Tag Archives: Canada

Happy Thanksgiving! Oct. 12, 2015, my last mention of science debates in the Canadian 2015 federal election, and my 4001st posting

Two things for me to celebrate today: Thanksgiving (in Canada, we celebrate on the 2nd Monday of October) and my 4001st posting (this one).

Science for the people

Plus, there’s much to celebrate about science discussion during the 2015 Canadian federal election. I stumbled across Science for the People, which is a weekly radio show based in Canada (from the About page),

Science for the People is a syndicated radio show and podcast that broadcasts weekly across North America. We are a long-format interview show that explores the connections between science, popular culture, history, and public policy, to help listeners understand the evidence and arguments behind what’s in the news and on the shelves.

Every week, our hosts sit down with science researchers, writers, authors, journalists, and experts to discuss science from the past, the science that affects our lives today, and how science might change our future.


If you have comments, show ideas, or questions about Science for the People, email feedback@scienceforthepeople.ca.

Theme Song

Our theme song music comes from the song “Binary Consequence” by the band Fractal Pattern. You can find the full version of it on their album No Hope But Mt. Hope.

License & Copyright

All Science for the People episodes are under the Creative Commons license. You are free to distribute unedited versions of the episodes for non-commercial purposes. If you would like to edit the episode please contact us.

Episode #338 (2015 Canadian federal election and science) was originally broadcast on Oct. 9,  2015 and features,

This week, we’re talking about politics, and the prospects for pro-science politicians, parties and voters in Canada. We’ll spend the hour with panelists Katie Gibbs, Executive Director of Evidence for Democracy, science librarian John Dupuis, journalist Mike De Souza, and former Canadian government scientist Steven Campana, for an in-depth discussion about the treatment of science by the current Canadian government, and what’s at stake for science in the upcoming federal election.

The podcast is approximately one hour long and Désirée Schell (sp?) hosts/moderates an interesting discussion where one of the participants notes that issues about science and science muzzles predate Harper. The speaker dates the issues back to the Chrétien/Martin years. Note: Jean Chrétien was Prime Minister from 1993 to 2003 and Paul Martin, his successor, was Prime Minister from 2003 to 2006 when he was succeeded by current Prime Minister, Stephen Harper. (I attended a Philosophers’ Cafe event on Oct. 1, 2015 where the moderator dated the issues back to the Mulroney years. Note: Brian Mulroney was Prime Minister from 1984 – 1993.) So, it’s been 10, 20, or 30 years depending on your viewpoint and when you started noticing (assuming you’re of an age to have noticed something happening 30 years ago).

The participants also spent some time discussing why Canadians would care about science. Interestingly, one of the speakers claimed the current Syrian refugee crisis has its roots in climate change, a science issue, and he noted the US Dept. of Defense views climate change as a threat multiplier. For anyone who doesn’t know, the US Dept. of Defense funds a lot of science research.

It’s a far ranging discussion, which doesn’t really touch on science as an election issue until some 40 mins. into the podcast.

One day later on Oct. 10, 2015 (where you’ll find the podcast), the Canadian Broadcasting Corporation’s Quirks & Quarks radio programme broadcast and made available its podcast of a 2015 Canadian election science debate/panel,

There is just over a week to go before Canadians head to the polls to elect a new government. But one topic that hasn’t received much attention on the campaign trail is science.

So we thought we’d gather together candidates from each of the major federal parties to talk about science and environmental issues in this election.

We asked each of them where they and their parties stood on federal funding of science; basic vs. applied research; the controversy around federal scientists being permitted to speak about their research, and how to cut greenhouse gas emissions while protecting jobs and the economy.

Our panel of candidates were:

– Lynne Quarmby, The Green Party candidate [and Green Party Science critic] in Burnaby North-Seymour, and  professor and Chair of the Department of Molecular Biology and Biochemistry at Simon Fraser University

– Gary Goodyear, Conservative Party candidate in Cambridge, Ontario, and former Minister of State for Science and Technology

– Marc Garneau, Liberal Party candidate in NDG-Westmount, and a former Canadian astronaut

– Megan Leslie, NDP candidate in Halifax and her party’s environment critic

It was a crackling debate. Gary Goodyear was the biggest surprise in that he was quite vigorous and informed in his defence of the government’s track record. Unfortunately, he was also quite patronizing.

The others didn’t seem to have as much information and data at their fingertips. Goodyear quote OECD reports of Canada doing well in the sciences and they didn’t have any statistics of their own to provide a counter argument. Quarmby, Garneau, and Leslie did at one time or another come back strongly on one point or another but none of them seriously damaged Goodyear’s defense. I can’t help wondering if Kennedy Stewart, NDP science critic, or Laurin Liu, NDP deputy science critic, and Ted Hsu, Liberal science critic might have been better choices for this debate.

The Quirks & Quarks debate was approximately 40 or 45 mins. with the remainder of the broadcast devoted to Canadian 2015 Nobel Prize winner in Physics, Arthur B. McDonald (Takaaki Kajita of the University of Tokyo shared the prize) for the discovery of neutrino oscillations, i.e., neutrinos have mass.

Kate Allen writing an Oct. 9, 2015 article for thestar.com got a preview of the pretaped debate and excerpted a few of the exchanges,

On science funding

Gary Goodyear: Currently, we spend more than twice what the Liberals spent in their last year. We have not cut science, and in fact our science budget this year is over $10 billion. But the strategy is rather simple. We are very strong in Canada on basic research. Where we fall down sometimes as compared to other countries is moving the knowledge that we discover in our laboratories out of the laboratory onto our factory floors where we can create jobs, and then off to the hospitals and living rooms of the world — which is how we make that home run. No longer is publishing an article the home run, as it once was.

