Tag Archives: CAGR

Cientifica’s “Wearables, Smart Textiles and Nanotechnology Applications Technologies and Markets” report

It’s been a long time since I’ve received notice of a report from Cientifica Research and I’m glad to see another one. This is titled, Wearables, Smart Textiles and Nanotechnologies and Markets, and has just been published according to the May 26,  2016 Cientifica announcement received by email.

Here’s more from the report’s order page on the Cientifica site,

Wearables, Smart Textiles and Nanotechnology: Applications, Technologies and Markets

Price GBP 1995 / USD 2995

The past few years have seen the introduction of a number of wearable technologies, from fitness trackers to “smart watches” but with the increasing use of smart textiles wearables are set to become ‘disappearables’ as the devices merge with textiles.

The textile industry will experience a growing demand for high-tech materials driven largely by both technical textiles and the increasing integration of smart textiles to create wearable devices based on sensors.  This will enable the transition of the wearable market away from one dominated by discrete hardware based on MEMS accelerometers and smartphones. Unlike today’s ‘wearables’ tomorrow’s devices will be fully integrated into the the garment through the use of conductive fibres, multilayer 3D printed structures and two dimensional materials such as graphene.

Largely driven by the use of nanotechnologies, this sector will be one of the largest end users of nano- and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022. Products utilizing two dimensional materials such as graphene inks will be integral to the growth of wearables, representing a multi-billion dollar opportunity by 2022.

This represents significant opportunities for both existing smart textiles companies and new entrants to create and grow niche markets in sectors currently dominated by hardware manufacturers such Apple and Samsung.

The market for wearables using smart textiles is forecast to grow at a CAGR [compound annual growth rate] of 132% between 2016 and 2022 representing a $70 billion market. Largely driven by the use of nanotechnologies, this sector has the potential to be one of the largest end users of nano and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022.

“Wearables, Smart Textiles and Nanotechnologies: Applications, Technologies and Markets” looks at the technologies involved from antibacterial silver nanoparticles to electrospun graphene fibers, the companies applying them, and the impact on sectors including wearables, apparel, home, military, technical, and medical textiles.

This report is based on an extensive research study of the smart textile market backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2022, along with an analysis of the key opportunities, and illustrated with 120 figures and 15 tables.

I always love to view the table of contents (from the report’s order page),

Table of Contents      

Executive Summary  

Why Wearable Technologies Need More than Silicon + Software

The Solution Is in Your Closet

The Shift To Higher Value Textiles

Nanomaterials Add Functionality and Value

Introduction   

Objectives of the Report

World Textiles and Clothing

Overview of Nanotechnology Applications in the EU Textile Industry

Overview of Nanotechnology Applications in the US Textile Industry

Overview of Nanotechnology Applications in the Chinese Textile Industry

Overview of Nanotechnology Applications in the Indian Textile Industry

Overview of Nanotechnology Applications in the Japanese Textile Industry

Overview of Nanotechnology Applications in the Korean Textile Industry

Textiles in the Rest of the World

Macro and Micro Value Chain of Textiles Industry

Common Textiles Industry Classifications

End Markets and Value Chain Actors

Why Textiles Adopt Nanotechnologies        

Nanotechnology in Textiles

Examples of Nanotechnology in Textiles

Nanotechnology in Some Textile-related Categories

Technical & Smart Textiles

Multifunctional Textiles

High Performance Textiles

Smart/Intelligent Textiles

Nanotechnology Hype

Current Applications of Nanotechnology in Textile Production       

Nanotechnology in Fibers and Yarns

Nano-Structured Composite Fibers

Nanotechnology in Textile Finishing, Dyeing and Coating

Nanotechnology In Textile Printing

Green Technology—Nanotechnology In Textile Production Energy Saving

Electronic Textiles and Wearables   

Nanotechnology in Electronic Textiles

Concept

Markets and Impacts

Conductive Materials

Carbon Nanotube Composite Conductive Fibers

Carbon Nanotube Yarns

Nano-Treatment for Conductive Fiber/Sensors

Textile-Based Wearable Electronics

Conductive Coatings On Fibers For Electronic Textiles

Stretchable  Electronics

Memory-Storing Fiber

Transistor Cotton for Smart Clothing

Embedding Transparent, Flexible Graphene Electrodes Into Fibers

Organic Electronic Fibers

‘Temperature Regulating Smart Fabric’

Digital System Built Directly on a Fiber

Sensors    

Shirt Button Sensors

An integrated textile heart monitoring solution

OmSignal’s  Smart Bra

Printed sensors to track movement

Textile Gas Sensors

Smart Seats To Curtail Fatigued Driving.

