparently, your saliva changes dynamically and frequently and something as simple as taking a sip of orange juice could result in a false reading. Our conversation (mine, Seib’s and the student’s) also drifted over into the difficulties of bringing products to market. Sadly, we were not able to solve that problem in our 10 minute conversation.

  • FPInnovations is a scientific research centre and network for the forestry sector. They had a display near their booth which was like walking into a peculiar forest (I was charmed). The contrast with the less imaginative approaches all around was striking.

FPInnovation helped to develop cellulose nanocrystals (CNC), then called nanocrystalline cellulose (NCC), and I was hoping to be updated about CNC and about the spinoff company Celluforce. The researcher I spoke to was from Sweden and his specialty was business development. He didn’t know much about CNC in Canada and when I commented on how active Sweden has been its pursuit of a CNC application, he noted Finland has been the most active. The researcher noted that making the new materials being derived from the forest, such as CNC, affordable and easily produced for use in applications that have yet to be developed are all necessities and challenges. He mentioned that cultural changes also need to take place. Canadians are accustomed to slicing away and discarding most of the tree instead of using as much of it as possible. We also need to move beyond the construction and pulp & paper sectors (my Feb. 15, 2012 posting featured nanocellulose research in Sweden where sludge was the base material).

Other interests at the Summit

I visited:

  • “The Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints.” The researchers (Siamak Arzanpour and Edward Park) pointed out that the ability to mimic all the motions of the hip is a big difference between their system and others which only allow the leg to move forward or back. They rushed the last couple of months to get this system ready for the Summit. In fact, they received their patent for the system the night before (Jan. 17, 2016) the Summit opened.

It’s the least imposing of the exoskeletons I’ve seen (there’s a description of one of the first successful exoskeletons in a May 20, 2014 posting; if you scroll down to the end you’ll see an update about the device’s unveiling at the 2014 World Cup [soccer/football] in Brazil).

Unfortunately, there aren’t any pictures of WLLAE yet and the proof-of-concept version may differ significantly from the final version. This system could be used to help people regain movement (paralysis/frail seniors) and I believe there’s a possibility it could be used to enhance human performance (soldiers/athletes). The researchers still have some significant hoops to jump before getting to the human clinical trial stage. They need to refine their apparatus, ensure that it can be safely operated, and further develop the interface between human and machine. I believe WLLAE is considered a neuroprosthetic device. While it’s not a fake leg or arm, it enables movement (prosthetic) and it operates on brain waves (neuro). It’s a very exciting area of research, consequently, there’s a lot of international competition.

  • Delightfully, after losing contact for a while, I reestablished it with the folks (Sean Lee, Head External Relations and Jim Hanlon, Chief Administrative Officer) at TRIUMF (Canada’s national laboratory for particle and nuclear physics). It’s a consortium of 19 Canadian research institutions (12 full members and seven associate members).

It’s a little disappointing that TRIUMF wasn’t featured in the opening for the Summit since the institution houses theoretical, experimental, and applied science work. It’s a major BC (and Canada) science and technology success story. My latest post (July 16, 2015) about their work featured researchers from California (US) using the TRIUMF cyclotron for imaging nanoscale materials and, on the more practical side, there’s a Mar. 6, 2015 posting about their breakthrough for producing nuclear material-free medical isotopes. Plus, Maclean’s Magazine ran a Jan. 3, 2016 article by Kate Lunau profiling an ‘art/science’ project that took place at TRIUMF (Note: Links have been removed),

It’s not every day that most people get to peek inside a world-class particle physics lab, where scientists probe deep mysteries of the universe. In September [2015], Vancouver’s TRIUMF—home to the world’s biggest cyclotron, a type of particle accelerator—opened its doors to professional and amateur photographers, part of an event called Global Physics Photowalk 2015. (Eight labs around the world participated, including CERN [European particle physics laboratory], in Geneva, where the Higgs boson particle was famously discovered.)

Here’s the local (Vancouver) jury’s pick for the winning image (from the Nov. 4, 2015 posting [Winning Photographs Revealed] by Alexis Fong on the TRIUMF website),

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

With all those hexagons and a spherical shape, the DESCANT looks like a ‘buckyball’ or buckminsterfullerene or C60  to me.

I hope the next Summit features TRIUMF and/or some other endeavours which exemplify, Science, Technology, and Creativity in British Columbia and Canada.

