Tag Archives: Calgary

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

Science Alive! is everywhere; #AskACurator is Sept. 13, 2017; and more

Researching a piece sometimes leads you to unexpected corners on the internet. This started with an announcement about #AskACurator on Twitter and Instagram in the August 30, 2017 issue (received via email) of What’s Up @ The Museums (from Ingenium or what was known as the Canada Science and Technology Museums Corporation).

Science Alive!

In trying to pad out the one announcement that might be of interest to people who don’t live near one of Canada’s science and technology museums, i.e., anyone who lives outside of Ottawa, Ontario, I checked out their fairly new (the first video in the series was posted in February 2016) science podcast series, Science Alive!

Despite reservations (I have very little interest in space exploration and even less in the Canadarm), I found the first video in the series quite engaging,

Of course, I had more questions but that’s the point o what is intended to be both an information and promotional video designed to attract visitors.

But, this is not the only Science Alive. Simon Fraser University (SFU) has a student-run, not-for-profit organization known as Science AL!VE, which runs summer camps and weekend clubs in British Columbia. (This SFU organization is part of Actua, “Canada’s largest STEM [science, technology, engineering, and mathematics] outreach organization. They have annual reports stretching back to 2010/11.)

There’s also a Science Alive with Living Things in Michigan, US and a science alive! in New Zealand, which “is a not-for-profit trust promoting science and technology worldwide.”

I had to stop there but there are more ‘science alive’ programmes out there.

#AskACurator

Here’s the announcement that started my Science Alive! adventure, from the August 30, 2017 issue (received via email) of What’s Up @ The Museums,

#AskACurator
September 13, 2017
September is more than back to school time – it’s Ask a Curator Time! Our Museums are excited to once again be among more than 1200 museums from 52 countries participating in #AskACurator Day on Wednesday September 13, 2017! Have a question for our curators?

Send your questions to @SciTechMuseum, @avspacemuseum or @AgMuseum!

#AskACurator is being organized by someone called Mar Dixon. Her website‘s About Me page (from the homepage, click on About Me)  lists current and past projects only. I can certainly appreciate why she might have done that. (IMO) Describing your education, past employers, achievements, etc., i.e., standard biographical information can get boring but the projects you’re working on or have worked on and are passionate about? Well, for some us it’s all about the work.

Here’s more about the Sept. 13, 2017 #AskACurator day on Twitter and Instagram,

This is the list of all museums who signed up so far. It is in alphabetical order by country. I’m updating this page every few days. If your museum isn’t on listed, use the sign up form.  If you are listed and can NOT take part in 2017 please contact me at mar@mardixon.com or @MarDixon on Twitter.

Please note:  @AskACurator is also on Instagram AND Twitter so feel free to use the tag on there!

How to take Part: Participants  Want to know how to Take Part? There’s an article for that! (Please note the date has changed!)

How to take Part: Museums  You might want to tell your followers the time your curator will be available.  Some museums write it on their events page, others leave it open to see what questions they receive.  However, to get your name out there – it helps to jump in to general questions and not just wait to be asked a specific question.  Some people will use the hashtag to ask questions such as how to know what to collect, what skills are needed, what are the unknowns of being a curator etc.  We also have a few #Askacurator people who have questions like ‘do you have a teddy bear in your collection’ or ‘what’s the funniest thing you heard in your museum’ etc.

Last updated August 29 2017
Museums taking part: 1421

Countries: 54

For anyone who’s never dealt with a curator, you might find this video where curator David Pantalony discusses a giant globe and what they did and didn’t include on the globe from Ingenium’s Science Alive! series informative,

Beakerhead Sept. 13 – 17, 2017 in Calgary

Here’s more about this year’s iteration of the event (from the Beakerhead attend page),

Mark your calendars for September 13 – 17, 2017 when Beakerhead takes over Calgary with a smash up of art, science and engineering both indoors and out! From citywide, pop-up engineered art galleries and flame-spitting, larger-than-life public art encounters to the entertaining science of … everything, there’s something for everyone!

With over 60 events and programs to choose from, Beakerhead has something for everyone – whether you define yourself as “creative” or “technical” in nature. In 2016 over 130,000 people took part, including a few actual astronauts!

In 2017, Beakerhead celebrates the ups and downs of experimentation and invention!
A special Canada 150 version of Beakerhead will see Calgary’s downtown core become a canvas for a larger-than-life interactive experience where participants will navigate to and from Beakerhead encounters å la Snakes and Ladders while we celebrate the ups and downs that mark the wild and bumpy ride of invention and creativity.

Events, experiments and programs that make up the five day spectacle include:

  • Snakes and Ladders: An interactive experience that encourages exploration of the city (and human ingenuity) through delightfully engineered public art installations.
  • Workshops and talks: explore the science of scent, play with your food, immerse yourself in the laboratory of life!
  • Four to Six: A street party on Stephen Avenue where science gets social.
  • Ticketed events: Command to be entertained by world famous (and soon-to-be-famous) inventors, scientists, performers (and maybe even an animal or two!)
  • Ingenuity challenges: In that past, Beakerhead has pit catapult teams against each other – this year expect a new high-reaching competition!
  • Community programs: Beakerhead becomes a stage for over 100 collaborating organizations, both large and small, to show off their discoveries and creativity through events and programs of their own. Learn how you can take part, too!
  • School tours, talks, and challenges: Beakerhead engages 25,000 students each year.

The Beakerhead events page is overwhelming and I suggest the unitiated scrol down to the Highlights section where you can find out more about the organization, find a programme announcement which allows you to orient yourself (somewhat), and more.

European Science Open Forum (ESOF) 2018

This science shindig comes along every two years. The last one was in Manchester, UK in 2016 and now it’s time to gear up for Toulouse, France in 2018 (from the ESOF July 2017 newsletter received via email),

ESOF 2018 in Toulouse.
Save the date! One year to go.

The next EuroScience Open Forum, ESOF 2018 will be held in Toulouse, France, 9-14 July 2018 in just one year from now!
Save the dates and plan your visit to the European City of Science 2018, with the ESOF 2018 motto: « Sharing Science: towards new horizons! »

With more than 300 sessions proposed in the first call for scientific sessions on 10 themes and 4 cross-cutting domains covering all sciences, the programme promises to be attractive and a major crossroad of debates on the future of science and how to share it.

Keep an eye on ongoing and future calls: www.esof.eu

Key dates:
Call for Scientific sessions: February -June 2017
Call for Science in the City Festival initiatives: June – September 2017
Call for Careers & Science to Business sessions: July – October 2017
Call for posters and interactive presentations: October 2017 – January 2018

Consider that
– ESOF is the largest interdisciplinary science event in Europe.
– ESOF is a cross-road for exchange between scientists, students, policy makers, innovators, industry managers and science media.
– 2018 is a key year for the preparation of the next framework programme [major seven-year European Union science funding programme; the current such programme is Horizon 2020, which stated in 2013] for research and innovation of the European Union and key discussions will occur at ESOF 2018.

And that
– Toulouse, the Capital of Occitania, in Southern France and the Capital of aeronautics and space research will surprise you with the many facets of its culture and scientific domains.
– And is both a historical and modern lively City, home of 120 000 students!

We are eager to share this event with you and are sure you will make it a wonderful success!

Dr Anne Cambon-Thomsen
ESOF 2018 Champion

You can find out more about ESOF on the website’s About page,

ESOF (EuroScience Open Forum) is the largest interdisciplinary science meeting in Europe. It is dedicated to scientific research and innovation and offers a unique framework for interaction and debate for scientists, innovators, policy makers, business people and the general public.

Created in 2004 by EuroScience, this biennial European forum brings together over 4 000 researchers, educators, business actors, policy makers and journalists from all over the world to discuss breakthroughs in science. More than 40% of the participants are students and young researchers.