Wireless Brain and Heart Monitors

Chain Mail Fabric for Smart Textiles

Graphene-Based Woven Fabric

Anti-Counterfeiting and Drug Delivery Nanofiber

Batteries and Energy Storage

Flexible Batteries

Cable Batteries

Flexible Supercapacitors

Energy Harvesting Textiles

Light Emitting Textiles  

Data Transmission 

Future and Challenges of Electronic Textiles and Wearables

Market Forecast

Smart Textiles, Nanotechnology and Apparel          

Nano-Antibacterial Clothing Textiles

Nanosilver Safety Concerns

UV/Sun/Radiation Protective

Hassle-free Clothing: Stain/Oil/Water Repellence, Anti-Static, Anti-Wrinkle

Anti-Fade

Comfort Issues: Perspiration Control, Moisture Management

Creative Appearance and Scent for High Street Fashions

Nanobarcodes for Clothing Combats Counterfeiting

High Strength, Abrasion-Resistant Fabric Using Carbon Nanotube

Nanotechnology For Home Laundry

Current Adopters of Nanotechnology in Clothing/Apparel Textiles

Products and Markets

Market Forecast

Nanotechnology in Home Textiles   

Summary of Nanotechnology Applications in Home Textiles

Current Applications of Nanotechnology in Home Textiles

Current Adopters of Nanotechnology in Home Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Military/Defence Textiles

Summary of Nanotechnology Applications in Military/Defence Textiles

Military Textiles

Current Applications of Nanotechnology in Military/Defence Textiles

Current Adopters of Nanotechnology in Military/Defence Textiles

Light Weight, Multifunctional Nanostructured Fibers and Materials

Costs and Benefits

Market Forecast

Nanotechnology Applications in Medical Textiles   

Summary of Nanotechnology Applications in Medical Textiles

Current Applications of Nanotechnology in Medical Textiles

Current Adopters of Nanotechnology in Medical Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Sports/Outdoor Textiles   

Summary of Nanotechnology Applications in Sports/Outdoor Textiles

Current Applications of Nanotechnology in Sports/Outdoor Textiles

Current Adopters of Nanotechnology in Sports/Outdoor Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Technical Textiles 

Summary of Nanotechnology Applications in Technical and smart textiles

Current Applications of Nanotechnology in Technical Textiles

Current Adopters of Nanotechnology in Technical and smart textiles

Products and Markets

Costs and Benefits

Market Forecast

APPENDIX I: Companies/Research Institutes Applying Nanotechnologies to the Textile Industry

Companies Working on Nanofiber Applications

Companies Working on Nanofabric Applications

Companies Working on Nano Finishing, Coating, Dyeing and Printing Applications

Companies Working on Green Nanotechnology In Textile Production Energy Saving Applications

Companies Working on E-textile Applications

Companies Working on Nano Applications in Clothing/Apparel Textiles

Companies Working on Nano Applications in Home Textiles

Companies Working on Nano Applications in Sports/Outdoor Textile

Companies Working on Nano Applications in Military/Defence Textiles

Companies Working on Nano Applications in Technical Textiles

APPENDIX II: Selected Company Profiles     

APPENDIX III: Companies Mentioned in This Report 

The report’s order page has a form you can fill out to get more information but, as far as I can tell, there is no purchase button or link to a shopping cart for purchase.

Afterthought

Recently, there was an email in my inbox touting a Canadian-based company’s underclothing made with the founder’s Sweat-Secret fabric technology (I have not been able to find any details about the technology). As this has some of the qualities being claimed for the nanotechnology-enabled textiles described in the report and the name for the company amuses me, Noody Patooty, I’m including it in this posting (from the homepage),

Organic Bamboo Fabric
The soft, breathable and thermoregulation benefits of organic bamboo fabric keep you comfortable throughout all your busy days.