Onto the last booth,

  • MITACS was originally one of the Canadian federal government’s Network Centres for Excellence projects. It was focused on mathematics, networking, and innovation but once the money ran out the organization took a turn. These days, it’s describing itself as (from their About page) “a national, not-for-profit organization that has designed and delivered research and training programs in Canada for 15 years. Working with 60 universities, thousands of companies, and both federal and provincial governments, we build partnerships that support industrial and social innovation in Canada.”Their Jan. 19, 2016 news release (coincidental with the #BCTECH Summit, Jan. 18 – 19, 2016?) features a new report about improving international investment in Canada,

    Opportunities to improve Canada’s attractiveness for R&D investment were identified:

    1.Canada needs to better incentivize R&D by rebalancing direct and indirect support measures

    2.Canada requires a coordinated, client-centric approach to incentivizing R&D

    3.Canada needs to invest in training programs that grow the knowledge economy”

    Oddly, entrepreneurial/corporate/business types never have a problem with government spending when the money is coming to them; it’s only a problem when it’s social services.

    Back to MITACS, one of their more interesting (to me) projects was announced at the 2015 Canadian Science Policy Conference. MITACS has inaugurated a Canadian Science Policy Fellowships programme which in its first year (pilot) will see up up to 10 academics applying their expertise to policy-making while embedded in various federal government agencies. I don’t believe anything similar has occurred here in Canada although, if memory serves, the Brits have a similar programme.

    Finally, I offer kudos to Sherry Zhao, MITACS Business Development Specialist, the only person to ask me how her organization might benefit my business. Admittedly I didn’t talk to a lot of people but it’s striking to me that at an ‘innovation and business’ tech summit, only one person approached me about doing business.  Of course, I’m not a male aged between 25 and 55. So, extra kudos to Sherry Zhao and MITACS.

Christy Clark (Premier of British Columbia), in her opening comments, stated 2800 (they were expecting about 1000) had signed up for the #BCTECH Summit. I haven’t been able to verify that number or get other additional information, e.g., business deals, research breakthroughs, etc. announced at the Summit. Regardless, it was exciting to attend and find out about the latest and greatest on the BC scene.

I wish all the participants great and good luck and look forward to next year’s where perhaps we’ll here about how the province plans to help with the ‘manufacturing middle’ issue. For new products you need to have facilities capable of reproducing your devices at a speed that satisfies your customers; see my Feb. 10, 2014 post featuring a report on this and other similar issues from the US General Accountability Office.

*’BCTECH Summit 2016′ link added Jan. 21, 2016.

University of New Brunswick (Canada), ‘sun in a can’, and buckyballs

Cutting the cost for making solar cells could be a step in the right direction for more widespread adoption. At any rate, that seems to be the motivation for Dr. Felipe Chibante of the University of New Brunswick  and his team as they’ve worked for the past three years or so on cutting production costs for fullerenes (also known as, buckminsterfullerenes, C60, and buckyballs). From a Dec. 23, 2015 article by Michael Tutton for Canadian Press,

A heating system so powerful it gave its creator a sunburn from three metres away is being developed by a New Brunswick engineering professor as a method to sharply reduce the costs of making the carbon used in some solar cells.

Felipe Chibante says his “sun in a can” method of warming carbon at more than 5,000 degrees Celsius helps create the stable carbon 60 needed in more flexible forms of photovoltaic panels.

Tutton includes some technical explanations in his article,

Chibante and senior students at the University of New Brunswick created the system to heat baseball-sized lumps of plasma — a form of matter composed of positively charged gas particles and free-floating negatively charged electrons — at his home and later in a campus lab.

According to a May 22, 2012 University of New Brunswick news release received funding of almost $1.5M from the Atlantic Canada Opportunities Agency for his work with fullerenes,

Dr. Felipe Chibante, associate professor in UNB’s department of chemical engineering, and his team at the Applied Nanotechnology Lab received nearly $1.5 million to lower the cost of fullerenes, which is the molecular form of pure carbon and is a critical ingredient for the plastic solar cell market.

Dr. Chibante and the collaborators on the project have developed fundamental synthesis methods that will be integrated in a unique plasma reactor to result in a price reduction of 50-75 per cent.

Dr. Chibante and his work were also featured in a June 10, 2013 news item on CBC (Canadian Broadcasting Corporation) news online,

Judges with the New Brunswick Innovation Fund like the idea and recently awarded Chibante $460,000 to continue his research at the university’s Fredericton campus.

Chibante has a long history of working with fullerenes — carbon molecules that can store the sun’s energy. He was part of the research team that discovered fullerenes in 1985 [the three main researchers at Rice University, Texas, received Nobel Prizes for the work].