The 8th edition of ESOF will take place in Toulouse, France, from 9 till 14 July 2018.

ESOF figures

4000+ delegates from 80+ countries
400+ journalists and science communicators
150+ conferences, workshops and scientific sessions
200+ events open to the general public, attended by more than 35 000 participants

What to expect at ESOF?

Taking part in ESOF is a unique opportunity to:

  • further knowledge on the challenges and breakthroughs in research, innovation and their relation to society;
  • create links, exchange and debate with leaders of the scientific community worldwide in an interdisciplinary context;
  • communicate the latest news on scientific research and innovation to an international audience;
  • develop a network in view of building a research career.

Find out more about ESOF and EuroScience: www.euroscience.org

I can’t find an overarching theme for the event or any promotional videos but there is this: Robots and humans : How do they cooperate ? 5Th preparatory meeting ESOF 2018 video (running time: 1 hour and 41 mins.) The title is if nothing else an intriguing hint of what ESOF 2018 may hold.

I also checked out the Science in the City Festival (formerly City of Science) and found information for this previously mentioned call,

Parallel to the EuroScience Open Forum, the Science in the City Festival will invest the city and its surroundings.

As a free event, Science in the City Festival is aimed at people of all ages who are curious about science and innovation.

If you wish to be part of the Science in the City programme, please send your proposals for our call for initiatives by filling this online form.

Deadline: 30th September 2017

Call for initiatives for the Science in the City Festival(PDF)

The online form lists a set of ESOF 2018 themes or stems or topics,

If it helps, Toulouse is known as ‘la Ville Rose’ or Pink City.

That’s it for this roundup of ‘sciencish’ bits.

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.

Colleagues

Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Beakerhead’s Big Bang (art/engineering) Residency in Alberta, Canada

I am sorry for the late notice as the deadline for submissions is Oct. 9, 2015 so there’s not much time to prepare. In any event, here’s more information about the Big Bang Residency Program call for proposals,

Every September, Beakerhead erupts onto the streets and venues of Calgary with cultural works that have science or engineering at their core. This is a call for proposals to build a creative work through an initiative called the Big Bang Residency Program. The work will be built over the course of a year with a collaborative team and will premiere on September 14, 2016, at Beakerhead in Calgary, Canada.

About the Big Bang Residency Program

The Big Bang Residency Program is funded by the Remarkable Experience Accelerator; a joint initiative of Calgary Arts Development and the Calgary Hotel Association. The program is led by Beakerhead with partnership support from the internationally renowned Banff Centre.

The program will support the creation of a total of three major new artworks over three years that will premiere internationally in Calgary during Beakerhead each year. This residency program will support:

  • One team per year each consisting of no less than four and no more than five individuals (additional support members are possible; however, the maximum size of the core team in residence will be five).
  • Two weeks in residence total; one week in the late fall and one week the following summer, with exact dates to be arranged with The Banff Centre and the selected team in residence. The production of the work is expected to take place in-between these two residency periods in Calgary.
  • Call for Proposals

    Beakerhead and The Banff Centre will support the design and build of a work to be shared with the world during Beakerhead, September 14 to 18, 2016. It will be created over the course of the year, which will include two weeks in residence at The Banff Centre with an interdisciplinary team of collaborators.

    Who is Eligible?

    This Call for Proposals is open to international artists, engineers, architects, designers, scientists and others. In addition to meeting the requirements for team composition below, the team must have a connection to Calgary so that the building of the work takes place in Calgary, the work is developed in Banff, the work premieres in Calgary and calls Calgary its home base. The proposal need not be submitted by a complete team: individuals may apply. The team can be assembled with support from The Banff Centre and Beakerhead to ensure that the collaboration of artists and engineers will result in a project that is created in Calgary/Banff over the course of the year.

    Team Composition 

    Each team must include:

    1. At least one individual who has received specialized art training (degree from a recognizing art institution) and has developed and exhibited a body of work;
    2. At least one individual who has received specialized engineering training (degree from an accredited engineering school), and previous experience in any artistic medium;
    3. Other members of the team should bring additional art and design skills, technical skills and project management skills. They may include emerging and professional roles.

    Staging and Exhibition

    The engineered artworks produced during the residency will be presented during Beakerhead in an unprecedented spectacle of performance and public engagement. The staging of the premiere may be developed in partnership with other venues, as dictated by the artworks. Many Beakerhead events take place in partnership with existing venues, such as theatres, galleries, public spaces, business revitalization zones, universities and libraries. The artistic disciplines may include installation, performance, visual art, music or any other media.

    The Details

    Design Criteria

    The successful proposal will meet the following criteria.

    • Location: The installation will be in a public location or available venue in Calgary, Alberta, from September 14 to 18 2016, and can be toured afterwards. Park-like settings and public roadways may be possible.
    • Dimension: There is no limit on dimension. However, proposals for works that can engage larger numbers of people at the scale of public art will be given preference.
    • Scope: Preference will be given to works that are both arresting to view and interesting to experience first-hand.
    • Install and De-install: Up to four days can be provided to install and de-install. The successful team must be capable of completing this work with volunteer crews.
    • Material: All materials must meet North American and European building and fire safety codes.

    Budget                                     

    A budget of CAD 24,000 is available for materials and supplies. The artist/collaborator fee is CAD 5,000 per team member up to CAD 25,000. Two weeks in residence will be provided for a five-person team, including accommodation and meals at The Banff Centre. Support for venue rental over the winter for build space will be provided, as well as heavy equipment costs.

    The budget may include:

    • All additional materials costs
    • Equipment services/rental for installation and de-installation
    • Contracted labour for specialized services
    • Documentation expenses
    • Stipend per team member (CAD 5,000 per member up to CAD 25,000)
    • Workshop and fabrication space rental in Calgary

    The budget may not include:

    • Travel costs
    • Salaries and wages

    If the budget proposed exceeds the amount of funding available, please detail your plans for acquiring additional funds to make up any projected shortfall.

    Additional

    Preference will be given to projects that consider:

    • Delightful and thought-provoking experiences at the crossroads of art and engineering
    • Use of public space
    • Assembly, strike and touring ability
    • Engagement of a large volume of viewers
    • Durability for multiple days of high volume public interaction

    Timeline

    Important 2015/16 Dates

    • Aug 6, 2015:  Call for proposals
    • Oct 9: Deadline for submissions
    • Nov 6: Announcement of the successful proposal
    • Dec 6: Presentation of the successful team at the annual Beakerhead partners meeting
    • Dec 7-12*: Residency Week 1 in Banff: Detailed production plan completed
    • Jan 20, 2016: Concept unveiled to public and build volunteers engaged
    • Feb-August: Build period in Calgary
    • Aug 22-27*: Residency Week 2 in Banff: Presentation planning and rehearsals
    • Sept 14 – 18: International premiere at Beakerhead!

    *dates may change

    Timeline Details

    The program will lift off with an announcement in August 2015, and the first major artworks premiered in September 2016. A second round will be announced in the summer of 2016, and a third in the summer of 2017.

    Interested applicants are encouraged to attend Beakerhead 2015 (September 16 – 20), or have an associate attend, to fully understand the presentation opportunities. The final team will be announced in the fall, and will commence the term with a one-week period “in residence” at the Banff Centre (a week to work full-time on the project) to develop the detailed design and production plan. The partnership with The Banff Centre will support the development of design drawings and a business strategy.

    The build will then take place over the winter and summer in Calgary. Beakerhead will support the successful team by making introductions to local resources and facilities.

    The team in residence will be strongly encouraged to engage an expanded team of volunteers in the building process to create a community of support around the spectacle element.

There are more details here including the information on how to make a submission.