Lynne Quarmby: I would take issue with the statement that science funding is robust in this country … The fact is that basic scientific research is at starvation levels. Truly fundamental research, without an obvious immediate application, is starving. And that is the research that is feeding the creativity — it’s the source of new ideas, and new understanding about the world, that ultimately feeds innovation.

If you’re looking for a good representation of the discussion and you don’t have time to listen to the podcast, Allen’s article is a good choice.

Finally, Research2Reality, a science outreach and communication project I profiled earlier in 2015 has produced an Oct. 9, 2015 election blog posting by Karyn Ho, which in addition to the usual ‘science is dying in Canada’ talk includes links to more information and to the official party platforms, as well as, an exhortation to get out there and vote.

Something seems to be in the air as voter turnout for the advance polls is somewhere from 24% to 34% higher than usual.

Happy Thanksgiving!

Quantum teleportation

It’s been two years (my Aug. 16, 2013 posting features a German-Japanese collaboration) since the last quantum teleportation posting here. First, a little visual stimulation,

Captain James T Kirk (credit: http://www.comicvine.com/james-t-kirk/4005-20078/)

Captain James T Kirk (credit: http://www.comicvine.com/james-t-kirk/4005-20078/)

Captain Kirk, also known as William Shatner, is from Montréal, Canada and that’s not the only Canadian connection to this story which is really about some research at York University (UK). From an Oct. 1, 2015 news item on Nanotechnology Now,

Mention the word ‘teleportation’ and for many people it conjures up “Beam me up, Scottie” images of Captain James T Kirk.

But in the last two decades quantum teleportation – transferring the quantum structure of an object from one place to another without physical transmission — has moved from the realms of Star Trek fantasy to tangible reality.

A Sept. 30, 2015 York University (UK) press release, which originated the news item, describes the quantum teleportation research problem and solution,

Quantum teleportation is an important building block for quantum computing, quantum communication and quantum network and, eventually, a quantum Internet. While theoretical proposals for a quantum Internet already exist, the problem for scientists is that there is still debate over which of various technologies provides the most efficient and reliable teleportation system. This is the dilemma which an international team of researchers, led by Dr Stefano Pirandola of the Department of Computer Science at the University of York, set out to resolve.

In a paper published in Nature Photonics, the team, which included scientists from the Freie Universität Berlin and the Universities of Tokyo and Toronto [emphasis mine], reviewed the theoretical ideas around quantum teleportation focusing on the main experimental approaches and their attendant advantages and disadvantages.

None of the technologies alone provide a perfect solution, so the scientists concluded that a hybridisation of the various protocols and underlying structures would offer the most fruitful approach.

For instance, systems using photonic qubits work over distances up to 143 kilometres, but they are probabilistic in that only 50 per cent of the information can be transported. To resolve this, such photon systems may be used in conjunction with continuous variable systems, which are 100 per cent effective but currently limited to short distances.

Most importantly, teleportation-based optical communication needs an interface with suitable matter-based quantum memories where quantum information can be stored and further processed.

Dr Pirandola, who is also a member of the York Centre for Quantum Technologies, said: “We don’t have an ideal or universal technology for quantum teleportation. The field has developed a lot but we seem to need to rely on a hybrid approach to get the best from each available technology.

“The use of quantum teleportation as a building block for a quantum network depends on its integration with quantum memories. The development of good quantum memories would allow us to build quantum repeaters, therefore extending the range of teleportation. They would also give us the ability to store and process the transmitted quantum information at local quantum computers.

“This could ultimately form the backbone of a quantum Internet. The revised hybrid architecture will likely rely on teleportation-based long-distance quantum optical communication, interfaced with solid state devices for quantum information processing.”

Here’s a link to and a citation for the paper,

Advances in quantum teleportation by S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, & S. L. Braunstein. Nature Photonics 9, 641–652 (2015) doi:10.1038/nphoton.2015.154 Published online 29 September 2015

This paper is behind a paywall.


Interfaces are the device—organic semiconductors and their edges

Researchers at the University of British Columbia (UBC; Canada) have announced a startling revelation according to an Oct. 6, 2015 news item on ScienceDaily,

As the push for thinner and faster electronics continues, a new finding by University of British Columbia scientists could help inform the design of the next generation of cheaper, more efficient devices.

The work, published this week in Nature Communications, details how electronic properties at the edges of organic molecular systems differ from the rest of the material.

An Oct. 6, 2015 UBC news release on EurekAlert, which originated the news item, expands on the theme,

Organic [as in carbon-based] materials–plastics–are of great interest for use in solar panels, light emitting diodes and transistors. They’re low-cost, light, and take less energy to produce than silicon. Interfaces–where one type of material meets another–play a key role in the functionality of all these devices.

“We found that the polarization-induced energy level shifts from the edge of these materials to the interior are significant, and can’t be neglected when designing components,” says UBC PhD researcher Katherine Cochrane, lead author of the paper.

‘While we were expecting some differences, we were surprised by the size of the effect and that it occurred on the scale of a single molecule,” adds UBC researcher Sarah Burke, an expert on nanoscale electronic and optoelectronic materials and author on the paper.

The researchers looked at ‘nano-islands’ of clustered organic molecules. The molecules were deposited on a silver crystal coated with an ultra-thin layer of salt only two atoms deep. The salt is an insulator and prevents electrons in the organic molecules from interacting with those in the silver–the researchers wanted to isolate the interactions of the molecules.

Not only did the molecules at the edge of the nano-islands have very different properties than in the middle, the variation in properties depended on the position and orientation of other molecules nearby.

