Tag Archives: Canada

Are there any leaders in the ‘graphene race’?

Tom Eldridge, a director and co-founder of Fullerex, has written a Jan. 5, 2017 essay titled: Is China still leading the graphene race? for Nanotechnology Now. Before getting to the essay, here’s a bit more about Fullerex and Tom Eldridge’s qualifications. From Fullerex’s LinkedIn description,

Fullerex is a leading independent broker of nanomaterials and nano-intermediates. Our mission is to support the advancement of nanotechnology in creating radical, transformative and sustainable improvement to society. We are dedicated to achieving these aims by accelerating the commercialisation and usage of nanomaterials across industry and beyond. Fullerex is active in market development and physical trading of advanced materials. We generate demand for nanomaterials across synergistic markets by stimulating innovation with end-users and ensuring robust supply chains are in place to address the growing commercial trade interest. Our end-user markets include Polymers and Polymer Composites, Coatings, Tyre and Rubber, Cementitious Composites, 3D Printing and Printed Electronics, the Energy sector, Lubricating Oils and Functional Fluids. The materials we cover: Nanomaterials: Includes fullerenes, carbon nanotubes and graphene, metal and metal oxide nanoparticles, and organic-inorganic hybrids. Supplied as raw nanopowders or ready-to-use dispersions and concentrates. Nano-intermediates: Producer goods and semi-finished products such as nano-enabled coatings, polymer masterbatches, conductive inks, thermal interface materials and catalysts.

As for Tom Eldridge, here’s more about him, his brother, and the company from the Fullerex About page,

Fullerex was founded by Joe and Tom Eldridge, brothers with a keen interest in nanotechnology and the associated emerging market for nanomaterials.

Joe has a strong background in trading with nearly 10 years’ experience as a stockbroker, managing client accounts for European Equities and FX. At University he read Mathematics at Imperial College London gaining a BSc degree and has closely followed the markets for disruptive technologies and advanced materials for a number of years.

Tom worked in the City of London for 7 years in commercial roles throughout his professional career, with an expertise in market data, financial and regulatory news. In his academic background, he earned a BSc degree in Physics and Philosophy at Kings College London and is a member of the Institute of Physics.

As a result, Fullerex has the strong management composition that allows the company to support the growth of the nascent and highly promising nanomaterials industry. Fullerex is a flexible company with drive, enthusiasm and experience, committed to aiding the development of this market.

Getting back to the matter at hand, that’s a rather provocative title for Tom Eldridge’s essay,. given that he’s a Brit and (I believe) the Brits viewed themselves as leaders in the ‘graphene race’ but he offers a more nuanced analysis than might be expected from the title. First, the patent landscape (from Eldridge’s Jan. 5, 2017 essay),

As competition to exploit the “wonder material” has intensified around the world, detailed reports have so far been published which set out an in-depth depiction of the global patent landscape for graphene, notably from CambridgeIP and the UK Intellectual Property Office, in 2013 and 2015 respectively. Ostensibly the number of patents and patent applications both indicated that China was leading the innovation in graphene technology. However, on closer inspection it became less clear as to how closely the patent figures themselves reflect actual progress and whether this will translate into real economic impact. Some of the main reasons to be doubtful included:

– 98% of the Chinese patent applications only cover China, so therefore have no worldwide monopoly.
– A large number of the Chinese patents are filed in December, possibly due to demand to meet patent quotas. The implication being that the patent filings follow a politically driven agenda, rather than a purely innovation or commercially driven agenda.
– In general, inventors could be more likely to file for patent protection in some countries rather than others e.g. for tax purposes. Which therefore does not give a truly accurate picture of where all the actual research activity is based.
– Measuring the proportion of graphene related patents to overall patents is more indicative of graphene specialisation, which shows that Singapore has the largest proportion of graphene patents, followed by China, then South Korea.

(Intellectual Property Office, 2015), (Ellis, 2015), (CambridgeIP, 2013)

Then, there’s the question of production,

Following the recent launch of the latest edition of the Bulk Graphene Pricing Report, which is available exclusively through The Graphene Council, Fullerex has updated its comprehensive list of graphene producers worldwide, and below is a summary of the number of graphene producers by country in 2017.

Summary Table Showing the Number of Graphene Producers by Country and Region

The total number of graphene producers identified is 142, across 27 countries. This research expands upon previous surveys of the graphene industry, such as the big data analysis performed by Nesta in 2015 (Shapira, 2015). The study by Nesta [formerly  NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK; see Wikipedia here for more about NESTA] revealed 65 producers throughout 16 countries but was unable to glean accurate data on producers in Asia, particularly China.

As we can now see however from the data collected by Fullerex, China has the largest number of graphene producers, followed by the USA, and then the UK.

In addition to having more companies active in the production and sale of graphene than any other country, China also holds about 2/3rds of the global production capacity, according to Fullerex.

Eldridge goes on to note that the ‘graphene industry’ won’t truly grow and develop until there are substantive applications for the material. He also suggests taking another look at the production figures,

As with the patent landscape, rather than looking at the absolute figures, we can review the numbers in relative terms. For instance, if we normalise to account for the differences in the size of each country, by looking at the number of producers as a proportion of GDP, we see the following: Spain (7.18), UK (4.48), India (3.73), China (3.57), Canada (3.28) [emphasis mine], USA (1.79) (United Nations, 2013).

Unsurprisingly, each leading country has a national strategy for economic development which involves graphene prominently.