Sweat-Secret™ Technology
The high performance fabric in the underarm wicks day-to-day sweat and moisture from the body preventing sweat and odour stains.

Made in Canada
From fabric to finished garment our entire collection is made in Canada using sustainable and ethical manufacturing processes.

This is not an endorsement of the Noody Patooty undershirts. I’ve never tried one.

As for the report, Tim Harper who founded Cientifica Research has in my experience always been knowledgeable and well-informed (although I don’t always agree with him). Presumably, he’s still with the company but I’m not entirely certain.

Cleaning up carbon dioxide pollution in the oceans and elsewhere

I have a mini roundup of items (3) concerning nanotechnology and environmental applications with a special focus on carbon materials.

Carbon-capturing motors

First up, there’s a Sept. 23, 2015 news item on ScienceDaily which describes work with tiny carbon-capturing motors,

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form.

The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers. …

A Sept 22, 2015 University of California at San Diego (UCSD) news release by Liezel Labios, which originated the news release, provides more details about the scientists’ hopes and the technology,

“We’re excited about the possibility of using these micromotors to combat ocean acidification and global warming,” said Virendra V. Singh, a postdoctoral scientist in Wang’s [nanoengineering professor and chair Joseph Wang] research group and a co-first author of this study.

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

“In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant,” said Kevin Kaufmann, an undergraduate researcher in Wang’s lab and a co-author of the study.

The micromotors are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement. The micromotors have an outer polymer surface that holds the enzyme carbonic anhydrase, which speeds up the reaction between carbon dioxide and water to form bicarbonate. Calcium chloride, which is added to the water solutions, helps convert bicarbonate to calcium carbonate.

The fast and continuous motion of the micromotors in solution makes the micromotors extremely efficient at removing carbon dioxide from water, said researchers. The team explained that the micromotors’ autonomous movement induces efficient solution mixing, leading to faster carbon dioxide conversion. To fuel the micromotors in water, researchers added hydrogen peroxide, which reacts with the inner platinum surface of the micromotors to generate a stream of oxygen gas bubbles that propel the micromotors around. When released in water solutions containing as little as two to four percent hydrogen peroxide, the micromotors reached speeds of more than 100 micrometers per second.

However, the use of hydrogen peroxide as the micromotor fuel is a drawback because it is an extra additive and requires the use of expensive platinum materials to build the micromotors. As a next step, researchers are planning to make carbon-capturing micromotors that can be propelled by water.

“If the micromotors can use the environment as fuel, they will be more scalable, environmentally friendly and less expensive,” said Kaufmann.

The researchers have provided an image which illustrates the carbon-capturing motors in action,

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Here’s a link to and a citation for the paper,

Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers by Murat Uygun, Virendra V. Singh, Kevin Kaufmann, Deniz A. Uygun, Severina D. S. de Oliveira, and oseph Wang. Angewandte Chemie DOI: 10.1002/ange.201505155 Article first published online: 4 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Carbon nanotubes for carbon dioxide capture (carbon capture)

In a Sept. 22, 2015 posting by Dexter Johnson on his Nanoclast blog (located on the IEEE [Institute for Electrical and Electronics Engineers] website) describes research where carbon nanotubes are being used for carbon capture,

Now researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur have found that they can tailor the gas adsorption properties of vertically aligned carbon nanotubes (VACNTs) by altering their thickness, height, and the distance between them.

“These parameters are fundamental for ‘tuning’ the hierarchical pore structure of the VACNTs,” explained Mahshid Rahimi and Deepu Babu, doctoral students at the Technische Universität Darmstadt who were the paper’s lead authors, in a press release. “This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does.”

Dexter provides a good and brief summary of the research.

Here’s a link to and a citation for the paper,

Double-walled carbon nanotube array for CO2 and SO2 adsorption by Mahshid Rahimi, Deepu J. Babu, Jayant K. Singh, Yong-Biao Yang, Jörg J. Schneider, and Florian Müller-Plathe. J. Chem. Phys. 143, 124701 (2015); http://dx.doi.org/10.1063/1.4929609

This paper is open access.