The researchers, part of UBC’s Quantum Matter Institute, used a simple, analytical model to explain the differences which can be extended to predict interface properties in much more complex systems, like those encountered in a real device.

Herbert Kroemer said in his Nobel Lecture that ‘The interface is the device’ and it’s equally true for organic materials,” says Burke. [emphasis mine] “The differences we’ve seen at the edges of molecular clusters highlights one effect that we’ll need to consider as we design new materials for these devices, but likely they are many more surprises waiting to be discovered.”

Cochrane and colleagues plan to keep looking at what happens at interfaces in these materials and to work with materials chemists to guide the design rules for the structure and electronic properties of future devices.


The experiment was performed at UBC’s state-of-the-art Laboratory for Atomic Imaging Research, which features three specially designed ultra-quiet rooms that allow the instruments to sit in complete silence, totally still, to perform their delicate measurements. This allowed the researchers to take dense data sets with a tool called a scanning tunnelling microscope (STM) that showed them the energy levels in real-space on the scale of single atoms.

Here’s a link to and a citation for the paper,

Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures by K. A. Cochrane, A. Schiffrin, T. S. Roussy, M. Capsoni, & S. A. Burke. Nature Communications 6, Article number: 8312 doi:10.1038/ncomms9312 Published 06 October 2015

This paper is open access. Yes, I borrowed from Nobel Laureate, Herbert Kroemer for the headline. As Woody Guthrie (legendary American folksinger) once said, more or less, “Only steal from the best.”

Beakerhead’s Big Bang (art/engineering) Residency in Alberta, Canada

I am sorry for the late notice as the deadline for submissions is Oct. 9, 2015 so there’s not much time to prepare. In any event, here’s more information about the Big Bang Residency Program call for proposals,

Every September, Beakerhead erupts onto the streets and venues of Calgary with cultural works that have science or engineering at their core. This is a call for proposals to build a creative work through an initiative called the Big Bang Residency Program. The work will be built over the course of a year with a collaborative team and will premiere on September 14, 2016, at Beakerhead in Calgary, Canada.

About the Big Bang Residency Program

The Big Bang Residency Program is funded by the Remarkable Experience Accelerator; a joint initiative of Calgary Arts Development and the Calgary Hotel Association. The program is led by Beakerhead with partnership support from the internationally renowned Banff Centre.

The program will support the creation of a total of three major new artworks over three years that will premiere internationally in Calgary during Beakerhead each year. This residency program will support:

  • One team per year each consisting of no less than four and no more than five individuals (additional support members are possible; however, the maximum size of the core team in residence will be five).
  • Two weeks in residence total; one week in the late fall and one week the following summer, with exact dates to be arranged with The Banff Centre and the selected team in residence. The production of the work is expected to take place in-between these two residency periods in Calgary.
  • Call for Proposals

    Beakerhead and The Banff Centre will support the design and build of a work to be shared with the world during Beakerhead, September 14 to 18, 2016. It will be created over the course of the year, which will include two weeks in residence at The Banff Centre with an interdisciplinary team of collaborators.

    Who is Eligible?

    This Call for Proposals is open to international artists, engineers, architects, designers, scientists and others. In addition to meeting the requirements for team composition below, the team must have a connection to Calgary so that the building of the work takes place in Calgary, the work is developed in Banff, the work premieres in Calgary and calls Calgary its home base. The proposal need not be submitted by a complete team: individuals may apply. The team can be assembled with support from The Banff Centre and Beakerhead to ensure that the collaboration of artists and engineers will result in a project that is created in Calgary/Banff over the course of the year.

    Team Composition 

    Each team must include:

    1. At least one individual who has received specialized art training (degree from a recognizing art institution) and has developed and exhibited a body of work;
    2. At least one individual who has received specialized engineering training (degree from an accredited engineering school), and previous experience in any artistic medium;
    3. Other members of the team should bring additional art and design skills, technical skills and project management skills. They may include emerging and professional roles.

    Staging and Exhibition

    The engineered artworks produced during the residency will be presented during Beakerhead in an unprecedented spectacle of performance and public engagement. The staging of the premiere may be developed in partnership with other venues, as dictated by the artworks. Many Beakerhead events take place in partnership with existing venues, such as theatres, galleries, public spaces, business revitalization zones, universities and libraries. The artistic disciplines may include installation, performance, visual art, music or any other media.

    The Details

    Design Criteria

    The successful proposal will meet the following criteria.

    • Location: The installation will be in a public location or available venue in Calgary, Alberta, from September 14 to 18 2016, and can be toured afterwards. Park-like settings and public roadways may be possible.
    • Dimension: There is no limit on dimension. However, proposals for works that can engage larger numbers of people at the scale of public art will be given preference.
    • Scope: Preference will be given to works that are both arresting to view and interesting to experience first-hand.
    • Install and De-install: Up to four days can be provided to install and de-install. The successful team must be capable of completing this work with volunteer crews.
    • Material: All materials must meet North American and European building and fire safety codes.


    A budget of CAD 24,000 is available for materials and supplies. The artist/collaborator fee is CAD 5,000 per team member up to CAD 25,000. Two weeks in residence will be provided for a five-person team, including accommodation and meals at The Banff Centre. Support for venue rental over the winter for build space will be provided, as well as heavy equipment costs.

    The budget may include:

    • All additional materials costs
    • Equipment services/rental for installation and de-installation
    • Contracted labour for specialized services
    • Documentation expenses
    • Stipend per team member (CAD 5,000 per member up to CAD 25,000)
    • Workshop and fabrication space rental in Calgary

    The budget may not include:

    • Travel costs
    • Salaries and wages

    If the budget proposed exceeds the amount of funding available, please detail your plans for acquiring additional funds to make up any projected shortfall.