He says they can be added to liquid, spread over plastic and shingles and marketed as a cheaper way to convert sunlight into electricity.

“What we’re trying to do in New Brunswick with the science research and innovation is we’re really trying to get the maximum bang for the buck,” said Chibante.

As it stands, fullerenes cost about $15,000 per kilogram. Chibante hopes to lower the cost by a factor of 10.

The foundation investment brings Chibante’s research funding to about $6.2 million.

Not everyone is entirely sold on this approach to encouraging solar energy adoption (from the CBC news item),

The owner of Urban Pioneer, a Fredericton [New Brunswick] company that sells alternative energy products, likes the concept, but doubts there’s much of a market in New Brunswick.

“We have conventional solar panels right now and they’re not that popular,” said Tony Craft.

“So I can’t imagine, like, when you throw something completely brand new into it, I don’t know how people are going to respond to that even, so it may be a very tough sell,” he said.

Getting back to Chibante’s breakthrough (from Tutton’s Dec. 23, 2015 article),

The 52-year-old researcher says he first set up the system to operate in his garage.

He installed optical filters to watch the melting process but said the light from the plasma was so intense that he later noticed a sunburn on his neck.

The plasma is placed inside a container that can contain and cool the extremely hot material without exposing it to the air.

The conversion technology has the advantage of not using solvents and doesn’t produce the carbon dioxide that other baking systems use, says Chibante.

He says the next stage is finding commercial partners who can help his team further develop the system, which was originally designed and patented by French researcher Laurent Fulcheri.

Chibante said he doesn’t believe the carbon-based, thin-film solar cells will displace the silicon-based cells because they capture less energy.

But he nonetheless sees a future for the more flexible sheets of solar cells.

“You can make fibres, you can make photovoltaic threads and you get into wearable, portable forms of power that makes it more ubiquitous rather than having to carry a big, rigid structure,” he said.

The researcher says the agreement earlier this month [Nov. 30 – Dec. 12, 2015] in Paris among 200 countries to begin reducing the use of fossil fuels and slow global warming may help his work.

By the way,  Chibante estimates production costs for fullerenes, when using his system, would be less that $50/kilogram for what is now the highest priced component of carbon-based solar cells.

There is another researcher in Canada who works in the field of solar energy, Dr. Ted Sargent at the University of Toronto (Ontario). He largely focuses on harvesting solar energy by using quantum dots. I last featured Sargent’s quantum dot work in a Dec. 9, 2014 posting.

A trio of nano news items from Japan (Irago Conference 2015, novel tuneable metallofullerenes, and nanoislands and skeletal skin for fuel cells)

Getting onto a list for news releases from Japan has been a boon. I don’t know how it happened but now I can better keep up with the nanotechnology effort in the country where the term was first coined (Norio Taniguchi) and which is a research leader in this field.

Irago Conference

This is a very intriguing conference, from a joint Oct. 18, 2015 Toyohashi University of Technology and University of Electro-Communications press release,

Organized by the Toyohashi University of Technology and University of Electro-Communications, Tokyo, the Irago Conference aims to enhance mutual understanding between scientists, engineers, policy makers, and experts from a wide spectrum of pure and applied sciences in order to resolve major global issues.

The Irago Conference 2015 is a unique conference combining thought provoking insights into global issues including disaster mitigation, neuroscience, public health monitoring, and nanotechnology [emphasis mine] by internationally renowned invited speakers with selected talks, posters, and demonstrations from academics, industrialists, and think tanks. The conference is truly a ‘360 degree outlook on critical scientific and technological challenges’ facing mankind.

Recent changes in global economics and industrial priorities, environmental and energy policies, food production and population movements have produced formidable challenges that must be addressed for sustaining life on earth.

The Irago Conference will highlight the major issues by bringing together experts from across the world who will give their views on key areas such as energy and natural resources, medicine and public health, disaster prevention and management, as well as other advances in science, technology and life sciences.

Observation, measurement, and monitoring are the keywords of the core topics covered at Irago 2015 with invited speakers Professor Masashi Hayakawa (University of Electro-Communications, Japan) presenting his pioneering research on “Earthquake prediction with electromagnetic phenomena, and Nobuhiko Okabe  (Kawasaki City Institute for Public Health, Japan) discussing “The role and contribution of Kawasaki City Institute for Public Health (Local Public Health Laboratory), locally and globally” with first hand examples of monitoring food safety and the spread of possible diseases carried by insects.