For instance, The Spanish Council for Scientific Research has lent 9 of its institutes along with 10 universities and other public R&D labs involved in coordinating graphene projects with industry.

The Natural Sciences and Engineering Research Council of Canada [NSERC] has placed graphene as one of five research topics in its target area of “Advanced Manufacturing” for Strategic Partnership Grants.

The UK government highlights advanced materials as one of its Eight Great Technologies, within which graphene is a major part of, having received investment for the NGI and GEIC buildings, along with EPSRC and Innovate UK projects. I wrote previously about the UK punching above its weight in terms of research, ( http://fullerex.com/index.php/articles/130-the-uk-needs-an-industrial-revolution-can-graphene-deliver/ ) but that R&D spending relative to GDP was too low compared to other developed nations. It is good to see that investment into graphene production in the UK is bucking that trend, and we should anticipate this will provide a positive economic outcome.

Yes, I’m  particularly interested in the fact Canada becomes more important as a producer when the numbers are relative but it is interesting to compare the chart with Eldridge’s text and to note how importance shifts depending on what numbers are being considered.

I recommend reading Eldridge’s piece in its entirety.

A few notes about graphene in Canada

By the way, the information in Eldridge’s essay about NSERC’s placement of graphene as a target area for grants is news to me. (As I have often noted here, I get more information about the Canadian nano scene from international sources than I do from our national sources.)

Happily I do get some home news such as a Jan. 5, 2017 email update from Lomiko Metals, a Canadian junior exploration company focused on graphite and lithium. The email provides the latest information from the company (as I’m not an expert in business or mining this is not an endorsement),

On December 13, 2016 we were excited to announce the completion of our drill program at the La Loutre flake graphite property. We received very positive results from our 1550 meter drilling program in 2015 in the area we are drilling now. In that release I stated, “”The intercepts of multiple zones of mineralization in the Refractory Zone where we have reported high grade intercepts previously is a very promising sign. The samples have been rushed to the ALS Laboratory for full assay testing,” We hope to have the results of those assays shortly.

December 16, 2016 Lomiko announced a 10:1 roll back of our shares. We believe that this roll back is important as we work towards securing long term equity financing for the company. Lomiko began trading on the basis of the roll back on December 19.

We believe that Graphite has a bright future because of the many new products that will rely on the material. I have attached a link to a video on Lomiko, Graphite and Graphene.  

https://youtu.be/Y–Y_Ub6oC4

January 3, 2017 Lomiko announced the extension and modification of its option agreements with Canadian Strategic Metals Inc. for the La Loutre and Lac des Iles properties. The effect of this extension is to give Lomiko additional time to complete the required work under the agreements.

Going forward Lomiko is in a much stronger position as the result of our share roll back. Potential equity funders who are very interested in our forthcoming assay results from La Loutre and the overall prospects of the company, have been reassured by our share consolidation.

Looking forward to 2017, we anticipate the assays of the La Loutre drilling to be delivered in the next 90 days, sooner we hope. We also anticipate additional equity funding will become available for the further exploration and delineation of the La Loutre and Lac des Iles properties and deposits.

More generally, we are confident that the market for large flake graphite will become firmer in 2017. Lomiko’s strategy of identifying near surface, ready to mine, graphite nodes puts us in the position to take advantage of improvements in the graphite price without having to commit large sums to massive mine development. As we identify and analyze the graphite nodes we are finding we increase the potential resources of the company. 2017 should see significantly improved resource estimates for Lomiko’s properties.

As I wasn’t familiar with the term ‘roll back of shares’, I looked it up and found this in an April 18, 2012 posting by Dudley Pierce Baker on kitco.com,

As a general rule, we hate to see an announcement of a share rollback, however, there exceptions which we cover below. Investors should always be aware that if a company has, say over 150 million shares outstanding, in our opinion, it is a potential candidate for a rollback and the announcement should not come as a surprise.

Weak markets, a low share price, a large number of shares outstanding, little or no cash and you have a company which is an idea candidate for a rollback.

The basic concept of a rollback or consolidation in a company’s shares is rather simple.

We are witnessing a few cases of rollbacks not with the purpose of raising more money but rather to facilitate the listing of the company’s shares on the NYSE [New York Stock Exchange] Amex.

I have no idea what situation Lomiko finds itself in but it should be noted that graphere research has been active since 2004 when the first graphene sheets were extracted from graphite. This is a relatively new field of endeavour and Lomiko (along with other companies) is in the position of pioneering the effort here in Canada. That said, there are many competitors to graphene and major international race to commercialize nanotechnology-enabled products.

Are there any leaders in the ‘graphene race?

Getting back to the question in the headline, I don’t think there are any leaders at the moment. No one seems to have what they used to call “a killer app,” that one application/product that everyone wants and which drive demand for graphene.

Using melanin in bioelectronic devices

Brazilian researchers are working with melanin to make biosensors and other bioelectronic devices according to a Dec. 20, 2016 news item on phys.org,

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google’s parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University’s School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized implantable devices such as biosensors.

A Dec. 14, 2016 FAPESP (São Paulo Research Foundation) press release, which originated the news item, further describes both the research and a recent meeting where the research was shared (Note: A link has been removed),

Some of the group’s research findings were presented at FAPESP Week Montevideo during a round-table session on materials science and engineering.