    Preference will be given to projects that consider:

    • Delightful and thought-provoking experiences at the crossroads of art and engineering
    • Use of public space
    • Assembly, strike and touring ability
    • Engagement of a large volume of viewers
    • Durability for multiple days of high volume public interaction


    Important 2015/16 Dates

    • Aug 6, 2015:  Call for proposals
    • Oct 9: Deadline for submissions
    • Nov 6: Announcement of the successful proposal
    • Dec 6: Presentation of the successful team at the annual Beakerhead partners meeting
    • Dec 7-12*: Residency Week 1 in Banff: Detailed production plan completed
    • Jan 20, 2016: Concept unveiled to public and build volunteers engaged
    • Feb-August: Build period in Calgary
    • Aug 22-27*: Residency Week 2 in Banff: Presentation planning and rehearsals
    • Sept 14 – 18: International premiere at Beakerhead!

    *dates may change

    Timeline Details

    The program will lift off with an announcement in August 2015, and the first major artworks premiered in September 2016. A second round will be announced in the summer of 2016, and a third in the summer of 2017.

    Interested applicants are encouraged to attend Beakerhead 2015 (September 16 – 20), or have an associate attend, to fully understand the presentation opportunities. The final team will be announced in the fall, and will commence the term with a one-week period “in residence” at the Banff Centre (a week to work full-time on the project) to develop the detailed design and production plan. The partnership with The Banff Centre will support the development of design drawings and a business strategy.

    The build will then take place over the winter and summer in Calgary. Beakerhead will support the successful team by making introductions to local resources and facilities.

    The team in residence will be strongly encouraged to engage an expanded team of volunteers in the building process to create a community of support around the spectacle element.

There are more details here including the information on how to make a submission.

Science and government policy: an Oct. 1, 2015 Philosophers’ Cafe event in Vancouver (Canada)

This is not much notice but for interested parties in Vancouver (Canada) there’s a 7 pm discussion tonight (Oct. 1, 2015) taking place under the auspices of the Simon Fraser University (SFU) Philisophers’ Café series where a topic title is announced and people show up to discuss it. From the SFU Philisophers’ Café website events page,

Title: Science and Government Policy

The recent CBC documentary, “The Silence of the Labs” describes the systematic dismantling of many of Canada’s top scientific laboratories. These labs were generating data that could have been used to modify and steer government policy. Some have said that actions such as these show that there is a “war against science” in Canada. Do you agree, or is that an exaggerated claim? What should be the relationship between government and scientists?


Dr. Luis Sojo: Dr. Luis Sojo is an adjunct professor in the Department of Chemistry at SFU. He holds a PhD in analytical chemistry from Concordia University and is interested in the public dissemination of scientific ideas and their impact on government policies.

False Creek Community Centre (Fairview Room)
1318 Cartwright St. (Granville Island)

Time: 7:00 PM

Date: Thursday, October 1, 2015

Cost: Free

There’s more about Philisophers’ Cafés here,

Thinking the unthinkable, imagining the impossible, and discussing the improbable

SFU’s Philosophers’ Café is a series of informal public discussions in the heart of our communities. Since 1998, this award-winning program has engaged the interests of scholars, seniors, students, philosophers, and non-philosophers through stimulating dialogue and the passionate exchange of ideas.

All cafés are free to attend. No registration is required.

[A list of scheduled cafés follows on their website.]

2015 Canadian federal election and science: Science panel on CBC Radio, NDP platform, Maclean’s policy poll, and a Science Integrity Project

Election 2015 science panel

It took them long enough. After weeks of waiting,(my last plea was in a Sept.18, 2015 posting; scroll down about 50% of the way) the folks at the Canadian Broadcasting Corporation’s Quirks and Quarks radio programme have finally announced that there will be an election 2015 science panel show featuring representatives from Canada’s political parties. Here’s the tweet,

Game on! We’re recording our all-party election science panel next week, with all the major parties participating. Details to folo

This is pretty fresh news (fours ago means it was announced about 6:15 am PST (9:15 am EST where Quirks & Quarks is recorded). As for the details, they still have yet to follow.

NDP (New Democrat Party) science platform for 2015 federal election

Yesterday (Sept. 30, 2015), I received news from Kennedy Stewart’s, science shadow minister, team (that the New Democrat Party has announced a science platform for the 2015 election along with a plea for money. This news about the platform is a stunning turnaround for the NDP who largely ignored science in their 2011 campaign and whose previous shadow science minister, Jim Malloway. had an insurance agency and, apparently, no interest in science. However, Kennedy Stewart who has since taken on that portfolio and been very active seemed cautiously optimistic when I saw him at the Trottier Observatory opening at Simon Fraser University as noted in my April 17, 2015 posting. It looks like he was successful beyond his wildest dreams (amazing what a dip in the polls can do when your party has been almost leading for weeks in a tight three-way race).

Here’s more about the platform from Kennedy Stewart’s website, NDP Science Platform page,

NDP Science Platform Details

Restore the voice of scientists in Canada

We will create a Scientific Advisory Council to the Prime Minister headed by a Chief Science Advisor to ensure that our government always has access to the best possible scientific advice from experts in all fields.
We will establish the Office of the Parliamentary Science Officer as per Bill C-558 to ensure that parliamentarians have the best possible access to science-based analysis.
We will immediately move to restore the mandatory long-form census and provide the necessary funding to ensure it can be included in the 2016 census.
We will put an end to the Conservatives’ policy of muzzling scientists and ensure that Canada’s leading experts are freely available to speak to the media and to publish their findings. We will implement the NDP’s comprehensive plan to promote the voice of scientist’s in Ottawa as laid out in M-453 to promote scientific integrity.
We will work to re-establish scientific capacity in government departments, including Environment Canada and the Department of Fisheries and Oceans.