Of Canadian 2015 election science debates and science weeks

You’d think science and technology might rate a mention in a debate focused on the economy but according to all accounts, that wasn’t the case last night in a Sept. 17, 2015 Canadian federal election debate featuring three party leaders, Justin Trudeau of the Liberal Party, Thomas Mulcair of the New Democratic Party (NDP), and Stephen Harper, Prime Minister and leader of the Conservative Party. BTW, Elizabeth May, leader of the Green Party, was not invited but managed to participate by tweeting video responses to the debate questions. For one of the more amusing and, in its way, insightful commentaries on the debate, there’s a Sept. 17, 2015 blog posting on CBC [Canadian Broadcasting Corporation] News titled: ‘Old stock Canadians,’ egg timer, creepy set top debate’s odd moments; Moderator David Walmsley’s Irish accent and a ringing bell get reaction on social media.

As for science and the 2015 Canadian federal election, Science Borealis has compiled an informal resource list in a Sept. 18, 2015 posting and while I’ve excerpted the resources where you can find suggested questions for candidates, there’s much more to be found there,

 

 

Interestingly, the journal Nature has published a Sept. 17, 2015 article (h/t @CBC Quirks) by Nicola Jones featuring the Canadian election and science concerns and the impact science concerns have had on opposition party platforms (Note: Links have been removed),

Canadians will head to the polls on 19 October [2015], in a federal election that many scientists hope will mark a turning point after years of declining research budgets and allegations of government censorship.

In an unprecedented move, the Professional Institute of the Public Service of Canada — a union in Ottawa that represents more than 57,000 government scientists and other professionals — is campaigning in a federal race. “Here’s how we do things in the Harper government,” declares one of the union’s radio advertisements. “We muzzle scientists, we cut research and we ignore anyone who doesn’t tell us what we want to hear.”

Science advocates see little chance that their issues will be aired during a 17 September [2015] debate in Calgary that will pit Harper against NDP [New Democratic Party] leader Thomas Mulcair and Liberal leader Justin Trudeau. But concerns about the state of Canadian science have nevertheless influenced party platforms.

The middle-left Liberal Party has made scientific integrity part of its election campaign, proposing the creation of a central public portal to disseminate government-funded research. The party seeks to appoint a chief science officer to ensure the free flow of information.

Similarly, the NDP has called for a parliamentary science officer, a position that would be independent of the majority party or coalition leading the government.

Adding to the concern about the practice of science in Canada is the delayed release of a biennial report from the government’s Science, Technology and Innovation Council (STIC). Paul Wells in a June 26, 2015 article for Maclean’s Magazine discusses the situation (Note: Links have been removed),

It is distressing when organizations with no partisan role play the sort of games partisans want. The latest example is the advisory board that the Harper government created to tell it how Canada is doing in science.

I have written about the Science, Technology and Innovation Council every two years since it produced its first major report, in May 2009. STIC, as it’s known, is not some fringe group of pinko malcontents trying to stir up trouble and turn the people against their right and proper governing party. It was conceived by the Harper government (in 2007), appointed by the Harper government (in bits ever since), and it consists, in part, of senior officials who work with the Harper government every day. …

This group gives the feds the best advice they can get about how Canada is faring against other countries in its science, research and technology efforts. Its reports have been increasingly discouraging.

Perhaps you wonder: What’s the situation now? Keep wondering. Every previous STIC biennial report was released in the spring. This winter, I met a STIC member, who told me the next report would come out in May 2015 and that it would continue most of the declining trend lines established by the first three reports. I wrote to the STIC to ascertain the status of the latest report. Here’s the answer I received:

“Thank you for your interest. STIC’s next State of the Nation report will be released later in the Fall. We will be happy to inform you of the precise date and release details when they have been confirmed.”

There is no reason this year’s report was not released in the spring, as every previous report was. None except the approach of a federal election.

Getting back to a national science debate, I have written about a proposed debate to be held on the CBC Quirks and Quarks radio programme here in a Sept. 3, 2015 posting which also features a local upcoming (on Weds., Sept. 23, 2015) election science and technology debate amongst  federal candidates in Victoria, BC. I cannot find anything more current about the proposed national science debate other than the CBC radio producer’s claim that it would occur in early October. Earlier today (Sept. 18, 2015) I checked their Twitter feed (https://twitter.com/CBCQuirks) and their website (http://www.cbc.ca/radio/quirks). I wonder what’s taking so long for an announcement. In the space of a few hours, I managed to get Ted Hsu and Lynne Quarmby, science shadow ministers for the Liberal and Green parties, respectively, to express interest in participating.

Well, whether or not there is a 2015 national science debate, I find the level of interest, in contrast to the 2011 election, exciting and affirming.

In the midst of all this election and science discussion, there are some big Canadian science events on the horizon. First and technically speaking not on the horizon, there’s Beakerhead (a smashup of art, science, and engineering) in Calgary, Alberta which runs from Sept. 16 – 20, 2015. Here are a few of the exhibits and installations you can find should you get to Calgary in time (from a Sept. 16, 2015 Beakerhead news release),

The five days of Beakerhead officially get rolling today with the world’s largest pop-up gallery, called a String (Theory) of Incredible Encounters, with a circumference of five kilometres around downtown Calgary.

The series of public art installations is an exploration in creativity at the crossroads of art, science and engineering, and can be seen by touring Calgary’s neighbourhoods, from Inglewood to East Village to Victoria Park, 17th Ave and Kensington. The home base or hub for Beakerhead this year is at Station B (the Beakerhead moniker for installations at Fort Calgary).

Station B is home to two other massive firsts – a 30-foot high version of the arcade claw game, and a 6,400 square foot sandbox – all designed to inspire human ingenuity.

Beakerhead 2015 event will erupt on the streets and venues of Calgary from September 16 to 20, and includes more than 160 collaborators and 60 public events, ranging from theatre where the audience is dining as part of the show to installations where you walk through a human nose. More than 25,000 students will be engaged in Beakerhead through field trips, classroom visits and ingenuity challenges.

Just as Beakerhead ends, Canada’s 2015 Science Literacy Week opens Sept. 21 – 27, 2015. Here’s more about the week from a Sept. 18, 2015 article by Natalie Samson for University Affairs,

On Nov. 12 last year [2014], the European Space Agency landed a robot on a comet. It was a remarkable moment in the history of space exploration and scientific inquiry. The feat amounted to “trying to throw a dart and hit a fly 10 miles away,” said Jesse Hildebrand, a science educator and communicator. “The math and the physics behind that is mindboggling.”

Imagine Mr. Hildebrand’s disappointment then, as national news programs that night spent about half as much time reporting on the comet landing as they did covering Barack Obama’s gum-chewing faux pas in China. For Mr. Hildebrand, the incident perfectly illustrates why he founded Science Literacy Week, a Canada-wide public education campaign celebrating all things scientific.

From Sept. 21 to 27 [2015], several universities, libraries and museums will highlight the value of science in our contemporary world by hosting events and exhibits on topics ranging from the lifecycle of a honeybee to the science behind Hollywood films like Jurassic World and Contact.

Mr. Hildebrand began developing the campaign last year, shortly after graduating from the University of Toronto with a bachelor’s degree in ecology and evolutionary biology. He approached the U of T Libraries for support and “it really snowballed from there,” the 23-year-old said.

Though Mr. Hildebrand said Science Literacy Week wasn’t inspired by public criticism against the federal government’s approach to scientific research and communication, he admitted that it makes the campaign seem that much more important. “I’ve always wanted to shout from the rooftops how cool science is. This is my way of shouting from the rooftops,” he said.

In the lead-up to Science Literacy Week, museum scientists with the Alliance of Natural History Museums of Canada have been posting videos of what they do and why it’s important under the hashtag #canadalovesscience. The end of the campaign will coincide with a lunar eclipse and will see several universities and observatories hosting stargazing parties.