The symposium was organized by the Montevideo Group Association of Universities (AUGM), Uruguay’s University of the Republic (UdelaR) and FAPESP and took place on November 17-18 at UdelaR’s campus in Montevideo. Its purpose was to strengthen existing collaborations and establish new partnerships among South American scientists in a range of knowledge areas. Researchers and leaders of institutions in Uruguay, Brazil, Argentina, Chile and Paraguay attended the meeting.

“All the materials that have been tested to date for applications in bioelectronics are entirely synthetic,” said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project, in an interview given to Agência FAPESP.

“One of the great advantages of melanin is that it’s a totally natural compound and biocompatible with the human body: hence its potential use in electronic devices that interface with brain neurons, for example.”

Application challenges

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

“The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics,” Graeff said.

By increasing the density of carboxyl groups, the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

“We’ve succeeded in obtaining a material that’s very close to biological melanin by chemical synthesis and in producing high-quality film for use in bioelectronic devices,” Graeff said.

Through collaboration with colleagues at research institutions in Canada [emphasis mine], the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

“Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems,” Graeff said.

I’m glad to have gotten some information about the work in South America. It’s one of FrogHeart’s shortcomings that I have so little about the research in that area of the world. I believe this is largely due to my lack of Spanish language skills. Perhaps one day there’ll be a universal translator that works well. In the meantime, it was a surprise to see Canada mentioned in this piece. I wonder which Canadian research institutions are involved with this research in South America.

Internet Archive backup in Canada?

It’s a good idea whether or not the backup site is in Canada and regardless of who is president of the United States, i.e., having a backup for the world’s digital memory. The Internet Archives has announced that it is raising funds to allow for the creation of a backup site. Here’s more from a Dec. 1, 2016 news item on phys.org,

The Internet Archive, which keeps historical records of Web pages, is creating a new backup center in Canada, citing concerns about surveillance following the US presidential election of Donald Trump.

“On November 9 in America, we woke up to a new administration promising radical change. It was a firm reminder that institutions like ours, built for the long term, need to design for change,” said a blog post from Brewster Kahle, founder and digital librarian at the organization.

“For us, it means keeping our cultural materials safe, private and perpetually accessible. It means preparing for a Web that may face greater restrictions.”

While Trump has announced no new digital policies, his campaign comments have raised concerns his administration would be more active on government surveillance and less sensitive to civil liberties.

Glyn Moody in a Nov. 30, 2016 posting on Techdirt eloquently describes the Internet Archive’s role (Note: Links have been removed),

The Internet Archive is probably the most important site that most people have never heard of, much less used. It is an amazing thing: not just a huge collection of freely-available digitized materials, but a backup copy of much of today’s Web, available through something known as the Wayback Machine. It gets its name from the fact that it lets visitors view snapshots of vast numbers of Web pages as they have changed over the last two decades since the Internet Archive was founded — some 279 billion pages currently. That feature makes it an indispensable — and generally unique — record of pages and information that have since disappeared, sometimes because somebody powerful found them inconvenient.

Even more eloquently, Brewster Kahle explains the initiative in his Nov. 29, 2016 posting on one of the Internet Archive blogs,

The history of libraries is one of loss.  The Library of Alexandria is best known for its disappearance.

Libraries like ours are susceptible to different fault lines:

Earthquakes,

Legal regimes,

Institutional failure.

So this year, we have set a new goal: to create a copy of Internet Archive’s digital collections in another country. We are building the Internet Archive of Canada because, to quote our friends at LOCKSS, “lots of copies keep stuff safe.” This project will cost millions. So this is the one time of the year I will ask you: please make a tax-deductible donation to help make sure the Internet Archive lasts forever. (FAQ on this effort).

Throughout history, libraries have fought against terrible violations of privacy—where people have been rounded up simply for what they read.  At the Internet Archive, we are fighting to protect our readers’ privacy in the digital world.

We can do this because we are independent, thanks to broad support from many of you. The Internet Archive is a non-profit library built on trust. Our mission: to give everyone access to all knowledge, forever. For free. The Internet Archive has only 150 staff but runs one of the top-250 websites in the world. Reader privacy is very important to us, so we don’t accept ads that track your behavior.  We don’t even collect your IP address. But we still need to pay for the increasing costs of servers, staff and rent.

You may not know this, but your support for the Internet Archive makes more than 3 million e-books available for free to millions of Open Library patrons around the world.

Your support has fueled the work of journalists who used our Political TV Ad Archive in their fact-checking of candidates’ claims.

It keeps the Wayback Machine going, saving 300 million Web pages each week, so no one will ever be able to change the past just because there is no digital record of it. The Web needs a memory, the ability to look back.

My two most relevant past posts on the topic of archives and memories are this May 18, 2012 piece about Luciana Duranti’s talk about authenticity and trust regarding digital documents and this March 8, 2012 posting about digital memory, which also features a mention of Brewster Kahle and the Internet Archives.

Artificial intelligence and industrial applications

This is take on artificial intelligence that I haven’t encountered before. Sean Captain’s Nov. 15, 2016 article for Fast Company profiles industry giant GE (General Electric) and its foray into that world (Note: Links have been removed),

When you hear the term “artificial intelligence,” you may think of tech giants Amazon, Google, IBM, Microsoft, or Facebook. Industrial powerhouse General Electric is now aiming to be included on that short list. It may not have a chipper digital assistant like Cortana or Alexa. It won’t sort through selfies, but it will look through X-rays. It won’t recommend movies, but it will suggest how to care for a diesel locomotive. Today, GE announced a pair of acquisitions and new services that will bring machine learning AI to the kinds of products it’s known for, including planes, trains, X-ray machines, and power plants.