Support Canada’s world-class researchers

We will restore the independence of Canada’s granting agencies and respect their status as arm’s length government agencies to ensure the best research gets funded.
We will maintain the Canada First Research Excellence Fund to help Canadian universities compete globally.
We will support researchers in post-secondary education institutions – including universities, colleges and polytechnics – with a total investment of $105 million in new funds over five years. We will make sure that government policy supports both our leading research institutions and values the role that smaller colleges and universities play in communities across Canada.
Ensure a balanced approach to science and technology policy. We will undertake a transparent and inclusive review of Canada’s science and technology strategy to ensure that all voices are heard.
We will make government data open and available by default, in a useable format to assist researchers and businesses across Canada.

Maclean’s: a surprising result from their 2015 election policy poll

Amanda Shendruk in a Sept. 23, 2015 posting for Maclean’s magazine notes some unexpected (to the unobservant) results in their informal online poll about policy (Note: Links have been removed),

Maclean’s readers are overwhelmingly in favour of a policy that would put an end to Ottawa’s well-trod path of data destruction and scientist silencing. A month ago, we published the Policy Face-Off Machine, an online tool that pits two policies against each other at random, asking you to choose which you prefer. The catch? The parties pitching the policies aren’t identified when you’re making the pick. Well, we’ve been keeping track of these policy votes and, with more than 100,000 visitors already, we’ve got a great pile of data on what proposals Canadians prefer. With some surprise, we’ve discovered that Canadians really want government-funded science made available to the public. In fact, that Green- and Liberal-backed policy was chosen over other policies three out of four times, and is the tool’s most-picked policy to date.

There’s more including a graph of the results in Shendruk’s posting.

Science integrity

John Dupuis of the Confessions of a Science Librarian blog loosely links science integrity and the 2015 federal election in his Sept. 30, 2015 posting about a new project (Note: Links have been removed),

Though not explicitly tied to our current federal election campaign, the début this week of the Science Integrity Project and the publishing of their Statement of Principles for Sound Decision Making in Canada just as the campaign heats up is surely not coincidental.

There are excerpts from the site in Dupuis’ posting which I have eschewed (why repeat work that has been done, i.e., summarizing the information) in favour of material from the Science Integrity Project website’s Background page (Note: Links have been removed),


Canada has a history of initiatives aimed at ensuring the effective use of science and technological advice in government decision-making. “Backgrounder: The Evolving Context of Science Integrity in Canada” provides an overview of past efforts, highlighting good practices for science advice. *
In this background document, we focus primarily on the historical relationship between science (as defined here) and policy making in Canada. In the accompanying “Science Integrity Project: Synthesis of Pre-Forum Interviews”, we address the history and use of both science and indigenous knowledge in policy making.

To establish the scope and nature of issues involved with the effective and consistent use of the best available evidence, the Science Integrity Project began with a series of interviews with scientists, indigenous knowledge holders, and policy makers across Canada. The resulting insights from 30 interviews are summarized in the “Science Integrity Project: Synthesis of Pre-Forum Interviews”.

From February 2-4, 2015, a Forum was held in Toronto with over 60 scientists and public policy analysts, current and past representatives of public and Indigenous governments, philanthropists and representatives of non-government organizations to discuss the status of evidence-based decision-making at every level of government. To inform this discussion, the summary report of interviews was shared with Forum participants. The “Statement of Principles for Sound Decision-making in Canada” and the accompanying illustrative examples are products of the Forum’s work.


I’d like to see at least four parties at the CBC science panel, the Conservatives, the Liberals, the NDP, and the Greens. I’d really like to see something that goes beyond the “Conservatives are bad because they muzzled scientists and are making data and research unavailable” discussion. Here are some of my questions,

  • What priorities does your party want to set for research in Canada?
  • What role does your party see for Canada’s Science and Technology Museums Corporation?
  • How is your party going to address the impacts from synthetic biology, robotics, nanotechnology and other emerging technologies as they become part of our daily lives?
    • For example, what impact on the economy does your party foresee as artificially intelligent and/or robotic devices come online?
  • Does your party foresee a role for citizen science and what might that role be?
  • Does your party plan on additional science outreach? And, will it stretch itself beyond the current twin and near maniacal obsessions evinced by media and popular culture:  (1) youth already understand science easily and are the only ones who need outreach (BTW, it’s poorly planned and there are big gaps for kids who have grown past the ‘wow’ presentations and don’t plan on being scientists but are still really interested) and (2) old people aren’t important and they’re all sick and draining our resources so why bother teaching them anything?
  • Does your party have a plan to better recognize that social sciences are ‘sciences’ too? And, is there a plan to foster closer cooperation not only with the social sciences but the arts and the humanities?

There are other questions out there. Science Borealis (Canadian blog and blog aggregator) has a Sept. 18, 2015 posting (it’s in the subsection titled: Resources) which aggregates a number of resources including places where you can get ideas for election 2015 science questions.

One final comment, it’s exciting but I hope we keep our heads. There’s a certain pedantic, top-down quality to the discussion and projects such as the Science Integrity Project. For example, in posts such as a Sept. 15, 2015 posting on Science Borealis where the writers discuss Science Borealis’ participation in a discussion with the Canada Natural Sciences and Engineering Research Council (NSERC)  on its new strategic plan which includes a mandate to foster a science culture in Canada. The comments are all top-down as in, “We scientists will tell you (everybody else) what is good science and what science we should have. We are the only arbiters.” It’s an unconscious bias and, by now, everyone should know how that works out.