The market for nanotechnology-enabled environmental applications

Coincident with stumbling across these two possible capture solutions, I found this Sept. 23, 2015 BCC Research news release,

A groundswell of global support for developing nanotechnology as a pollution remediation technique will continue for the foreseeable future. BCC Research reveals in its new report that this key driver, along with increasing worldwide concerns over removing pollutants and developing alternative energy sources, will drive growth in the nanotechnology environmental applications market.

The global nanotechnology market in environmental applications is expected to reach $25.7 billion by 2015 and $41.8 billion by 2020, conforming to a five-year (2015-2020) compound annual growth rate (CAGR) of 10.2%. Air remediation as a segment will reach $10.2 billion and $16.7 billion in 2015 and 2020, respectively, reflecting a five-year CAGR of 10.3%. Water remediation as a segment will grow at a five-year CAGR of 12.4% to reach $10.6 billion in 2020.

As nanoparticles push the limits and capabilities of technology, new and better techniques for pollution control are emerging. Presently, nanotechnology’s greatest potential lies in air pollution remediation.

“Nano filters could be applied to automobile tailpipes and factory smokestacks to separate out contaminants and prevent them from entering the atmosphere. In addition, nano sensors have been developed to sense toxic gas leaks at extremely low concentrations,” says BCC research analyst Aneesh Kumar. “Overall, there is a multitude of promising environmental applications for nanotechnology, with the main focus area on energy and water technologies.”

You can find links to the report, TOC (table of contents), and report overview on the BCC Research Nanotechnology in Environmental Applications: The Global Market report webpage.

Global graphite market predictions

A Feb. 2, 2015 Persistence Market Research (PMR) news release about the worldwide graphite market found its way into my mailbox (on Mar. 2, 2015). Not being familiar with the business investment end of things or with Persistence Market Research I am cautiously interested in their market projections.

Here’s more from the news release,

According to a new market report published by Persistence Market Research “Global Market Study on Graphite: Battery Segment To Witness Highest Growth by 2020”, the global graphite market was valued at USD 13.62 billion in 2013 and is expected to grow at a CAGR [compound annual growth rate] of 3.7% from 2014 to 2020, to reach USD 17.56 billion in 2020.

Browse the full report with TOC at:
http://www.persistencemarketresearch.com/market-research/graphite-market.asp

Increasing the use of graphite in the automotive and battery industries is the major factor driving the demand for graphite. Graphite is an important material used in gaskets, clutch materials, motors, exhaust systems, and cylinder heads. In the past, asbestos was the main component of linings and disk brake pads. Graphite, with benefits such as low-noise braking, makes a good replacement for asbestos in brake pads. Moreover, it is an important element in the manufacture of ultra-lightweight carbon-fiber reinforced plastic (CFRP). Traditionally, CFRP was mainly used in the aerospace and Formula One car industries. However, CFRP is now gaining popularity in the passenger car industry due to its lightweight. This, in turn, helps reduce fuel consumption and CO2 emissions.

Asia-Pacific is the largest market for graphite globally. Rise of technologically advanced applications of graphite in pebble-bed nuclear reactors, fuel cells, solar power systems, and automotive and aerospace industries is driving the graphite market in the Asia Pacific region. China and India are the major markets for graphite in the region. Rising demand for steel and other metals has increased the demand for graphite electrodes in Asia Pacific. This, in turn, is driving the growth of the graphite market. China accounts for over 70% share of total graphite production in the world. According to China’s Twelfth Five-Year Plan, the government plans to have around 5.0 million battery-electric vehicles plying on the roads by 2020. This is expected to increase demand for graphite in the Asia Pacific market during the forecast period.

According to a research report, the sale of plug-in electric vehicles in North America is expected to rise at a CAGR of 30.0% from 2012 to 2020. The total sales of tablets in the U.S. market grew from 9.7 million in 2010 to 40.6 million in 2013. This growth in sales is expected to drive demand for lithium-ion batteries. Rising demand for electric vehicles and other electronic devices such as mobiles, tablets, laptops, and cameras offers huge potential for the growth of the lithium-ion battery industry. This, in turn, is further expected to boost demand for graphite in North America. Europe is the second-largest graphite market in the world. Growing use of carbon fiber instead of steel in the automotive and aerospace industries in Europe is leading to increasing demand for graphite. Graphite is considered as a key material for green technology. Due to this fact, it is widely used in many applications for energy storage, photovoltaics, and in various electronic products.