The Irago Conference will be streamed live. Visit the conference website for the links to the streaming site.

http://iragoconference.jp/

When: Thursday, 22 October 2015 to Friday 23  October 2015.

Where: Irago Sea-Park & Spa Hotel, Tahara, Aichi, Japan

They don’t appear to have set up the streaming link yet.

Tuneable metallofullerenes

Originally issued as a Sept. 21, 2015 press release, the University of Electro-Communications has issued an Oct. 19, 2015 version,

Tiny nanoscale molecules in the form of spherical carbon cages, or ‘fullerenes’, have received considerable attention in recent years. Individual or small groups of atoms can be trapped inside fullerenes, creating stable molecules with unique electronic structures and unusual properties that can be exploited in the field of nanomaterials and biomedical science.

Endohedral metallofullerenes (EMFs) are one such class of molecules, in which one or more metal atoms are encapsulated inside many kinds of carbon cages. Crucially, the metal atom(s) are not chemically bonded with the carbon surrounds, but they do donate electrons to the carbon cage. Scientists have recently begun to understand how to control the movement, behavior and positioning of the enclosed atoms by adding other atoms, such as silicon or germanium (in their silyl or germyl groups), to the fullerene surface. This allows for the manipulation and fine-tuning of the EMF’s properties.

Now, Masahiro Kako and co-workers at the University of Electro-Communications in Tokyo, together with scientists across Japan and the USA, have created and analyzed the effects of silylation and germylation on an EMF called Lu3N@Ih-C80 (three lutetium atoms bonded to a nitrogen atom encased inside a carbon 80 cage).

Using X-ray crystallography, electrochemical analyses and theoretical calculations, the team discovered that adding silyl groups or germyl groups to the fullerene structure was a versatile way of controlling the EMF’s electronic properties. The exact positioning of the silyl or germyl groups in bonding to the carbon structure determined the energy gaps present in the EMF, and determined the orientation of the bonded metal atoms inside the cage.

The germyl groups donated more electrons and the process worked slightly more efficiently than the silyl groups, but Kako and his team believe that both provide an effective way of fine-tuning EMF electronic characteristics.

Background

A brief history of fullerenes

Fullerenes are carbon molecules that take the shape of spheres. The most famous and abundant fullerene is the buckminsterfullerene, or ‘buckyball’, C60, which resembles a soccer ball in shape with a bonded carbon atom at each point of every polygon.

Endohedral metallofullerenes, or EMFs, are created by trapping a metal atom or atoms inside a fullerene cage, rather like a hamster in a ball. The trapped atom(s) are not chemically-bonded to the carbon, but they do interact with it by donating electrons, thus creating unique and very useful molecules for nanomaterial science and biomedicine.

Silylation and germylation

The addition of other atoms to fullerene surfaces can affect EMF properties, by regulating the behavior of the metal atoms inside the fullerene cage. In one EMF, the movement of lanthanum atoms is restricted to two dimensions by the addition of silyl groups to the carbon cage. This alters the electrostatic potentials inside the cage and restricts the lanthanum atoms’ mobility, and thus changes the overall properties of the whole molecule.

This study by Masahiro Kako and co-workers further enhances understanding of the effects of silylation and germalytion (the addition of silicon-based and germanium-based groups) on lutetium-based EMFs. The team have shown that the exact positioning of the additional atoms in the carbon structure can influence the energy gaps across the molecule, thereby allowing them to tune the electronic properties of the EMF. This ability to ‘fine-tune’ EMFs could have some applications for functional materials in molecular electronics, such as acceptors in organic photovoltaic devices.

Further work

Kako and his team hope to carry out further investigations into the addition of alternative groups of atoms to fullerenes, to add to the tuning properties of silicon- and germanium-based groups. This could expand on the versatility of EMFs and their potential applications in future.

Fullerenes don’t get that much attention these days when compared to graphene and carbon nanotubes although there seems to be increasing interest in their potential as cages.