That said, I’m very enthused about the possibilities and excited about the upcoming radio science debate.

Self-assembly for stunning structural colour

Researchers from McGill University (Montréal, Canada) have developed a computational model which they believe explains how nature achieves structural colo(u)r as exemplified by this tulip,

 Caption: The Queen of the Night tulip displays an iridescent shimmer caused by microscopic ridges on its petals that diffract light. Credit: S. Vignolini/

Caption: The Queen of the Night tulip displays an iridescent shimmer caused by microscopic ridges on its petals that diffract light.
Credit: S. Vignolini/

A Sept. 16, 2015 news item on phys.org describes the phenomenon,

The tulip called Queen of the Night has a fitting name. Its petals are a lush, deep purple that verges on black. An iridescent shimmer dances on top of the nighttime hues, almost like moonlight glittering off regal jewels.

Certain rainforest plants in Malaysia demonstrate an even more striking color feature: Their iridescent blue leaves turn green when dunked in water.

Both the tulip’s rainbow sparkle and the Malaysian plants’ color change are examples of structural color—an optical effect that is produced by a physical structure, instead of a chemical pigment.

Now researchers have shown how plant cellulose can self-assemble [emphasis mine] into wrinkled surfaces that give rise to effects like iridescence and color change. Their findings provide a foundation to understand structural color in nature, as well as yield insights that could guide the design of devices like optical humidity sensors. …

A Sept. 15, 2015 American Institute of Physics news release on EurekAlert, which originated the news item, describes the research into cellulose and structural colour in more detail,

Cellulose is one of the most abundant organic materials on Earth. It forms a key part of the cell wall of green plants, where the cellulose fibers are found in layers. The fibers in a single layer tend to align in a single direction. However, when you move up or down a layer the axis of orientation of the fibers can shift. If you imagined an arrow pointing in the direction of the fiber alignment, it would often spin in a circle as you moved through the layers of cellulose. This twisting pattern is called a cholesteric phase, because it was first observed while studying cholesterol molecules.

Scientists think that cellulose twists mainly to provide strength. “The fibers reinforce in the direction they are oriented,” said Alejandro Rey, a chemical engineer at McGill University in Montreal, Canada. “When the orientation rotates you get multi-directional stiffness.”

Rey and his colleagues, however, weren’t primarily interested in cellulose’s mechanical properties. Instead, they wondered if the twisting structure could produce striking optical effects, as seen in plants like iridescent tulips.

The team constructed a computational model to examine the behavior of cholesteric phase cellulose. In the model, the axis of twisting runs parallel to the surface of the cellulose. The researchers found that subsurface helices naturally caused the surface to wrinkle. The tiny ridges had a height range in the nanoscale and were spaced apart on the order of microns.

The pattern of parallel ridges resembled the microscopic pattern on the petals of the Queen of the Night tulip. The ridges split white light into its many colored components and create an iridescent sheen — a process called diffraction. The effect can also be observed when light hits the microscopic grooves in a CD.

The researchers also experimented with how the amount of water in the cellulose layers affected the optical properties. More water made the layers twist less tightly, which in turn made the ridges farther apart. How tightly the cellulose helices twist is called the pitch. The team found that a surface with spatially varying pitch (in which some areas were more hydrated than others) was less iridescent and reflected a longer primary wavelength of light than surfaces with a constant pitch. The wavelength shift from around 460 nm (visible blue light) to around 520 nm (visible green light) could explain some plants’ color changing properties, Rey said.

Insights into Nature and Inspiration for New Technologies

Although proving that diffractive surfaces in nature form in the same way will require further work, the model does offer a good foundation to further explore structural color, the researchers said. They imagine the model could also guide the design of new optical devices, for example sensors that change color to indicate a change in humidity.

“The results show the optics [of cholesteric cellulose] are just as exciting as the mechanical properties,” Rey said. He said scientists tend to think of the structures as biological armor, because of their reinforcing properties. “We’ve shown this armor can also have striking colors,” he said.

Here’s a link to and a citation for the paper,

Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics by P. Rofouie, D. Pasini, and A. D. Rey. J. Chem. Phys. 143, 114701 (2015); http://dx.doi.org/10.1063/1.4929337

This is an open access paper.

Of Canadian 2015 election science debates and science weeks

You’d think science and technology might rate a mention in a debate focused on the economy but according to all accounts, that wasn’t the case last night in a Sept. 17, 2015 Canadian federal election debate featuring three party leaders, Justin Trudeau of the Liberal Party, Thomas Mulcair of the New Democratic Party (NDP), and Stephen Harper, Prime Minister and leader of the Conservative Party. BTW, Elizabeth May, leader of the Green Party, was not invited but managed to participate by tweeting video responses to the debate questions. For one of the more amusing and, in its way, insightful commentaries on the debate, there’s a Sept. 17, 2015 blog posting on CBC [Canadian Broadcasting Corporation] News titled: ‘Old stock Canadians,’ egg timer, creepy set top debate’s odd moments; Moderator David Walmsley’s Irish accent and a ringing bell get reaction on social media.