You can find out more about this year’s events on the Science Literacy Week website. Here are a few of the BC events I found particularly intriguing,

UBC Botanical Garden – Jointly run as part of National Forest Week/Organic Week

September 20th, 10 a.m-12 p.m – A Walk in the Woods

Come discover the forest above, below and in between on our guided forest tour! Explore and connect with trees that hold up our 300-metre long canopy walkway. [emphasis mine] Meet with grand Firs, Douglas Firs and Western Red Cedars and learn about the importance of forests to biodiversity, climate change and our lives.

September 24th, 7:30-11 P.M – Food Garden Tour and Outdoor Movie Night

What better way to celebrate Organic Week than to hear about our exciting plans for the UBC Food Garden? Tour renewed garden beds to see what’s been growing. Learn about rootstocks, cultivars, training techniques and tree forms for fruit trees in this area.  Then make your way to out enchanting outdoor Ampitheatre and watch Symphony of the Soil, a film celebrated by the UN for 2015, the International Year of the Soil.

I highlighted the UBC Botanical Garden canopy walkway because you really do walk high up in the forest as you can see in this image of the walkway,

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

This image is from an undated article by Lindsay Follett for Family Fun Vancouver.

While it’s still a month away, there is Canada’s upcoming 2015 National Science and Technology Week, which will run from Oct. 16 – 25. To date, they do not have any events listed for this year’s week but they do invite you to submit your planned event for inclusion in their 2015 event map and list of events.

Tim Blais and A Capella Science

Thanks to David Bruggeman’s July 16, 2014 ‘musical science’ posting on his Pasco Phronesis blog for information about another Canadian ‘science musician’. Tim Blais has been producing science music videos for almost two years now. His first video, posted on YouTube, in August 2012 featured an Adele tune ‘Rolling in the deep’ sung to lyrics featuring the Higgs Boson (‘Rolling in the Higgs’),

He shares the text of the lyrics (from http://www.youtube.com/watch?v=VtItBX1l1VY&list=UUTev4RNBiu6lqtx8z1e87fQ),

There’s a collider under Geneva
Reaching new energies that we’ve never achieved before
Finally we can see with this machine
A brand new data peak at 125 GeV
See how gluons and vector bosons fuse
Muons and gamma rays emerge from something new
There’s a collider under Geneva
Making one particle that we’ve never seen before

The complex scalar
Elusive boson
Escaped detection by the LEP and Tevatron
The complex scalar
What is its purpose?
It’s got me thinking

Chorus:
We could have had a model (Particle breakthrough, at the LHC)
Without a scalar field (5-sigma result, could it be the Higgs)
But symmetry requires no mass (Particle breakthrough, at the LHC)
So we break it, with the Higgs (5-sigma result, could it be the Higgs)

Baby I have a theory to be told
The standard model used to discover our quantum world
SU(3), U(1), SU(2)’s our gauge
Make a transform and the equations shouldn’t change

The particles then must all be massless
Cause mass terms vary under gauge transformation
The one solution is spontaneous
Symmetry breaking

Roll your vacuum to minimum potential
Break your SU(2) down to massless modes
Into mass terms of gauge bosons they go
Fermions sink in like skiers into snow

Lyrics and arrangement by Tim Blais and A Capella Science
Original music by Adele

In a Sept. 17, 2012 article by Ethan Yang for The McGill Daily (University of McGill, Montréal, Québec) Blais describes his background and inspiration,

How does a master’s physics student create a Higgs boson-based parody of Adele’s “Rolling in the Deep” that goes viral and gets featured in popular science magazines and blogs? We sat down with Tim Blais to learn more about the personal experiences leading to his musical and scientific project, “A Capella Science”.

McGill Daily: Could you tell us a little bit about yourself: where you’re from, your childhood, and other experiences that in hindsight you think might have led you to where you are now?
Tim Blais: I grew up in a family of five in the little town of Hudson, Quebec, twenty minutes west of the island of Montreal. My childhood was pretty full of music; I started experimenting with the piano, figuring out songs my older siblings were playing, when I was about four, and soon got actual piano lessons. My mom also ran, and continues to run, our local church choir, so from the time I was three I was singing in front of people as well. Also at about three or four a kid in my preschool introduced me to Bill Nye the Science Guy, which became the only TV I watched for about six years. After kindergarten I didn’t go to school until Grade 10, but was homeschooled by my parents. We had a very multifaceted way of learning […] that I think allowed me to see the big picture of things without getting bogged down in the horrible little details that are often the stumbling block when you start learning something. That gave me a fascination with science that’s essentially carried me through a science DEC and one-and-a-half university degrees. But my parents have always been super cool about not pressuring us kids to be anything in particular, and now to show for it they’ve got an emerging rock star – my brother, Tom; a dedicated speech pathologist – my sister, Mary-Jane; and me, researcher in incomprehensible physics and recently popular internet fool. I think they did alright.

Since 2012, Blais has graduated with a masters in physics and is now devoted to a life as a musician (from a 2013 [?] posting on redefineschool.com),

Blais has just finished up his master’s degree program at McGill, and he says he’s putting academia aside for a while. “I’ve been in school all my life so I’m switching gears and being a musician this year!” he tweeted. And that career choice is just fine by McGill theoretical physicist Alex Maloney, Blais’ faculty adviser.

To bring us up-to-date with Blais, David has featured the latest A Capella Science music video titled: ‘Eminemium (Choose Yourself)’ in his July 16, 2014 ‘musical science’ posting on the Pasco Phronesis blog.

One last tidbit, Blais will be appearing at Calgary’s (Alberta) Beakerhead ‘festival’ (Sept. 10 – 14, 2014). Specifically, he will be at (from the TELUS Sept. 11, 2014 event page):

TELUS Spark Adults Only Night
September 11 [2014] @ 6:00 pm – 10:00 pm
[TELUS Spark Adults Only Night]

Mark your calendar for this special Beakerhead-themed adult night at TELUS Spark Science Centre. Meet the Festo Automation folks from Germany and see their mind-boggling biomechanical creatures up close. Are you also a fan of the internet sensation A Capella Science Bohemian Gravity? Meet the maker, Tim Blais, here in Calgary for Beakerhead.

This event is included with Admission and Membership. TOP TIP: Skip the queue with advance tickets. [go to TELUS event page to buy tickets]

You can find out more about A Capella Science on its Facebook page or via its Twitter feed. For more about Beakerhead events, go here.

Carbon Management Canada announces research for an affordable CO2 nanosensor

Researchers at the University of Toronto (Ontario) and St. Francis Xavier University (Nova Scotia) have received funding from Carbon Management Canada (a Network Centre for Excellence [NCE]) to develop an ultra-sensitive and affordable CO2 nanosensor. From the Feb. 4, 2013 news item on Nanowerk,

Researchers at the Universities of Toronto and St. Francis Xavier are developing an affordable, energy efficient and ultra-sensitive nano-sensor that has the potential to detect even one molecule of carbon dioxide (CO2).

Current sensors used to detect CO2 at surface sites are either very expensive or they use a lot of energy. And they’re not as accurate as they could be. Improving the accuracy of measuring and monitoring stored CO2 is seen as key to winning public acceptance of carbon capture and storage as a greenhouse gas mitigation method.

With funding from Carbon Management Canada (CMC), Dr. Harry Ruda of the Centre for Nanotechnology at the University of Toronto and Dr. David Risk of St. Francis Xavier are working on single nanowire transistors that should have unprecedented sensitivity for detecting CO2 emissions.

The Carbon Management Canada (CMC) Feb. 4, 2013 news release, which originated the news item, provides  details about the funding and reasons for the research,

CMC, a national network that supports game-changing research to reduce CO2 emissions in the fossil energy industry as well as from other large stationary emitters, is providing Ruda and his team $350,000 over three years. [emphasis mine] The grant is part of CMC’s third round of funding which saw the network award $3.75 million to Canadian researchers working on eight different projects.

