Tag Archives: Canada

Knight Therapeutics, a Canadian pharmaceutical company, enters agreement with Russia’s (?) Pro Bono Bio, a nanotechnology product company

The June 27, 2015 news item on Nanotechnology Now includes two pieces of business news (I am more interested in the second),

Knight Therapeutics Inc. (TSX:GUD) (“Knight” or the “Company”), a leading Canadian specialty pharmaceutical company, announced today that it has (1) extended a secured loan of US$15 million to Pro Bono Bio PLC (“Pro Bono Bio”), the world’s leading healthcare nanotechnology company, and (2) entered into an exclusive distribution agreement with Pro Bono Bio to commercialize its wide range of nanotechnology products, medical devices and drug delivery technologies in select territories.

A June 26, 2015 Knight Pharmaceuticals news release, which originated the news item, provides a few more details about the loan and the license agreement,

The secured loan of US$15 million, which matures on June 25, 2018, will bear interest at 12% per annum plus other additional consideration. The interest rate will decrease to 10% if Pro Bono Bio meets certain equity-fundraising targets. The loan is secured by a charge over the assets of Pro Bono Bio and its affiliates which includes but is not limited to Flexiseq™, an innovative topical pain product that has sales of more than 3 million units since its U.K. launch last year.

As part of the license agreement, Knight obtained the exclusive Quebec and Israeli distribution rights to Pro Bono Bio’s innovative Flexiseq™ range of pain relief products and its promising SEQuaderma™ derma-cosmetic range of products, both of which are expected to launch in Quebec within the next 12 months. In addition, Knight obtained the exclusive Canadian and Israeli rights to two earlier stage product groups: blood factor products for the treatment of Hemophiliacs, and diagnostic devices designed for the automated detection of peripheral arterial disease. [emphasis mine]

John Mayo, Chairman and CEO of Pro Bono Bio, said, “We worked night and day to find a good distribution and strategic partner to help our North American team launch our existing products and drive growth. We welcome the good Knight on our quest to deliver to Canadian and American consumers’ best-in-class, drug-free nanotechnology products that are safe, effective and of the highest quality: truly the holy grail!”

“When you donate to charity, you always receive back more than you give. I hope this truism also holds true for this Pro Bono world!” said Jonathan Ross Goodman, President and CEO of Knight. “We look forward to the late 2015 launch of Flexiseq™ and SEQuaderma™ in La Belle Province.”

The news release also provides a description of the drugs and the companies, along with a disclaimer,

About Flexiseq™

Flexiseq™ is a topically applied drug-free gel which is clinically proven to safely relieve the pain and improve the joint stiffness associated with osteoarthritis (OA). Flexiseq™ is unique – it lubricates your joints to address joint damage. Pain is relieved and joint function improved because it lubricates away the friction and associated wear and tear on a user’s joints.

About SEQuaderma™

SEQuaderma™ Dermatology Products are a unique range of active dermatology solutions specifically designed to address the symptoms and, in some cases, the causes of the targeted conditions, leading to reduced recurrence. SEQuaderma™ Dermatology Products are suitable for long term use and can be used on their own or in between drug treatments to reduce exposure to adverse events; they will not compromise any other medication and are suitable for those with multiple conditions.

About Pro Bono Bio PLC

Pro Bono Bio PLC is the world’s leading healthcare nanotechnology company offering health and lifestyle products, headquartered in London with presence in Europe, Africa and Asia and due to launch in North America. [emphasis mine]

About Knight Therapeutics Inc.

Knight Therapeutics Inc., headquartered in Montreal, Canada, is a specialty pharmaceutical company focused on acquiring or in-licensing innovative pharmaceutical products for the Canadian and select international markets. Knight’s shares trade on TSX under the symbol GUD. For more information about Knight Therapeutics Inc., please visit the Company’s web site at www.gud-knight.com or www.sedar.com.

Forward-Looking Statement [disclaimer]

This document contains forward-looking statements for the Company and its subsidiaries. These forward looking statements, by their nature, necessarily involve risks and uncertainties that could cause actual results to differ materially from those contemplated by the forward-looking statements. The Company considers the assumptions on which these forward-looking statements are based to be reasonable at the time they were prepared, but cautions the reader that these assumptions regarding future events, many of which are beyond the control of the Company and its subsidiaries, may ultimately prove to be incorrect. Factors and risks, which could cause actual results to differ materially from current expectations are discussed in the Company’s Annual Report and in the Company’s Annual Information Form for the year ended December 31, 2014. The Company disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information or future events, except as required by law.