Here’s a link to and a citation for the paper,

Preparation, Structural Determination, and Characterization of Electronic Properties of Bis-Silylated and Bis-Germylated Lu3N@Ih-C80 by Prof. Dr. Masahiro Kako, Kyosuke Miyabe, Dr. Kumiko Sato, Dr. Mitsuaki Suzuki, Dr. Naomi Mizorogi, Dr. Wei-Wei Wang, Prof. Dr. Michio Yamada, Prof. Dr. Yutaka Maeda, Prof. Dr. Marilyn M. Olmstead, Prof. Dr. Alan L. Balch, Prof. Dr. Shigeru Nagase, and Prof. Dr. Takeshi Akasaka. Chemistry – A European Journal DOI: 10.1002/chem.201503579 Article first published online: 21 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Nanoislands and skeletal skin for fuel cells

This final item concerns a platinum ‘skin’. From an Oct. 21, 2015 University of Electro-Communications press release,

Polymer electrolyte fuel cells (PEFC) could provide an alternative to traditional fossil fuel power, but higher performance and durability under harsh conditions are needed before PEFC vehicles can be considered commercially viable. Now researchers at the University of Electro-Communications, the University of Tokushima and Japan Synchrotron Radiation Research Institute in Japan have synthesised catalysts from platinum cobalt (PtCo3) nanoparticles on carbon (C) with tin oxide (SnO2) nanoislands and shown that they perform better than any previously reported.

Fuel cell research has focused on platinum alloys and transition metal oxides to improve on the durability and catalytic performance of platinum on carbon. Previous work with SnO2 islands grown on platinum tin alloy with carbon had already shown some improvement in the oxygen reduction reactions that occur in fuel cells. However growing islands of only SnO2 on other alloys posed a challenge.

Now Yasuhiro Iwasawa at the University of Electro-Communications and his colleagues have grown SnO2 islands on Pt3Co nanoparticles on carbon (Pt3Co/C) by selective electrochemical deposition of tin metal, which is then oxidized. The addition of the SnO2 nanoislands doubled the catalytic performance of the Pt3Co/C catalysts. In addition they were undamaged after undergoing 5000 cycles of voltage changes to test their durability.

The structure the Pt3Co nanoparticles form has a Pt3Co core surrounded by a platinum skin that has a rough – “skeleton” – morphology. The researchers attribute the high catalytic performance in part to efficient electronic modification specifically at the platinum skin surface, and in particular to the unique property of the SnO2 nanoislands at the compressive platinum skeleton-skin surface.

“In general, adhesion of transition metal oxides on carbon induces depression of the electrical conductivity of the carbon,” explain the researchers in their report. “Hence, the selective nano-SnO2 decoration on the Pt-enriched-surface nanoparticles provides a significant advantage as a cathode catalyst.”

Background

Polymer electrolyte fuel cells

Polymer electrolyte fuel cells consist of two porous polymer membranes. On one side hydrogen gas molecules give up electrons and on the other oxygen gas molecules accept electrons completing a current circuit.  The ions can then penetrate the membrane and combine to form water.

Polymer electrolyte fuel cells have several advantages over conventional fuel as they do not deplete the limited supplies of fossil fuels, and the waste products are water and heat, and therefore relatively non-polluting. The efficiency of fuel cells has already highlighted their potential for powering small vehicles.

Redox

The formation of hydrogen and oxygen ions from the gas molecules are referred to as redox reactions from the term ‘reduction’ and ‘oxidation’. In fuel cells neutral oxygen molecules are reduced to negatively charge oxygen ions with a charge of -2. The oxidation number is thus ‘reduced’ from 0 to -2. In contrast, ionisation of hydrogen molecules to positively charge hydrogen ions (that is single protons) increases the oxygen number by one – ‘oxidation’.

Catalysts are used to increase the efficiency of the redox reactions in fuel cells to improve the power and current density. The efficiency of the catalysts is measured in terms of the oxygen reduction reaction (ORR) activity.

Improving ORR

The researchers measured the potential difference required for other reactions in the presence of their catalyst to determine how the additional SnO2 islands improved the ORR. Their observations suggest that strain at the nanoislands on the Pt3Co nanoparticles modifies the electronic structure so that the centre of the electron d band is decreased. This decreases oxygen adsorption and improves the performance of the catalyst. In addition there is an increase in the proton affinity of the platinum near the nanoislands, which significantly enhances the ORR further still.

Here’s a link to and a citation for the paper,

Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method by Kensaku Nagasawa, Shinobu Takao, Shin-ichi Nagamatsu, Gabor Samjeské, Oki Sekizawa, Takuma Kaneko, Kotaro Higashi, Takashi Yamamoto, Tomoya Uruga†, and Yasuhiro Iwasawa. J. Am. Chem. Soc., 2015, 137 (40), pp 12856–12864 DOI: 10.1021/jacs.5b04256 Publication Date (Web): September 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

A use for fullerenes—inside insulation plastic for high-voltage cables

A Jan. 27, 2015 news item on Nanowerk, describes research which suggests that there may a new use for buckminsterfullerenes (or what they’re calling ‘carbon nanoballs’),

Researchers at Chalmers University of Technology [Sweden] have discovered that the insulation plastic used in high-voltage cables can withstand a 26 per cent higher voltage if nanometer-sized carbon balls are added. This could result in enormous efficiency gains in the power grids of the future, which are needed to achieve a sustainable energy system.