The sensor technology needed to monitor and validate the amount of CO2 being emitted has not kept pace with the development of other technologies required for carbon capture and storage (CCS), says Ruda.

“This is especially true when it comes to surface monitoring verification and accounting (MVA),” he says. “Improving MVA is essential to meet the potential of carbon capture and storage.”

And that’s where the ultra-sensitive sensor comes in. “It’s good for sounding the alarm but it’s also good from a regulatory point of view because you want to able to tell people to keep things to a certain level and you need sensors to ensure accurate monitoring of industrial and subsurface environments,” Ruda says.

Given CMC’s vision for ‘game-changing research to reduce carbon emissions’, it bears noting that this organization is located in Calgary (the street address ‘EEEL 403, 2500 University Drive NW Calgary‘ as per my search today [Feb.4.13] on Google [https://www.google.ca/search?q=CMC+address+Calgary&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a] suggests the University of Calgary houses the organization). Calgary is the home of the Canadian fossil fuel industry and a centre boasting many US-based fossil fuel-based companies due to its size and relative proximity to the Alberta oil sands (aka, Athabaska oil sands). From the Wikipedia essay (Note: Links and footnotes have been removed),

The Athabasca oil sands or Athabasca tar sands are large deposits of bitumen or extremely heavy crude oil, located in northeastern Alberta, Canada – roughly centred on the boomtown of Fort McMurray. These oil sands, hosted in the McMurray Formation, consist of a mixture of crude bitumen (a semi-solid form of crude oil), silica sand, clay minerals, and water. The Athabasca deposit is the largest known reservoir of crude bitumen in the world and the largest of three major oil sands deposits in Alberta, along with the nearby Peace River and Cold Lake deposits.

Together, these oil sand deposits lie under 141,000 square kilometres (54,000 sq mi) of boreal forest and muskeg (peat bogs) and contain about 1.7 trillion barrels (270×109 m3) of bitumen in-place, comparable in magnitude to the world’s total proven reserves of conventional petroleum. Although the former CEO of Shell Canada, Clive Mather, estimated Canada’s reserves to be 2 trillion barrels (320 km3) or more, the International Energy Agency (IEA) lists Canada’s reserves as being 178 billion barrels (2.83×1010 m3).

As for locating a carbon management organization in Calgary, it does make sense of a sort. Here’s a somewhat calmer description of Carbon Management Canada on the website’s About CMC page,

Carbon Management Canada CMC-NCE [Network Centre for Escellence] is a national network of academic researchers working with experts in the fossil energy industry, government, and the not-for-profit sector. Together, we are developing the technologies, the knowledge and the human capacity to radically reduce carbon dioxide emissions in the fossil energy industry and other large stationary emitters.

Carbon emissions and the growing global concern about its effects present a unique opportunity for innovation and collaboration, especially in the fossil energy industry. Rapidly increasing global complexity demands robust, responsive innovation that can only develop in a highly collaborative context involving industry, scientists, policy makers, politicians and industry leaders in concert with an informed, supportive public.

Carbon Management Canada is the national body charged with harnessing the collective energy of this diverse group in order to push forward an ambitious agenda of innovation and commercialization to bring research from the lab into the world of practice.

Funding

Funding for CMC was provided through the federal Networks of Centres of Excellence ($25 million) and the Province of Alberta through Alberta Environment ($25 million). Industry has also provided $5.7 million in contributions.

The Network has over 160 investigators at 27 Canadian academic institutions and close to 300 graduate and postdoctoral students working on research projects. CMC currently has invested $22 million in 44 research projects.

Our Themes

CMC is an interdisciplinary network with scientists working in fields that range from engineering to nanotechnology to geoscience to business to political science and communications. These investigators work in 4 themes: Recovery, Processing and Capture; Enabling and Emerging Technologies; Secure Carbon Storage; and Accelerating Appropriate Deployment of Low Carbon Emission Technologies.

Given that CMC is largely government-funded, it seems odd (almost as if they don’t want anyone to know) that the website does not feature a street address. In addition to trying  a web search, you can find the information on the last page of the 2012 annual/financial report. One final note, the chair of CMC’s board is Gordon Lambert who is also Vice President, Sustainable Development, Suncor Energy. From Suncor’s About Us webpage,

n 1967, we pioneered commercial development of Canada’s oil sands — one of the largest petroleum resource basins in the world. Since then, Suncor has grown to become a globally competitive integrated energy company with a balanced portfolio of high-quality assets, a strong balance sheet and significant growth prospects. Across our operations, we intend to achieve production of one million barrels of oil equivalent per day.

Then, there’s this on the company’s home page,

We create energy for a better world

Suncor’s vision is to be trusted stewards of valuable natural resources. Guided by our values, we will lead the way to deliver economic prosperity, improved social well-being and a healthy environment for today and tomorrow.

The difficulty I’m highlighting is the number of competing interests. Governments which are dependent on industry for producing jobs and tax dollars are also funding ‘carbon management’. The fossil fuel-dependent industry make a great deal money from fossil fuels and doesn’t have much incentive to explore carbon management as that costs money and doesn’t add to profit. Regardless of how enlightened any individuals within that industry may be they have a fundamental problem similar to an asthmatic who’s being poisoned by the medication they need to breathe. Do you get immediate relief from the medication, i.e., breathe, or do you refuse the medication which causes damage years in the future and continue struggling for air?

All of these institutions (CMC, Suncor, etc.) would have more credibility if they addressed the difficulties rather than ignoring them.

How to start art/science collaborations (roundup) and an art/engineering festival in Calgary (Canada)

Generally speaking I’ve viewed art/science collaborations from an ‘arts’ perspective so it’s with some interest that I’ve been reading Johanna Kieniewicz’s postings as she has a scientist’s perspective, from her Nov. 22, 2012 posting on the PLoS (Public Library of Science) At the Interface; where art and science meet blog,

Last week, I attended an environmental science conference with an evening reception that featured a short talk on art/science collaborations in the context of environmental science. The talk was followed by a musical performance – inspired by the fragility of peatbog environments – after which I overheard a scientist mutter “What was that? That better not have had research council funding.” He was not the only one; I heard similar sentiments expressed by several others as I walked to dinner.

On some level, I was disappointed by this response, but I wasn’t really surprised. Despite great progress amongst those who are ensconced in the world of science communication to the idea of collaborations between scientists and artists, this is something that many scientists still don’t “get”. Other researchers are openly hostile, and certainly think that scientific research organisations have no business funding this type of work.

To be fair, these are not necessarily the attitudes of people who are disinterested in art — I’d be willing to bet that a fair few of those who walked away from the performance muttering about scientific research council funding being wasted on the arts also have memberships at cultural institutions. That said, whilst being consumers of culture, few scientists really see themselves as having much of a role in its creation. In an increasingly competitive funding landscape, does it really make sense to spend research money on an art project? Does engaging with the arts mean that they are less serious as scientists?

Kieniewicz goes on to give a number of reasons why she thinks art/science collaborations are important, including this one,

Although art cannot directly communicate science or change minds, it can create a space for dialogue around difficult issues.

In a followup Dec. 6, 2012 posting, Kieniewicz goes on to explain how artists and scientists get together for collaborations and she also provides an extensive roundup art/science collaborations (Note: I have removed links),

Following on from my last post on the ‘why’ of collaborations between artists and scientists, here I’d like to look at the ‘how’. When scientists and artists don’t typically have professional reasons for mixing, what are the mechanisms that enable collaboration?