The effort started in 2015 when GE announced Predix Cloud—an online platform to network and collect data from sensors on industrial machinery such as gas turbines or windmills. At the time, GE touted the benefits of using machine learning to find patterns in sensor data that could lead to energy savings or preventative maintenance before a breakdown. Predix Cloud opened up to customers in February [2016?], but GE is still building up the AI capabilities to fulfill the promise. “We were using machine learning, but I would call it in a custom way,” says Bill Ruh, GE’s chief digital officer and CEO of its GE Digital business (GE calls its division heads CEOs). “And we hadn’t gotten to a general-purpose framework in machine learning.”

Today [Nov. 15, 2016] GE revealed the purchase of two AI companies that Ruh says will get them there. Bit Stew Systems, founded in 2005, was already doing much of what Predix Cloud promises—collecting and analyzing sensor data from power utilities, oil and gas companies, aviation, and factories. (GE Ventures has funded the company.) Customers include BC Hydro, Pacific Gas & Electric, and Scottish & Southern Energy.

The second purchase, Wise.io is a less obvious purchase. Founded by astrophysics and AI experts using machine learning to study the heavens, the company reapplied the tech to streamlining a company’s customer support systems, picking up clients like Pinterest, Twilio, and TaskRabbit. GE believes the technology will transfer yet again, to managing industrial machines. “I think by the middle of next year we will have a full machine learning stack,” says Ruh.

Though young, Predix is growing fast, with 270 partner companies using the platform, according to GE, which expects revenue on software and services to grow over 25% this year, to more than $7 billion. Ruh calls Predix a “significant part” of that extra money. And he’s ready to brag, taking a jab at IBM Watson for being a “general-purpose” machine-learning provider without the deep knowledge of the industries it serves. “We have domain algorithms, on machine learning, that’ll know what a power plant is and all the depth of that, that a general-purpose machine learning will never really understand,” he says.

One especially dull-sounding new Predix service—Predictive Corrosion Management—touches on a very hot political issue: giant oil and gas pipeline projects. Over 400 people have been arrested in months of protests against the Dakota Access Pipeline, which would carry crude oil from North Dakota to Illinois. The issue is very complicated, but one concern of protestors is that a pipeline rupture would contaminate drinking water for the Standing Rock Sioux reservation.

“I think absolutely this is aimed at that problem. If you look at why pipelines spill, it’s corrosion,” says Ruh. “We believe that 10 years from now, we can detect a leak before it occurs and fix it before you see it happen.” Given how political battles over pipelines drag on, 10 years might not be so long to wait.

I recommend reading the article in its entirety if you have the time. And, for those of us in British Columbia, Canada, it was a surprise to see BC Hydro on the list of customers for one of GE’s new acquisitions. As well, that business about the pipelines hits home hard given the current debates (Enbridge Northern Gateway Pipelines) here. *ETA Dec. 27, 2016: This was originally edited just prior to publication to include information about the announcement by the Trudeau cabinet approving two pipelines for TransMountain  and Enbridge respectively while rejecting the Northern Gateway pipeline (Canadian Broadcasting Corporation [CBC] online news Nov. 29, 2016).  I trust this second edit will stick.*

It seems GE is splashing out in a big way. There’s a second piece on Fast Company, a Nov. 16, 2016 article by Sean Captain (again) this time featuring a chat between an engineer and a robotic power plant,

We are entering the era of talking machines—and it’s about more than just asking Amazon’s Alexa to turn down the music. General Electric has built a digital assistant into its cloud service for managing power plants, jet engines, locomotives, and the other heavy equipment it builds. Over the internet, an engineer can ask a machine—even one hundreds of miles away—how it’s doing and what it needs. …

Voice controls are built on top of GE’s Digital Twin program, which uses sensor readings from machinery to create virtual models in cyberspace. “That model is constantly getting a stream of data, both operational and environmental,” says Colin Parris, VP at GE Software Research. “So it’s adapting itself to that type of data.” The machines live virtual lives online, allowing engineers to see how efficiently each is running and if they are wearing down.

GE partnered with Microsoft on the interface, using the Bing Speech API (the same tech powering the Cortana digital assistant), with special training on key terms like “rotor.” The twin had little trouble understanding the Mandarin Chinese accent of Bo Yu, one of the researchers who built the system; nor did it stumble on Parris’s Trinidad accent. Digital Twin will also work with Microsoft’s HoloLens mixed reality goggles, allowing someone to step into a 3D image of the equipment.

I can’t help wondering if there are some jobs that were eliminated with this technology.

Preliminary data from third assessment of The State of Science and Technology and Industrial Research and Development in Canada

It’s a little misleading to call this a third assessment as the first two were titled “The state of science and technology” whereas this time they’ve thrown “industrial research and development” (which previously rated its own separate assessment) into the mix as I noted in my July 1, 2016 post about this upcoming report by the Council of Canadian Academies (CCA).

To whet our appetites, the CCA’s expert panel has released some preliminary data according to a Dec. 15, 2016 news release (received via email),

The Council of Canadian Academies is pleased to release the Preliminary Data Update on Canadian Research Performance and International Reputation. This document represents the early work of the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada. It contains a preliminary update of key bibliometric and opinion survey data comparable to that published in the 2012 CCA assessment on the state of science and technology in Canada.