As for science and the 2015 Canadian federal election, Science Borealis has compiled an informal resource list in a Sept. 18, 2015 posting and while I’ve excerpted the resources where you can find suggested questions for candidates, there’s much more to be found there,



Interestingly, the journal Nature has published a Sept. 17, 2015 article (h/t @CBC Quirks) by Nicola Jones featuring the Canadian election and science concerns and the impact science concerns have had on opposition party platforms (Note: Links have been removed),

Canadians will head to the polls on 19 October [2015], in a federal election that many scientists hope will mark a turning point after years of declining research budgets and allegations of government censorship.

In an unprecedented move, the Professional Institute of the Public Service of Canada — a union in Ottawa that represents more than 57,000 government scientists and other professionals — is campaigning in a federal race. “Here’s how we do things in the Harper government,” declares one of the union’s radio advertisements. “We muzzle scientists, we cut research and we ignore anyone who doesn’t tell us what we want to hear.”

Science advocates see little chance that their issues will be aired during a 17 September [2015] debate in Calgary that will pit Harper against NDP [New Democratic Party] leader Thomas Mulcair and Liberal leader Justin Trudeau. But concerns about the state of Canadian science have nevertheless influenced party platforms.

The middle-left Liberal Party has made scientific integrity part of its election campaign, proposing the creation of a central public portal to disseminate government-funded research. The party seeks to appoint a chief science officer to ensure the free flow of information.

Similarly, the NDP has called for a parliamentary science officer, a position that would be independent of the majority party or coalition leading the government.

Adding to the concern about the practice of science in Canada is the delayed release of a biennial report from the government’s Science, Technology and Innovation Council (STIC). Paul Wells in a June 26, 2015 article for Maclean’s Magazine discusses the situation (Note: Links have been removed),

It is distressing when organizations with no partisan role play the sort of games partisans want. The latest example is the advisory board that the Harper government created to tell it how Canada is doing in science.

I have written about the Science, Technology and Innovation Council every two years since it produced its first major report, in May 2009. STIC, as it’s known, is not some fringe group of pinko malcontents trying to stir up trouble and turn the people against their right and proper governing party. It was conceived by the Harper government (in 2007), appointed by the Harper government (in bits ever since), and it consists, in part, of senior officials who work with the Harper government every day. …

This group gives the feds the best advice they can get about how Canada is faring against other countries in its science, research and technology efforts. Its reports have been increasingly discouraging.

Perhaps you wonder: What’s the situation now? Keep wondering. Every previous STIC biennial report was released in the spring. This winter, I met a STIC member, who told me the next report would come out in May 2015 and that it would continue most of the declining trend lines established by the first three reports. I wrote to the STIC to ascertain the status of the latest report. Here’s the answer I received:

“Thank you for your interest. STIC’s next State of the Nation report will be released later in the Fall. We will be happy to inform you of the precise date and release details when they have been confirmed.”

There is no reason this year’s report was not released in the spring, as every previous report was. None except the approach of a federal election.

Getting back to a national science debate, I have written about a proposed debate to be held on the CBC Quirks and Quarks radio programme here in a Sept. 3, 2015 posting which also features a local upcoming (on Weds., Sept. 23, 2015) election science and technology debate amongst  federal candidates in Victoria, BC. I cannot find anything more current about the proposed national science debate other than the CBC radio producer’s claim that it would occur in early October. Earlier today (Sept. 18, 2015) I checked their Twitter feed (https://twitter.com/CBCQuirks) and their website (http://www.cbc.ca/radio/quirks). I wonder what’s taking so long for an announcement. In the space of a few hours, I managed to get Ted Hsu and Lynne Quarmby, science shadow ministers for the Liberal and Green parties, respectively, to express interest in participating.

Well, whether or not there is a 2015 national science debate, I find the level of interest, in contrast to the 2011 election, exciting and affirming.

In the midst of all this election and science discussion, there are some big Canadian science events on the horizon. First and technically speaking not on the horizon, there’s Beakerhead (a smashup of art, science, and engineering) in Calgary, Alberta which runs from Sept. 16 – 20, 2015. Here are a few of the exhibits and installations you can find should you get to Calgary in time (from a Sept. 16, 2015 Beakerhead news release),

The five days of Beakerhead officially get rolling today with the world’s largest pop-up gallery, called a String (Theory) of Incredible Encounters, with a circumference of five kilometres around downtown Calgary.

The series of public art installations is an exploration in creativity at the crossroads of art, science and engineering, and can be seen by touring Calgary’s neighbourhoods, from Inglewood to East Village to Victoria Park, 17th Ave and Kensington. The home base or hub for Beakerhead this year is at Station B (the Beakerhead moniker for installations at Fort Calgary).

Station B is home to two other massive firsts – a 30-foot high version of the arcade claw game, and a 6,400 square foot sandbox – all designed to inspire human ingenuity.

Beakerhead 2015 event will erupt on the streets and venues of Calgary from September 16 to 20, and includes more than 160 collaborators and 60 public events, ranging from theatre where the audience is dining as part of the show to installations where you walk through a human nose. More than 25,000 students will be engaged in Beakerhead through field trips, classroom visits and ingenuity challenges.

Just as Beakerhead ends, Canada’s 2015 Science Literacy Week opens Sept. 21 – 27, 2015. Here’s more about the week from a Sept. 18, 2015 article by Natalie Samson for University Affairs,

On Nov. 12 last year [2014], the European Space Agency landed a robot on a comet. It was a remarkable moment in the history of space exploration and scientific inquiry. The feat amounted to “trying to throw a dart and hit a fly 10 miles away,” said Jesse Hildebrand, a science educator and communicator. “The math and the physics behind that is mindboggling.”