While Pro Bono Bio is headquartered in London (UK), the BloombergBusiness website lists the company as Russian,

Pro Bono Bio, an international pharmaceutical company, develops and commercializes new medicines in the Russian Federation. Its products include FLEXISEQ, a pain relieving gel containing absorbing nanostructures (Sequessomes) for the treatment of pain associated with osteoarthritis; EXOSEQ, which delivers Sequessomes to the upper dermal layers of the skin for the treatment of inflammatory conditions, such as eczema and seborrhoeic dermatitis; and ROSSOSEQ, which distributes Sequessome vesicles into lower dermal tissues in the skin to treat psoriasis and atopic eczema conditions. The company also develops blood products, CV diagnostics, anti-infectives, and biological drugs. Pro Bono Bio was …

Detailed Description

Moscow,

Russia

Founded in 2011

www.probonobio.com
Key Executives for Pro Bono Bio
Mr. John Mayo
Chief Executive Officer
Mr. Michael Earl
Chief Operating Officer
Compensation as of Fiscal Year 2014.

Pro Bono Bio Key Developments

Pro Bono Bio Appoints Jason Flowerday as CEO of North American Operations

Jun 26 15

Pro Bono Bio launched its North American operations with headquarters based in Toronto, Canada and secured USD 15 million in funding to accelerate the global launches of FLEXISEQ and SEQUADERMA as well as help fund its ambitious research and development programs that continue to place Pro Bono Bio at the forefront of nanotechnology healthcare development. Pro Bono Bio has recently appointed a North American CEO, Jason Flowerday, to build-out the North American operations and set its strategy for entering both the Canadian and US markets over the next three quarters.

Pro Bono Bio Launches its North American Operations
Jun 26 15

These are interesting developments for both Montréal (Québec) and Toronto (Ontario). As for whether or not Pro Bono Bio is Russian or British, I imagine the legal entity which is the company is Russian while the operations (headquarters as previously noted) are based in the UK.

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.

Convergence at Canada’s Perimeter Institute: art/science and physics

It’s a cornucopia of convergence at Canada’s Perimeter Institute (PI). First, there’s a June 16, 2015 posting by Colin Hunter about converging art and science in the person of Alioscia Hamma,

In his professional life, Hamma is a lecturer in the Perimeter Scholars International (PSI) program and an Associate Professor at China’s Tsinghua University. His research seeks new insights into quantum entanglement, quantum statistical mechanics, and other aspects of the fundamental nature of reality.

Though he dreamed during his boyhood in Naples of one day becoming a comic book artist, he pursued physics because he believed – still believes – it is our most reliable tool for decoding our universe.

“Mathematics is ideal, clean, pure, and meaningless. Natural sciences are living, concrete, dirty, and meaningful. Physics is right in the middle, like the human condition,” says Hamma.

Art too, he says, resides in the middle ground between the world of ideals and the world as it presents itself to our senses.

So he draws. …

Perimeter Institute has provided a video where Hamma shares his ideas,

This is very romantic as in literature-romantic. If I remember rightly, ‘truth is beauty and beauty is truth’ was the motto of the romantic poets, Byron, Keats, and Shelley. It’s intriguing to hear similar ideas being applied to physics, philosophy, and art.

H/t to Speaking Up For Canadian Science regarding this second ‘convergence at PI‘. From the Convergence conference page on the Perimeter Institute website,

Convergence is Perimeter’s first-ever alumni reunion and a new kind of physics conference providing a “big picture” overview of fundamental physics and its future.

Physics is at a turning point. The most sophisticated experiments ever devised are decoding our universe with unprecedented clarity — from the quantum to the cosmos — and revealing a stunning simplicity that theory has yet to explain.

Convergence will bring together many of the world’s best minds in physics to probe the field’s most exciting ideas and chart a course for 21st century physics. The event will also celebrate, through commemorative lectures, the centenaries of two defining discoveries of the 20th century: Noether’s theorem and Einstein’s theory of general relativity.

Converge with us June 20-24. [Registration is now closed]

Despite registration being closed it is still possible to attend online,

CONVERGE ONLINE

Whether you’re at Convergence in person or joining us online, there are many ways to join the conversation:

You can find PI’s Convergence blog here.