“This update provides a window into some of the data we are using to explore the state of research, development, and innovation in Canada,” said Max Blouw, Chair of the Expert Panel and President and Vice-Chancellor of Wilfrid Laurier University. “Our intention is to provide timely access to a body of evidence on Canada’s research performance that may serve as an important input to ongoing federal policy development.”

Highlights of this work include updated data on research output and collaboration, research impact, international reputation and stature, and data on research fields.

This data update is part of a larger project to assess the state of research, development, and innovation in Canada. The Expert Panel continues to work on its final report, which is expected to be released in late 2017.

I have taken a look at the material and these are the research highlights from the preliminary report,

Research Output and Collaboration
• Canada ranks ninth in the world in research publication output and accounts for 3.8% of the world’s output.
• Canada’s research output is growing at a rate comparable to that exhibited by most developed countries. Developed countries, however, are increasingly being overshadowed by the dramatic growth in research production in China and other emerging economies over the past decade.
• Canadian researchers continue to be highly collaborative internationally, working with international co-authors in nearly 46% of their publications.

Research Impact
• Citation-based indicators show that Canadian research continues to have relatively high levels of impact. By ARC score, Canada ranks sixth out of leading countries: its research is cited 43% more than the world average across all fields of study.
• The impact of Canada’s research, as reflected in citations (ARC, MRC, and HCP1%), has increased in recent years. However, these increases have been often matched or exceeded by other countries. Canada’s rank by ARC declined slightly in many fields as a result.

International Reputation and Stature
• Canada’s research contributions continue to be well regarded internationally according to a survey of top-cited researchers around the world. The share of top-cited researchers who rate Canada’s research as strong in their field of study rose from 68% in 2012 to 72% in 2016.
• Approximately 36% of surveyed top-cited researchers identify Canada as one of the top five countries in their research fields. As a result, Canada ranks fourth overall, behind the United States, United Kingdom, and Germany.
• The share of top-cited researchers who have worked or studied in Canada, or collaborated with Canadians, has increased since 2012.

Data by Field of Research
• Preliminary analysis of Canadian research by field reveals patterns similar to those presented in the 2012 S&T report.
• All fields of research in Canada were cited at rates above the world average in 2009–2014. Few fields in Canada have experienced major shifts in output or impact in recent years, though the specialization rate of Clinical Medicine gradually increased and that of Engineering decreased relative to other countries.
• Fields in which Canada has both a relatively high degree of specialization and a high impact (above the G7 average) include Clinical Medicine; Biology; Information and Communication Technologies; Agriculture, Fisheries and Forestry; Earth and Environmental Sciences; and Economics and Business.
• Canada’s research contributions in Physics and Astronomy continue to be highly cited despite a lower publication output than might be expected. Chemistry and Enabling and Strategic Technologies (Energy, Biotechnology, Bioinformatics, Nanoscience and Nanotechnology, Optoelectronics and Photonics) are other areas in which Canada’s research output is low relative to other countries.
• When analyzed by field of study, results from the international survey of top-cited researchers are consistent with those from the 2012 survey. Canada continues to rank among the top five countries in three-quarters of fields.
• Canada’s research reputation is the weakest in core fields of the natural sciences such as Mathematics and Statistics, Physics and Astronomy, Chemistry, Engineering, and in Enabling and Strategic Technologies. [p. 5 PDF; p. v print]

As the panel notes they have the same problem as their predecessors. Bibliometric data, i. e., the number of papers your researchers have published, how often they’ve been cited, and in which journals (impact factor) they’ve been published are problematic as indicators of scientific progress.  Excellent research can end up in an obscure journal and be ignored for decades while more problematic (substandard) work may be published in a prestigious (high impact) journal thereby gaining more attention.  Unfortunately, despite these and other issues, bibliometric data remains a basic indicator of scientific progress. The expert panel for the 2012 report (State of Science and Technology) attempted to mitigate some of the problems by using other indicators. If I remember rightly, one of those indicators was an international survey of researchers (which is also problematic in some ways) about their awareness of and opinion of Canadian research. It seems this expert panel has also gone that route,

Qualitative evidence can be a useful complement to bibliometric data in assessing research performance, especially when drawing on the insights of researchers and scientists who are highly accomplished in their fields. Similar to the 2012 S&T report, a survey was sent to the top 1% of highly cited researchers by field worldwide, asking them to identify the leading countries in their areas of expertise. The results of this survey are comparable to those from 2012 and illustrate that Canada’s international research reputation remains strong across most fields of research.

6.1 CANADA’S OvERALL RESEARCH REPUTATION

Researchers were asked to identify the top five countries in their field and sub-field of expertise. As shown in Figure 6.1, 35.5% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada within the top five countries in their field. Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany and ahead of France. This represents a change of about 1.5 percentage points from the overall results of the 2012 survey. There was a three percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% of respondents rated Canadian research as “strong” (corresponds to a score of 5 or higher on a 7-point scale), and 47% rated it as “very strong” (Figure 6.1 and Table 6.1). These ratings increased from 68% and 42%, respectively, in the 2012 report.16 [p. 29 PDF, p. 23 print]

Taking into account that there are no perfect measures, here’s what the preliminary report has to say overall,

Canada continues to rank within the top 10 countries in total output of research publications, but fell from seventh place to ninth between 2003–2008 and 2009–2014. Canada produces 3.8% of the world output.6 During the period, Canadian researchers produced about 496,696 publications (see Table 3.1).7 In the 2012 S&T report, Canada ranked seventh in 2005–2010 with roughly 395,000 scientific publications. Although India and Italy overtook Canada to reach the seventh and eighth positions, respectively, the distance separating Canada from Italy is negligible (over 2,000 publications). The United States continues to lead in number of publications, but the gap with China is rapidly narrowing.