Artist in Residency Schemes

Some of the more outward-looking scientific research organisations realise that there is something to be gained from a scheme that brings artists through their doors. It could be couched as a box-ticking ‘outreach’ exercise, but it is also an opportunity to bring the science happening behind their doors alive to the wider public. This approach has been particularly embraced by the physics community, where studies of the interactions between subatomic particles — which have serious implications for science and cost a great deal of taxpayer money — nonetheless seem of little relevance to the man on the street. As physicist David Weinberg notes based on his collaboration with Josiah McElheny (below), “far more people saw [our collaboration] in one day in Madrid than have ever read my Astrophysical Journal articles.”

Artist/Scientist Pairing Schemes

I think of artist/scientist pairing schemes as something of a matchmaking exercise, in which a number of artists are invited into a research institute and paired with interested and willing scientists. Like any matchmaking process, it seems to me that this is something that can go either way: sometimes it will work out, but other times it may not.

Individual collaborations between artists and scientists

Unsurprisingly, collaboration between an individual artist and scientist generally starts with an introduction, a conversation, and an interest/openness from both parties to trying something a little different. Collaboration in these circumstances is often initiated by the artist who may have an idea and an interest, but who recognises that they would benefit from the help of a scientist in order to fully realise their vision.

In the UK, there is an Arts and Humanities Research Council funding programme, Science in Culture, designed to stimulate art/science collaborations. There was funding in Canada for this type of collaboration. The Canada Council for the Arts had joint programmes with the Natural Science and Engineering Research Council and the National Research Council in the early 2000’s.

There is a new initiative, Beakerhead, being organized in Calgary, Alberta (Canada) for 2013 mentioned in my Nov. 13, 2012 posting (this is more of an arts/engineering collaborative event),

Beakerhead is an annual movement that culminates in a five-day citywide spectacle that brings together the arts and engineering sectors to build, engage, compete and exhibit interactive works of art, engineered creativity and entertainment.

Starting annually in 2013, Beakerhead will take place in Calgary’s major educational institutions, arts and culture venues, on the streets and, most importantly, in communities.
From performances and installations to workshops and concerts, Beakerhead is made possible by a continuously growing list of partners who share the desire of staging a collaborative event of epic proportions.

There is more information about the aspirations for this event on the Beakerhead Program page,

When fully realized, Beakerhead will be a five-day citywide highly participatory event that explodes in Calgary’s major educational institutions, arts and culture venues, on the streets and, most importantly, in communities. Through programming partnerships and community initiatives, Beakerhead is fuelled by groups and individuals in art, culture, science, engineering and technology.

Everyone is empowered to build, stage, exhibit and compete in interactive works, so people can experience and explore engineered creations from around the world – all at once! The following three streams are guiding Beakerhead’s programming vision:

1) Productions: local and internationally commissioned and co-produced grand openings, premieres, productions, and concerts.

2) Programs: city-wide illuminated art works and 3-D projections, international professional and student challenges, massive mechanical sculptures, interactive races, local restaurant programs and more.

3) Speakerhead: education and outreach programs such as artist and engineer-in-residence programs, professional speaker series, classroom programs and more.

Format and Goals:

Events will take place indoors and out, including ticketed and free events, and involving venues and public spaces throughout the city – and it’s all starting now! Partnerships are continuously forming and a calendar of events and programs is being developed to be announced in late 2012.

Together, Beakerhead will:

  • Engage people and communities – in hands-on public spectacles and contests.
  • Experiment – culturally – with science, art and engineering. Let’s test limits!
  • Commission new works – in new media, music, theatre, visual arts, dance.
  • Invite collaborations – between artists, scientists and engineers.
  • Invite collaborations – between local, Canadian and international experts.
  • Curate new exhibitions and performances.

FrogHeart (part 1) at the 2012 Canadian Science Policy Conference (& Thinking big panel)

Unfortunately, I was only present for one day (Nov. 6, 2012) at the Fourth Canadian Science Policy Conference in Calgary, Alberta. In fact, my one day was more like a 1/2 day due to delays at the airport. It broke my heart to miss most of Panel 13: Dissecting Canada’s Science & Technology Landscape, which featured a discussion of the Council of Canadian Academies’ latest assessment, “The State of Science and Technology in Canada, 2012.” I have my fingers crossed that a video of the presentation will be posted in the not too distant future.

Jeffrey Simpson, Ph.D and National Affairs Columnist at The Globe and Mail moderated the panel discussion about this latest assessment (the last one was in 2006) which was requested by Industry Canada. The panel included: Dr. Eliot Phillipson, Ph.D, Sir John and Lady Eaton Professor of Medicine Emeritus at the University of Toronto (he led the expert panel which presided over the assessment); Lorraine Whale, Ph.D and Manager of Unconventional Resource Research at Shell Global Solutions (Canada); and R. Peter MacKinnon, former President of the University of Saskatchewan.

I did manage to attend Panel 16: The Second Mouse Gets the Cheese: Turning Talk of Creativity Into a Sustainable Creative Economy which featured a slew of creative types such as Mary Anne Moser, Ph.D and Co-Founder of Beakerhead; Jay Ingram, Co-Founder of Beakerhead; Jasmine Palardy, Program Manager of Beakerhead;  Patrick Finn, Ph.D and Performance Expert, University of Calgary; and Haley Simons, Ph.D, Executive Director of Creative Alberta.

Creativity workshops are to hard to pull off, especially when you pepper them with leadership information, an argument for the importance of creativity in examinations of the economy, descriptions of the creative process, etc. while leading the group through the process of designing a better mouse trap. It was an odd choice for a creativity exercise, notwithstanding the metaphor in the group’s panel title. I liked some of the ideas they were trying to discuss and demonstrate but I associate creativity with an element of play and letting loose. Devising a better mouse trap didn’t activate my sense of play nor was there time to let loose any creative/chaotic impulses as we were either listening to someone giving us information or trying to complete the exercises we were given.

For anyone who’s noticed the incidence of the institution, Beakerhead, amongst the panelists, it’s a new  art/engineering event which will be taking place in Calgary during the Calgary Stampede, I believe (from the About page),

Beakerhead is an annual movement that culminates in a five-day citywide spectacle that brings together the arts and engineering sectors to build, engage, compete and exhibit interactive works of art, engineered creativity and entertainment.

Starting annually in 2013, Beakerhead will take place in Calgary’s major educational institutions, arts and culture venues, on the streets and, most importantly, in communities.
From performances and installations to workshops and concerts, Beakerhead is made possible by a continuously growing list of partners who share the desire of staging a collaborative event of epic proportions.

I wish them well with Beakerhead while I’m somewhat unclear as to what the workshop was supposed to achieve. Personally, I would have preferred working on a Beakerhead event for 2013. Imagine if those of us at the 2012 CSPC “Second mouse” presentation had developed something that might actually take place. That’s creativity in action and I think they could have drawn together all that other stuff they were trying to communicate to us by inviting us to participate in something meaningful.

Next up was Panel 19: Thinking big: science culture and policy in Canada, which I was moderating. From my Oct. 1, 2012 posting,

… here’s the description,

Science culture is more than encouraging kids to become scientists to insure our economic future; more than having people visit a science museum or centre and having fun; more than reading an interesting article in a newspaper or magazine about the latest whizbang breakthrough; more than educating people so they become scientifically literate and encourage ‘good’ science policies; it is a comprehensive approach to community- and society-building.

We live in a grand (in English, magnificent and en francais, big) country, the 2nd largest in the world and it behooves us all to be engaged in developing a vibrant science culture which includes

  • artists (performing and visual),
  • writers,
  • scientists,
  • children,
  • seniors,
  • games developers,
  • doctors,
  • business people,
  • elected officials,
  • philosophers,
  • government bureaucrats,
  • educators,
  • social scientists,
  • and others

as we grapple with 21st century scientific and technical developments.