Imagine Mr. Hildebrand’s disappointment then, as national news programs that night spent about half as much time reporting on the comet landing as they did covering Barack Obama’s gum-chewing faux pas in China. For Mr. Hildebrand, the incident perfectly illustrates why he founded Science Literacy Week, a Canada-wide public education campaign celebrating all things scientific.

From Sept. 21 to 27 [2015], several universities, libraries and museums will highlight the value of science in our contemporary world by hosting events and exhibits on topics ranging from the lifecycle of a honeybee to the science behind Hollywood films like Jurassic World and Contact.

Mr. Hildebrand began developing the campaign last year, shortly after graduating from the University of Toronto with a bachelor’s degree in ecology and evolutionary biology. He approached the U of T Libraries for support and “it really snowballed from there,” the 23-year-old said.

Though Mr. Hildebrand said Science Literacy Week wasn’t inspired by public criticism against the federal government’s approach to scientific research and communication, he admitted that it makes the campaign seem that much more important. “I’ve always wanted to shout from the rooftops how cool science is. This is my way of shouting from the rooftops,” he said.

In the lead-up to Science Literacy Week, museum scientists with the Alliance of Natural History Museums of Canada have been posting videos of what they do and why it’s important under the hashtag #canadalovesscience. The end of the campaign will coincide with a lunar eclipse and will see several universities and observatories hosting stargazing parties.

You can find out more about this year’s events on the Science Literacy Week website. Here are a few of the BC events I found particularly intriguing,

UBC Botanical Garden – Jointly run as part of National Forest Week/Organic Week

September 20th, 10 a.m-12 p.m – A Walk in the Woods

Come discover the forest above, below and in between on our guided forest tour! Explore and connect with trees that hold up our 300-metre long canopy walkway. [emphasis mine] Meet with grand Firs, Douglas Firs and Western Red Cedars and learn about the importance of forests to biodiversity, climate change and our lives.

September 24th, 7:30-11 P.M – Food Garden Tour and Outdoor Movie Night

What better way to celebrate Organic Week than to hear about our exciting plans for the UBC Food Garden? Tour renewed garden beds to see what’s been growing. Learn about rootstocks, cultivars, training techniques and tree forms for fruit trees in this area.  Then make your way to out enchanting outdoor Ampitheatre and watch Symphony of the Soil, a film celebrated by the UN for 2015, the International Year of the Soil.

I highlighted the UBC Botanical Garden canopy walkway because you really do walk high up in the forest as you can see in this image of the walkway,

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

[downloaded from http://www.familyfuncanada.com/vancouver/canopy-walk-ubc-botanical-garden/]

This image is from an undated article by Lindsay Follett for Family Fun Vancouver.

While it’s still a month away, there is Canada’s upcoming 2015 National Science and Technology Week, which will run from Oct. 16 – 25. To date, they do not have any events listed for this year’s week but they do invite you to submit your planned event for inclusion in their 2015 event map and list of events.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

Is chemistry at the nanoscale applicable to hockey?

If the Carolina Hurricanes, a national hockey league (NHL) team, are to be believed the answer is a qualified yes. The connection between chemistry at the nanoscale and hockey is in the person of Eric Tulsky. A Sept. 8, 2015 article by James Mirtle for the Globe and Mail spells out the details,

Tulsky, 40, is a Harvard- and Berkeley-educated chemist whose field up until two months ago was nanotechnology, which essentially means he’s an expert in the manipulation of matter on a molecular level. Now he’ll be trying to help an NHL team win hockey games.

“He’s an extremely bright guy,” Hurricanes general manager Ron Francis said of his new hire, who is widely regarded as one of the top minds in hockey analytics. “We’re very excited that he decided to join us full-time and move to Raleigh.”

Tulsky spent the last few seasons working part-time for different NHL teams, including last year for Carolina. That the Hurricanes were able to woo him away from a high-paying tech job in the San Francisco Bay Area speaks to how far the league has come in terms of investment in data.

His promotion was one of nearly a dozen such personnel moves teams made over the off-season, building on what was an even busier hiring spree in 2014.

Canadian teams are also investing in data (from Mirtle’s article),

Last week, the Toronto Maple Leafs added Bruce Peter as a hockey research and development analyst, giving them four full-timers in a department that was created by assistant GM Kyle Dubas last season. Peter had been working for the Saskatoon Blades of the Western Hockey League, and is expected to have a key role in improving the Toronto Marlies’ use of analytics in a league where few statistics are widely kept.

Mirtle provides further insight into why Tulsky was hired,

It’s a movement [hockey analytics] Francis – one of the highest-scoring players in NHL history – has embraced.

“There’s [sic] little, subtle things the analytics will tell you,” said Francis, who began studying advanced statistics after retiring in 2004. “There are certainly things in the analytics that go against the way that I was brought up to think the game at times, which is interesting. So you watch the games, you think you see things, and it’s another balance and check in the process.”

NHL teams are often secretive about these hires and the work these people do. But Tulsky wrote extensively in the public domain for a variety of publications prior to 2014, and the base principles he believes in are on record.

Much of his work concentrated on puck possession – through a statistic called Corsi – but he also made innovative gains in measuring the most effective way for teams to enter the offensive zone. That became part of a paper presented at the MIT Sloan Sports Analytics Conference in Boston that ultimately caught the attention of NHL players such as Zach Parise.

In short, Tulsky’s analysis quantified that dumping the puck into the opponent’s end was a much less effective way to generate scoring chances than attempting to retain possession.

In Carolina, he will be asked to push his work into uncharted territory, attempting to give the small-budget Hurricanes an advantage over other teams by dissecting the game in new ways. …

It’s an interesting story and while the nano connection is tangential at best, I’m Canadian and hockey season is almost with us. What more needs to be said?