This data update presents country rankings in a similar manner to the 2012 S&T report. Note that research output may be normalized by various measures to produce alternative rankings. For example, output can be examined relative to the size of the population or the economy of a country.

Figure 3.1 shows overall output of publications relative to a country’s population. By this measure, Canada ranks fifth with about 14 publications per 1,000 inhabitants in 2009–2014. This indicator shows China’s rank to be lower on a per capita basis; however, this could also indicate China’s potential for considerable future growth. For countries like Switzerland, high publication output reflects a high level of international collaboration and the presence of major scientific research facilities, such as CERN, which are associated with global networks of researchers. [p. 11 PDF; p. 5 print]

This represents a few bits of information from the panel’s 34 pp. preliminary report. If you have the time, do take a look at it. As these things go, it’s readable. One last comment, the panel notes that nothing about industrial research has been included in the preliminary report.

Wanted: Chief Science Advisor for Canadian government

Thanks to Stephanie Taylor’s Dec. 6, 2016 posting on the Science Borealis blog for an update on Canada’s Chief Science Advisor situation. Ta da: The Government of Canada has announced an official job opportunity in a Dec. 5, 2016 Innovation, Science and Economic Development Canada news release,

More than 35,000 people in the federal government are involved in science and technology activities. Also, nearly 50,000 researchers and trainees across the country are supported by the federally funded research councils. From clean air and water to food security and technological advancements, science plays a crucial role in providing the evidence the Government of Canada needs to make decisions that improve the lives of Canadians.

Today, the search begins for the person who will be instrumental in furthering the Government’s commitment to science-based decision making. The Honourable Kirsty Duncan, Minister of Science, is delivering on her key mandate commitment by launching the search for a Chief Science Advisor for Canada. The announcement took place at the historic Library of the National Research Council in Ottawa.

The Chief Science Advisor will be responsible for providing scientific advice to the Prime Minister, the Minister of Science and members of Cabinet. This individual will also advise on how to ensure that government science is open to the public, that federal scientists are able to speak freely about their work, and that science is effectively communicated across government. The office will be supported by a team of scientists and policy experts.

The position is now open to all Canadians. The full job description and information on applying can be found on the Governor in Council website. The application process is expected to close [emphasis mine] on January 27, 2017.

I gather they’re keeping their options open with that “expected to close” phrase leaving them room to weasel out of the Jan. 27, 2016 deadline. In any event, here’s the job description (or as it’s being called “appointment opportunity”, from the Governor in Council Appointments nomination webspace,

Chief Science Advisor,

Appointment Opportunity

We know that our country is stronger — and our government more effective — when decision-makers reflect Canada’s diversity. Moving forward, the Government of Canada will use an appointment process that is transparent and merit-based, strives for gender parity, and ensures that Indigenous Canadians and minority groups are properly represented in positions of leadership. We will continue to search for Canadians who reflect the values that we all embrace: inclusion, honesty, fiscal prudence, and generosity of spirit. Together, we will build a government as diverse as Canada.

The overarching goal of the Minister of Science is to support scientific research and the integration of scientific considerations in our investment and policy choices.

The Government of Canada is currently seeking applications from diverse and talented Canadians from across the country who are interested in the following position:

Chief Science Advisor (full-time position)

The Government of Canada is establishing the position of Chief Science Advisor, which will report to the Prime Minister and the Minister of Science. Transparent communication of science and evidence-based policy-making are among the federal government’s top priorities. The new Chief Science Advisor will play a key role in fulfilling that commitment.

The Chief Science Advisor’s main function will be to advise the government on how to ensure that government science is fully available to the public, that scientists are able to speak freely about their work, and that scientific analyses are considered when the government makes decisions. The Chief Science Advisor will focus on how scientific information is disseminated and used by the federal government, and how evidence is incorporated into government-wide decision-making. This will include a particular emphasis on federal scientific research and activities. Looking to broader scientific issues, as an adviser and coordinator of advice, the Chief Science Advisor will aim to provide impartial scientific advice on key issues with science or research components of relevance to Canada.

Candidates must apply online by January 27, 2017, via the Governor in Council website. Your cover letter should be addressed to the Assistant Secretary to the Cabinet (Senior Personnel), Privy Council Office, and should be sent only through the on-line application.

Salary Range: Under review

Position Location: Ottawa, Ontario

Official Languages and Diversity

The Government of Canada will consider bilingual proficiency and diversity in assessing candidates for this position. You are therefore encouraged to include in your online profile your ability to speak and understand your second official language. Preference may be given to candidates who are members of one or more of the following groups: women, Indigenous Canadians, persons with disabilities, and visible minorities.

To be considered for this position, please provide examples from your career that clearly demonstrate how you meet the following requirements in your application. Please note that the maximum size of each document uploaded as part of your application is 3 MB. A maximum of five (5) documents may be uploaded in respect of any application, including the cover letter and curriculum vitae.