As scientists work on prosthetic neurons for repair in people with Parkinsons and other neurological diseases, techniques for tissue engineering, self-cleaning windows, exponentially increased tracking capabilities for devices and goods tagged with RFID devices, engineered bacteria that produce petroleum and other products (US Defense Advanced Research Projects Living Foundries project), and more, Canadians will be challenged to understand and adapt to a future that can be only dimly imagined.

Composed of provocative thinkers from the worlds of science writing, science education, art/science work, and scientific endeavour, during this panel discussion they will offer their ideas and visions for a Canadian science culture and invite you to share yours. In addition to answering questions, each panelist will prepare their own question for audience members to answer.

The panelists are:

Marie-Claire Shanahan

Marie-Claire Shanahan is a professor of science education and science communication at the University of Alberta. She is interested in how and why students make decisions to pursue their interests science, in high schools, post-secondary education and informal science education. She also conducts research on interactions between readers and writers in online science communications.

Stephen Strauss

Stephen Strauss, Canadian Science Writers’ Association president, has been writing about science for 30 years. After receiving a B.A. (history) from the University of Colorado, he worked as an English teacher, a social worker, an editor before joining the Globe and Mail in 1979. He began writing about science there.

Since leaving the newspaper in 2004 he has written for the CBC.ca, Nature, New Scientist, The Canadian Medical Association Journal as well as authored books and book chapters. He has written for organizations such as the Canada Foundation for Innovation and the Government of Ontario and has won numerous awards.

Amber Didow

Amber Didow is the Executive Director for the Canadian Association of Science Centres. She has over 20 years experience in the non-profit sector and advancing informal education. She has worked within the Science Centre field for many years including the Saskatchewan Science Centre and Science World British Columbia.  Amber’s background includes new business development; educational outreach; programming with at-risk youth; creating community based science events; melding science with art and overseeing the creation and development of both permanent and travelling exhibitions. Amber has a strong passion for community development within the sector.

Maryse de la Giroday (moderator)

Maryse de la Giroday currently runs one of the largest and longest running Canadian science blogs (frogheart.ca) where she writes commentary on  nanotechnology, science policy, science communication, society, and the arts. With a BA in Communication (Simon Fraser University, Canada) and an MA in Creative Writing and New Media (De Montfort University, UK), she combines education and training in the social sciences and humanities with her commitment as an informed member of the science public. An independent scholar, she has presented at international conferences on topics of nanotechnology, storytelling, and memristors.

Dr. Moira Stilwell, MLA

Dr. Moira Stilwell was appointed Minister of Social Development  for the province of British Columbia in September 2012. Elected MLA for Vancouver-Langara in the 2009 provincial general election. She previously served as Parliamentary Secretary for Industry, Research and Innovation to the Minister of Jobs, Tourism and Innovation and Parliamentary Secretary to the Minister of Health with a focus on Health Innovation. She also served as Vice Chair of the Cabinet Committee on Jobs and Economic Growth. In her first cabinet appointment, she served as Minister of Advanced Education and Labour Market Development from June 2009 to October 2010.

Prior to her political career, Stilwell graduated from the University of Calgary Medical School. She received further training in nuclear medicine at the University of British Columbia and in radiology at the University of Toronto after that. She served for several years as the Head of Nuclear Medicine at St. Paul’s Hospital, Vancouver, Surrey Memorial Hospital, and Abbotsford Regional Hospital and Cancer Clinic but left all those positions in 2009 to run for public office.

The driving force behind the province’s Year of Science in BC (2010-11) initiative for schools, Stilwell has a passionate interest and commitment to integrating science awareness and culture in government, education, and society.

Rob Annan

Rob is the Director of Policy, Research and Evaluation at Mitacs, a leading Canadian not-for-profit that supports innovation through skills development, research, and collaboration between students, researchers, and industry. Mitacs supports research across sciences, humanities and social sciences and understands that innovation often occurs at the intersection of science and culture. Mitacs’ approach to innovation is reflected in our outreach activities, most notably Math Out Loud – a theatre musical designed to inspire Canadian students to understand and appreciate the mathematics that surround them. Inspired by Laval University’s renowned Professor of Mathematics Jean-Marie De Koninck and produced by Academy Award winner Dale Hartleben, Math Out Loud explores the relationships between math and culture as an effective outreach tool.

Prior to joining Mitacs, Rob worked as a consultant to universities, researchers and non-profit agencies for strategic planning and policy, and was active as a blogger on science policy issues in Canada. Rob embodies the intersection of arts and science, with a PhD in Biochemistry from McGill University, a BSc in Biology from UVic and a BA in English from Queen’s University.

We started late and I think it went relatively well although next time (assuming there is one) I’ll practice cutting people off in a timely fashion and giving more direction. In other words, any criticisms of the session should be directed at me. The panelists were great.

Marie-Claire Shanahan, professor of science education at the University of Alberta, introduced a provocative question in the context of acknowledging Canada’s excellent science education programmes, Why isn’t there an active science discourse in Canada? Audience members tried to answer that question and came to no general agreement.

Stephen Strauss, president of the Canadian Science Writers Association (CSWA), introduced what I thought was a very exciting idea, a science entrepot supported by the CSWA. The entrepot would be a storage webspace for all Canadian science news releases and a place where the people producing the news releases would get feedback on their efforts. The feedback idea is an acknowledgement that, increasingly,  scientists in Canada are writing their own news releases. There wasn’t much uptake from the audience on this idea but perhaps people need more time think about something that changes their relationship to the media.

The Honourable Dr. Moira Stilwell discussed her experiences trying to introduce science into government, that is, trying to use more scientific approaches in the various BC ministries. The former head of Nuclear Medicine at St. Paul’s Hospital, Surrey Memorial Hospital, and Abbotsford Regional Hospital and Cancer Clinic described the process by which her big idea became part of a government initiative and changed mightily in the process.

Rob Annan, director of policy, research, and evaluation at Mitacs, talked about different approaches Mitacs has taken to embedding science culture in Canada and he challenged the audience about the notion of expertise with regard to science as one of the audience members expressed great distress (sadness mixed with anger/indignation) over the ‘declining’ trust in science experts. I hope Rob will correct me if I get this wrong, I believe his point was that experts need to stop assuming that they are right and the public just has to listen and do as they are told. The audience member did not couch his comments that way but the assumption that we, the unwashed must do as we are told and our concerns are not relevant or wrong, is often at the heart of the ‘expertise’ claim. (Also I’m going to interject, I think the audience member had flipped the issue around. The question I’d be asking is why expertise in science is accepted unthinkingly in some areas and distrusted in others.)

Amber Didow, executive director of the Canadian Association of Science Centres, spoke about the importance of these centres with regard to science culture, the extensive programming they provide, and their relationship to their communities both locally and further afield. The fact that we were in Calgary’s new ‘science world’ (in Calgary, it’s Telus Spark) added greatly to the experience.

I did attend one more session, Kennedy Stewart’s NDP (New Democratic Party) Science Policy session but that’s for part 2.

ETA Nov. 14, 2012: I’ve forgotten my manners and I apologize for not doing this sooner. Thank you to the organizers for an exciting and well paced conference. Special thanks to Marissa Bender who eased my way before, during, and after; Dustin Rivers for making sure that I didn’t fall over from hunger once I finally arrived and  his impeccable graciousness, Mehrdad Hariri for his understanding and for extending a helping hand in the midst of what must have been one of heaviest organizational periods for the 2012 conference (I am impressed), Sean for his invaluable advice regarding rush hour traffic in Calgary, and the two heroic women who managed the portable mikes for my session.

Canadian Science Policy Conference (in Calgary): call for papers and presentations

The 4th edition of the Canadian Science Policy Conference (CSPC) will take place in Calgary, Alberta as I hinted (I also suggested that Edmonton was in contention)  in my Feb. 20, 2012 posting. If you have an interest in presenting at the conference, this is the time to submit your session proposals.  From the April 23, 2012 CSPC notice,

Call for Canadian Science Policy Conference 2012 Sessions

Canadian Science Policy Conference (CSPC) 2012 is inviting members of the science policy community to submit proposals for the conference program Nov 5-6, 2012 in Calgary, Alberta. All submissions must be received online by end of day June 8, 2012.