The renewable energy sources of tomorrow will often be found far away from the end user. Wind turbines, for example, are most effective when placed out at sea. Solar energy will have the greatest impact on the European energy system if focus is on transport of solar power from North Africa and Southern Europe to Northern Europe.

“Reducing energy losses during electric power transmission is one of the most important factors for the energy systems of the future,” says Chalmers researcher Christian Müller. “The other two are development of renewable energy sources and technologies for energy storage.”

The Jan. 27, 2015 Chalmers University of Technology press release (also on EurekAlert) by Johanna Wilde, which originated the news item, provides more information about the research,

Together with colleagues from Chalmers and the company Borealis in Stenungsund, he [Müller] has found a powerful method for reducing energy losses in alternating current cables.  The results were recently published in Advanced Materials, a highly ranked scientific journal.

The researchers have shown that different variants of the C60 carbon ball, a nanomaterial in the fullerene molecular group, provide strong protection against breakdown of the insulation plastic used in high-voltage cables. Today the voltage in the cables has to be limited to prevent the insulation layer from getting damaged. The higher the voltage the more electrons can leak out into the insulation material, a process which leads to breakdown.

It is sufficient to add very small amounts of fullerene to the insulation plastic for it to withstand a voltage that is 26 per cent higher, without the material breaking down, than the voltage that plastic without the additive can withstand.

“Being able to increase the voltage to this extent would result in enormous efficiency gains in power transmission all over the world,” says Christian Müller. “A major issue in the industry is how transmission efficiency can be improved without making the power cables thicker, since they are already very heavy and difficult to handle.”

Using additives to protect the insulation plastic has been a known concept since the 1970s, but until now it has been unknown exactly what and how much to add. Consequently, additives are currently not used at all for the purpose, and the insulation material is manufactured with the highest possible degree of chemical purity.

In recent years, other researchers have experimented with fullerenes in the electrically conductive parts of high-voltage cables. Until now, though, it has been unknown that the substance can be beneficial for the insulation material.

The Chalmers researchers have now demonstrated that fullerenes are the best voltage stabilizers identified for insulation plastic thus far. This means they have a hitherto unsurpassed ability to capture electrons and thus protect other molecules from being destroyed by the electrons.

To arrive at these findings, the researchers tested a number of molecules that are also used within organic solar cell research at Chalmers. The molecules were tested using several different methods, and were added to pieces of insulation plastic used for high-voltage cables. The pieces of plastic were then subjected to an increasing electric field until they crackled. Fullerenes turned out to be the type of additive that most effectively protects the insulation plastic.

The press release includes some facts about buckyballs or buckminsterfullerenes or fullerenes or C60 or carbon nanoballs, depending on what you want to call them,

 Facts: Carbon ball C60

  • The C60 carbon ball is also called buckminsterfullerene. It consists of 60 carbon atoms that are placed so that the molecule resembles a nanometer-sized football. C60 is included in the fullerene molecular class.
  • Fullerenes were discovered in 1985, which resulted in the Nobel Prize in Chemistry in 1996. They have unique electronic qualities and have been regarded as very promising material for several applications. Thus far, however, there have been few industrial usage areas.
  • Fullerenes are one of the five forms of pure carbon that exist. The other four are graphite, graphene/carbon nanotubes, diamond and amorphous carbon, for example soot.

Here’s a link to and a citation for the research paper,

A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation by Markus Jarvid, Anette Johansson, Renee Kroon, Jonas M. Bjuggren, Harald Wutzel, Villgot Englund, Stanislaw Gubanski, Mats R. Andersson, and Christian Müller. Advanced Materials DOI: 10.1002/adma.201404306 Article first published online: 12 DEC 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Here’s an image of wind turbines, an example of equipment which could benefit greatly from better insulation.,

Images: Lina Bertling, Jan-Olof Yxell, Carolina Eek Jaworski, Anette Johansson, Markus Jarvid, Christian Müller

Images: Lina Bertling, Jan-Olof Yxell, Carolina Eek Jaworski, Anette Johansson, Markus Jarvid, Christian Müller

You can find this image and others by clicking on the Chalmers University press release link (assuming the page hasn’t been moved). You can find more information about Borealis (the company Müller is working with) here.