Education and Experience

  • A doctoral degree in natural sciences, mathematics, engineering sciences, health sciences or social sciences;
  • Significant experience as a scientific research practitioner and peer reviewer, with a strong record of peer-reviewed publications in a relevant field of specialization;
  • Demonstrated leadership and management experience within public or private research organizations;
  • Experience participating in scientific advisory bodies established by government (e.g., expert panels, task forces, committees) would be an asset; and
  • Experience in one or more of the following areas would be an asset:
    • involvement in scientific reviews within legislative or regulatory processes;
    • public scientific communication;
    • promoting transparency and integrity in scientific research; and
    • evaluation of scientific or research programs or projects.

If you are selected for an interview, the following criteria will be assessed:

Knowledge, Skills and Abilities

  • Knowledge of the machinery of the federal government and its decision-making process, as well as knowledge of Canadian federal science and technology policy;
  • Knowledge of scientific and non-scientific issues relevant to the federal government;
  • Knowledge of the challenges and opportunities facing evidence-based policy-making within government;
  • Knowledge of the state of current scientific evidence – including accepted theories, established findings and existing uncertainties – outside the candidate’s field of specialization;
  • Ability to provide scientific advice in support of policy decisions in an authoritative and independent manner, combining knowledge and experience and effectively addressing the limits of science, the insufficiency of evidence, and appropriately framing uncertainties;
  • Ability to provide constructive scientific advice on contentious issues where considerations include, but are not limited to, science, and recognizing her or his advisory role in the context of decision-making;
  • Ability to provide sound advice while demonstrating integrity and independence through non-partisanship;
  • Ability to think creatively, with a strategic vision for science that extends to the longer term;
  • Ability to work effectively within a committee or working group framework with various governmental actors; and
  • Superior communication skills, both written and oral, including the ability to develop and maintain effective relationships and networks with officials and stakeholders in the scientific community.

Language Requirements

Proficiency in both official languages would be preferred.

If you move on to the next stage of the selection process, we will contact your references to verify how you have demonstrated the Experience requirements and the following Personal Attributes in your current and recently held positions:

  • Strategic and innovative thinker
  • Superior interpersonal skills
  • Strong analytical skills
  • Sound judgment
  • High ethical standards and integrity
  • Tact and diplomacy

Eligibility Factors and Conditions of Employment

In your application, it will be important that you confirm you meet the following requirements:

  • You reside in or are willing to relocate to the National Capital Region or to a location within reasonable commuting distance; and
  • You are willing to travel across Canada and internationally.

If you are appointed to this position:

You must comply with the Ethical and Political Activity Guidelines for Public Office Holders throughout your appointment, as a term and condition of employment. The guidelines are available on the Governor in Council Appointments website, under “Forms and Reference Material“.

You will be subject to the Conflict of Interest Act. Public office holders appointed on a full-time basis must submit to the Office of the Conflict of Interest and Ethics Commissioner, within 60 days of appointment, a confidential report in which they disclose all of their assets, liabilities and outside activities. For more information, please visit the Office of the Conflict of Interest and Ethics Commissioner’s website.

A link to this notice will be placed in the Canada Gazette to assist the Governor in Council in identifying qualified candidates for this position. It is not, however, intended to be the sole means of recruitment.

A roster of qualified candidates may be established and may be used for similar opportunities.

The applicant login can be found here and, if this is your first time, you will need to register first.

Interestingly, I don’t think you need to be a Canadian citizen or even to have worked in Canada before applying for this appointment. Of course, it’s highly unlikely you’d understand government processes without some Canadian experience.

I have one other comment, innovative thinkers (the top of the list for personal attributes) tend to be disruptive. In fact, I’ve just found a new term for them, “angelic troublemakers,” in a Sept. 22, 2016 article by *Shane Snow* for Fast Company,

We all know the story of the 1963 March on Washington because it culminated in one of the most iconic moments of the Civil Rights Movement, with Dr. Martin Luther King, Jr., declaring, “I have a dream.” What many of us don’t know, though, is that the march might not have happened—and the fight for civil rights might have been a lot bloodier—if not for a rather troublesome character named Bayard Rustin.

Rustin was trouble for several reasons. He was a contrarian and outspoken. He was a radical follower of Gandhi, and what Fox News today might call “extremely liberal.” He was also openly gay, which made him a political lightning rod in those days. And yet King fought to keep Rustin around at every turn. That’s because Rustin was a master agitator, exactly what the movement needed.

At Rustin’s urging, the fledgling Civil Rights Movement eschewed direct conflict in favor of being really annoying to the powers that were. He understood that in order to make progress, he and his fellow activists didn’t need to talk and fight the way persecuted people always had. They needed to show—kindly—how it was flawed.

As Rustin famously put it, they needed to be “a group of angelic troublemakers.”

Instead of throwing rocks, Rustin encouraged civil rights protesters to sit down in the streets. Instead of tipping over buses, he encouraged supporters to boycott them. Instead of taking up arms, he encouraged people to link arms and get in the way.

Angelic troublemaking—or going against the grain in a benevolent fashion—is a powerful philosophy for business as well as social movements. It’s not just about being difficult; it’s about forcing people to see situations differently. It’s about making a mess, with good intentions, so things can change.

I suspect what the Canadian government is actually looking for is someone who is open to and champions innovative thinking.

At any rate, it’s good to see that we’re on our way to getting a Chief Science Advisor and it seems we might hear an announcement sometime in Spring 2017.