This year’s conference sessions will be under the following 4 themes:

  • Innovating on energy supply and demand for more sustainable resource management: a critical test for the integration of science, technology and policy
  • Re-imagining Canadian Healthcare: How innovation in science and policy can contribute to a more sustainable system
  • Food, Fuel and Farmers: Agriculture at the convergence of multi-disciplinary science policy issues
  • Science-Technology-Society-Nexus

CSPC has become the focal point for Canadian science policy issues, in large part because of the active participation it encourages from the science policy community. Bringing together professionals from business, academia, government and non-profit, CSPC provides an annual forum to discuss the most relevant issues to science, technology and innovation in Canada during its conference sessions. Help shape this year’s dialogue by submitting your session proposal now!

There are more details at the CSPC 2012 website including this excerpt from the conference’s Themes page,

Re-imagining Canadian Healthcare: How innovation in science and policy can contribute to a more sustainable system?

Canadian healthcare spending has been rising steadily over the past few decades with health expenditure to GDP ratios rising from 7% in 1979 to a peak at almost 12% in 2009. Canada, like many nations, has a population that is getting older, living longer, and demanding quality care as well as improvements to the universal healthcare system. Innovation can contribute to improved performance of the system, but the impacts of innovation on cost, efficiency, and health outcomes are not always straightforward.

This CSPC theme will explore the policies and approaches for innovation to positively impact the health system. It will examine innovation and policy issues that related to improving effective and efficient care, accessibility, universality, sustainability, and cost versus benefits.

Food, Fuel and Farmers: Agriculture at the convergence of multi-disciplinary science policy issues

Agriculture requires upwards of 40% of the world’s land area and over 70% of the global fresh water reserves, in turn, generating nearly $2 trillion in global revenues while feeding more than 7 billion people. The implications of agricultural practices and policies thus have a direct link to global economic, environmental and societal outcomes and impacts many other sectors. The global challenge for agriculture, therefore, is to increase production while simultaneously reducing the environmental footprint. Canadian farmers, scientists, policy makers and businesses are responding with innovations in water and land use, genetics, bioproducts and bioprocesses. Productivity isn’t just about yields any more; it’s about energy content and optimization as well as issues such as minimizing losses in the transportation and distribution systems.

This CSPC theme will explore how science is at the heart of these questions. Increasingly, we see that the next generation of farmers and ranchers need to be scientists, innovators and entrepreneurs. However, what does this mean for the universities, policies, regulation and markets that these farmers and ranchers need to thrive going forward? And what does today’s science and innovation applied to agriculture mean for agriculture, energy, environmental and trade policies in the future?

Science-Technology-Society-Nexus

Science and technology are significant pillars in our society and are increasingly transforming the world we live in as well as how we live within that world. Society expects solutions to our most pressing issues, and developments in S&T can bring answers and perspective to these issues. However, advances in S&T can also create new questions. Additionally, popular debate can polarize the public, and controversial S&T issues grow in number. It is, therefore, vital for the science policy community to identify such issues, contribute to discourse, and propose solutions or a way forward.

This theme, within the overarching context of S&T and Society, will examine a variety of issues such as engagement; education and public outreach; publication and data; peer-review; the bread and nature of the innovation system; social innovation; communication; and other major or topical issues in Canadian science policy.

Details about the proposal format, etc. are on the conference’s Submissions page,

PROPOSAL FORMAT

  1. Please submit a brief proposal that outlines the title and subject of your session, as well as proposed speakers (including bios), format and goals of the proposed conference session. Please note the word limit on the website.
  2. Proposals must be submitted to the CSPC program committee online at www.cspc2012.ca/presentationsubmissions.php for evaluation prior end of day June 8, 2012. CONFERENCE THEMES:

This year’s conference themes are under the 4 categories of energy, health, agriculture and major issues in science and society. The theme descriptions are under the following titles:

  • Innovating on energy supply and demand for more sustainable resource management: a critical test for the integration of science, technology and policy
  • Re-imagining Canadian Healthcare: How innovation in science and policy can contribute to a more sustainable system
  • Food, Fuel and Farmers: Agriculture at the convergence of multi-disciplinary science policy issues
  • Science-Technology-Society-Nexus

They are intended to spark some insightful exploration and debate on the issues, but more importantly they seek to highlight some of the innovative ways in which science, technology and policy can contribute to an integrated and systemic approach to solving these issues in Canada and the world.

EVALUATION CRITERIA:
The CSPC 2012 Program Committee will review each of the proposals and evaluate them based on the following criteria:

  • Quality of the proposed session: CSPC tries to cover topics that are highly relevant or timely for the science policy community in Canada to discuss. Sessions that can draw together strong speakers or facilitators on subjects that are either garnering much attention publically or politically, or that are enduring societal problems, will rank more competitively than those that don’t. Sessions with confirmed speakers will rank more competitively than those without.
  • Alignment with the conference objectives: The conference objectives seek to support innovation in Canada and build both community and ideas for strengthening the science policy environment. The session proposal will be evaluated on its ability to support these primary objectives.
  • Alignment with the conference themes: CSPC strives for a balance that dives deep enough into the issues to identify specific elements of what works and what doesn’t from planning through to implementation, yet is still able to make the discussion accessible to a broader audience. Sessions should include experts that can provide detailed examples under the CSPC 2012 themes to support their arguments, and translate those details into more transferable lessons learned and best practices.
  • Representation of a diverse range of speakers: CSPC doesn’t have a specific formula for evaluating session speakers, but it does embrace diversity as one of its core values. The more diverse the range of perspectives that your speakers can offer in terms of roles (government, business, academia, non-profit etc.) or discipline, gender, ethnicity, geography, experience or other aspects, the stronger your proposal will be relative to the others.

SESSION FORMAT & AUDIENCE:

Sessions are 90 minutes. Typically they have followed a panel presentation format, but some adopt more of a workshop or facilitated discussion style. CSPC has received enthusiastic feedback regarding sessions that allow for more interaction between the speakers and the delegates, and also those that bring a lively debate. Case studies and stories are easier for people to engage with than lists, facts and rhetoric. Consider challenging your speakers to be more creative when sharing their ideas.

The majority of the delegates will be fairly educated on different fields of science policy, but may not understand your field. You may want to include materials to prime the audience in order to allow your session to explore things to a greater depth. Many of the delegates are also practitioners in the science policy community, hungry for things to take back to their work beyond education and awareness. Often we’re asking people to “step outside their comfort zones” in order to foster more creativity in the way we think about and approach science, technology, policy and innovation. The more you can challenge your audience to participate in some way, such as writing down their biases or the first things that come to their mind, sharing with the person next to them what they think the key issues are, or hosting full break-out discussions the better.

Based on past attendance the majority is from academic, government, or non-profit institutions. CSPC is trying to target participants from the private sector for whom science policy is highly relevant, yet underrepresented. If you can propose a session which will engage this audience or if you have suggestions on how to better engage this sector please let us know!

Conference registration is free for speakers and facilitators.

As for suggestions about how to engage with folks from the private sector, that’s an interesting problem. I find it encouraging that they want to extend the discussion to a larger audience but I’m  not sure which part of the private sector they want to engage.  Investors? Venture capitalists? Bankers? Lawyers? Startup business owners? Big business? Accountants? Youthful entrepreneurs? New media? Gamers? etc.This gives me a lot to think about.

One small historical note, the first CSPC conference led to the creation of the Canadian Science Policy Centre which exists online here.

Good luck with your submissions!