The graphite market is bifurcated on the basis of form (natural graphite and synthetic graphite). Synthetic graphite is further sub-segmented on the basis of form (graphite electrode, carbon fiber, graphite blocks, graphite powder, and others). Graphite market is also segmented on the basis of end-use (electrode, refractory, lubricant, foundry, battery, and others). All the segments provide market size and forecast by volume and by value. The synthetic graphite segment holds the largest share of USD 12.49 billion in the graphite market in 2013 and is expected to reach USD 16.06 billion by 2020 at a CAGR of 3.7% from 2014 to 2020.

In terms of revenue, the global graphite market grew from USD 12.30 billion in 2010 to USD 13.62 billion in 2013 at a CAGR of 3.4%. In terms of volume, the global graphite market grew from 2.19 million tons in 2010 to 2.68 million tons in 2013 at a CAGR of 7.1%. Under regional segment, the Asia Pacific graphite market (the largest market in 2013) increased by 3.8% CAGR during 2010–2013 to reach USD 9.17 billion in 2013.

Request Sample Report of Graphite Market:
http://www.persistencemarketresearch.com/samples/3367

I was intrigued to note Canadian businesses included in a list of the major companies in this field,

Some of the major companies operating in the global graphite market are Triton Minerals Ltd., Lamboo Resources Limited, Mason Graphite, Focus Graphite Inc., Energizer Resources Inc., Northern Graphite Corporation, Alabama Graphite Corp., Flinders Resources Ltd., Syrah Resources Limited, SGL Carbon SE, GrafTech International Holdings Inc, Graphite India Limited, Nippon Graphite Industries, Co., Ltd., Asbury Graphite Mills, Inc, Showa Denko K.K., and Tokai Carbon Co., Ltd.  [emphases mine]

The highlighted companies are Canadian and have been mentioned on this blog at least once in relation to graphite and/or graphene. One observation, Lomiko Metals (a British Columbia-based company mentioned here a few times) didn’t make the list.

Getting back to the PMR news release,

Related Published Report:

Global Market Study on Paints and Coatings: Industrial Paints and Coatings to Witness Highest Growth by 2020: http://www.persistencemarketresearch.com/market-research/paints-coatings-market.asp

Graphite Market, by Form

  • Natural graphite
  • Synthetic graphite

Synthetic Graphite Market, by Form

  • Graphite electrode
  • Carbon fiber
  • Graphite blocks
  • Graphite powder
  • Others

Graphite Market, by End Use

  • Electrode
  • Refractory
  • Lubricant
  • Foundry
  • Battery
  • Others

Graphite Market, by Region

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Browse PMR Chemicals and Materials Market Research Reports @
http://www.persistencemarketresearch.com/category/chemicals-and-materials.asp

About Us

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

Again, I cannot attest to the quality of the analysis but it’s safe to say it’s interesting.

For anyone as ignorant about business and investing terminology as I am, here’s a definition for CAGR (compound annual growth rate) from the Investopedia website,

CAGR isn’t the actual return in reality. It’s an imaginary number that describes the rate at which an investment would have grown if it grew at a steady rate. You can think of CAGR as a way to smooth out the returns.

Don’t worry if this concept is still fuzzy to you – CAGR is one of those terms best defined by example. Suppose you invested $10,000 in a portfolio on Jan 1, 2005. Let’s say by Jan 1, 2006, your portfolio had grown to $13,000, then $14,000 by 2007, and finally ended up at $19,500 by 2008.

Your CAGR would be the ratio of your ending value to beginning value ($19,500 / $10,000 = 1.95) raised to the power of 1/3 (since 1/# of years = 1/3), then subtracting 1 from the resulting number:

1.95 raised to 1/3 power = 1.2493. (This could be written as 1.95^0.3333).1.2493 – 1 = 0.2493Another way of writing 0.2493 is 24.93%. [sic]

Thus, your CAGR for your three-year investment is equal to 24.93%, representing the smoothed annualized gain you earned over your investment time horizon.