*Corrected Dec.7, 2016 at 1430 PST: I erroneously identified Walton Isaacson as the author of the Fast Company article. It is an advertising agency which uses Bayard Rustin and ‘angelic troublemaking’ as inspirational principles.

FrogHeart presents: Steep (1) A digital poetry of gold nanoparticles on Nov. 17, 2016 in Vancouver (Canada)

For anyone who has wanted to hear about the videopoem or poetryfilm, Steep (1): A digital poetry of gold nanoparticles, that I presented at the 2015 International Symposium on Electronic Arts (ISEA) in Vancouver, your wait is over. From the Canadian Academy of Independent Scholars Nov. 7, 2016 announcement (received via email),

Date:  Thursday, November 17th, 2016
Time:  7:30 pm
Place:  Simon Fraser University, Vancouver, BC Campus, 515 West Hastings Street (between Seymour and Richards Streets) in the Diamond Lounge
Speaker:  Maryse de la Giroday
Topic:  A digital poetry of gold nanoparticles: a Steep art/science project

Outline:

An object of desire, the stuff of myth and legend, and a cross-cultural icon, gold is now being perceived in a whole new way at the nanoscale where its properties and colour undergo a change. Increasingly used as a component in biomedical applications, gold nanoparticles are entering the environment (air, soil, and water).  ‘Steep (1): A digital poetry of gold nanoparticles’ is a short videopoem exploring the good and the bad about gold at the macroscale and at the nanoscale.

Presented at the 2015 International Symposium on Electronic Arts, the Steep (1) videopoem is an art/sci collaboration between Maryse de la Giroday (science writer and poet) from Canada and Raewyn Turner (video artist) from New Zealand. In addition to a look at the video, the presentation offers an inside perspective on incorporating science, poetry, and video in an art/sci piece. As well, there’ll be some discussion regarding one or more of Maryse’s and Raewyn’s current art/sci projects.

Brief Biography:
Maryse de la Giroday writes and publishes the largest, independent, science blog in Canada. Her main focus is nanotechnology (the Canadian kind when she can find it). She has also written several pieces for local visual arts magazine, Preview. Maryse holds an undergraduate Communications (honours) degree from Simon Fraser University and a Master’s degree (Creative Writing and New Media) from De Montfort University (UK). (Unfortunately, Raewyn will either be in New Zealand or on the US East Coast and unable to attend.)

You can preview the video here at steep.nz or here on Vimeo.

Nova Scotia’s (Canada) Sona Nanotech and its gold nanoparticles move

I hope one day to have at least one piece on nanotechnology for each province, the Yukon, and the territories. Unfortunately, today (Nov. 2, 2016) will not be the day I add one previously unsung province, etc. to the list as Nova Scotia has previously graced this blog with a nanotechnology story (my June 5, 2016 posting).

The latest nano news from Nova Scotia is found in a Nov. 1, 2016 article by James Risdon for the Chronicle Herald,

A Nova Scotia biotech startup with big plans for its super-small, non-toxic gold particles is looking to move its lab facilities to Halifax and expand.

Andrew McLeod, Sona Nanotech Ltd.’s president and chief operating officer, said Tuesday the company is already looking for lab space in Halifax and wants to hire three additional employees to handle production, research and business development.

Sona Nanotech has two products, its Gemini and Omni gold particles, intended to be used in the health-care industry for such things as the treatment of cancer and diagnostic testing.

These particles are measured in nanometres.

“You’re talking about something that’s on the order of millionths of the width of a human hair,” said McLeod. [The comparison measurements I’ve seen most frequestion for a single nanometre is 1/50,000 or 1/60,000 or 1/100,000 of a hair.]

While other players make gold particles, Sona Nanotech has developed a way to make its products so that they are free of a toxic chemical ,and that’s opening doors for the Nova Scotia startup whose products can be used inside the human body.

There’s already talk of Sona Nanotech teaming up with an as-yet-unnamed Canadian organization for a cancer research project, but McLeod was tight-lipped about the details.

Congratulations to Sona Nano!

For anyone curious about the business aspects of the story, I recommend reading Risdon’s article in its entirety.

Sona Nanotech’s website can be found here,

Sona Nanotech Ltd. has leveraged its team’s unique knowledge and experience with novel surface chemistry methods and surfactants to create a disruptive leap forward in metallic nanoparticle technology.

Co-founders Dr. Gerrard Marangoni, Dr. Kulbir Singh, and Dr. Michael McAlduff recognized the role that gold nanoparticles can play in a variety of life sciences applications, e.g.,  in-vivo 3-D imaging, GNR-enabled diagnostic test products and other cutting edge medical applications.  Gold nanorods can be enabling technologies for non-invasive targeted cell, tumor, tissue and organ treatments such as photothermal cancer cell destruction, and location specific drug and pain treatment.

The Problem
Gold nanorods have been made to date with toxic CTAB [cationic surfactant cethyltrimetylammonium bromide] which makes them much less attractive for in-vivo medical applications.

The Solution
100% CTAB-FREE – Gemini™ and Omni™ Patent-Pending Gold Nanorods – from Sona Nanotech Ltd.

The Problem
For a given colour contrast, large gold nanospheres are not as stable or mobile as gold nanorods (dip tests).

The Solution
Stable, high loading capacity GNRs [gold nanorods] from Sona Nanotech offer a broad range of rich, high contrast test color options.

So, there you have it.