Science pledge for Canadians launched on June 16, 2015 and a flashback to political parties and Canadian science policy (a lack of it)

H/t to Speaking Up For Canadian Science.

As noted in a previous post, I’m not super impressed with the ‘War on Science’ branding favoured by a distinct portion of the Canadian science community as I find it reductionist. After all, Canada’s current Conservative government is perfectly happy with certain kinds of science, just not climate science, most of the biological sciences, environmental sciences, … (I imagine you’ve gotten the drift). That said, I am sympathetic (admittedly self-serving) to the concerns over the government’s antipathy towards science communication of all kinds.

The latest news about the movement to change the attitude to many Canadian science efforts comes from a June 16, 2015 article by Fram Dinshaw for the National Observer,

Federal MPs from three opposition parties signed a pledge in support of science-driven policies after recent protests by federal scientists against the Harper government’s cuts to departments and its muzzling of research.

Signing on at the June 16 [2015] press conference by Evidence for Democracy were NDP’s Kennedy Stewart, the official opposition’s science and technology critic, Liberal MP and former astronaut Marc Garneau, and Green Party leader Elizabeth May.

Stewart has already tabled three bills before parliament to restore Ottawa’s scientific capacity, including restoration of the long form census, an ethical code to end muzzling of scientists, and the creation of a parliamentary science officer with the powers of an auditor-general.

Evidence for Democracy is pushing back in the run-up to October’s federal election by promoting the implementation of a new government-wide communications policy to ensure that government scientists can speak publicly about their research and creating a new federal science office to advise decision-makers, according to a media release dated June 16.

“Scientists are now supporting this issue publicly,” Dr. Katie Gibbs, Executive Director of Evidence for Democracy, said. “To my knowledge this is the first time Canadian scientists have mobilized to promote science as a federal election issue. The Pledge invites Parliamentarians and the broader community show their support for public-interest science and evidence-based decision-making.”

“The trends we’ve seen in recent years are deeply troubling to many in the scientific community,” Dr. Scott Findlay, Associate Professor of Biology at the University of Ottawa and Evidence for Democracy Board member, said. Trends include, “funding cuts to science, government scientists not being able to speak about their work, and decisions that appear to play fast and loose with scientific evidence.”

You can find Evidence for Democracy’s Science Pledge here.

Science policy flashback

One of my first science policy posts was a January 15, 2010 piece where I tried to find science policies for Canada’s four main political parties (Liberals, New Democrats [NDP], Conservatives, and Greens). The only party that mentioned science policy was the Conservative Party.

I followed up that first post with one dated January 22, 2010 where I tracked down then official ‘science’ critics for each party (Liberals, Marc Garneau; Greens, Frances Coates; and New Democrats, Jim Malloway) and the Ministry of State for Science and Technology (Conservative Member of Parliament, Gary Goodyear) and tried to find something about science on their websites and in their writings. Garneau was the only Member of Parliament to mention science. In fact, he’d written a science policy on his own.

The last election year (2011) produced a few posts on political parties and science policies. I’m particularly fond of my April 18, 2011 post,

It’s only in my dreams or, perhaps, my nightmares that science policy is considered an important issue in a Canadian federal election. Being an election issue can be a two-edged sword, you get more attention but that can work for you and/or against you. On balance, I think it’s better to be considered an election issue than to be ignored and it seems to me that there’s a lot more effort (not from the political parties) this election to put science policy in the limelight.

I posted two followups: April 26, 2011 (it features a visualization of the issues in the 2011 election; science did not rate a placement in the graphic) and April 29, 2011.

Things have changed since those first science policy posts. Some of the changes have been influenced by the international zeitgeist and some by individuals such as Pascal Lapointe and his team members at Agence Science- Presse in Québec, by politicians newly concerned about science issues, and new Canadian science organizations with  political outlooks such as Evidence for Democracy and Speak Up For Canadian Science, and, of course, individual scientists themselves.

Abakan makes good on Alberta (Canada) promise (coating for better pipeline transport of oil)

It took three years but it seems that US company Abakan Inc.’s announcement of a joint research development centre at the Northern Alberta Institute of Technology (NAIT), (mentioned here in a May 7, 2012 post [US company, Abakan, wants to get in on the Canadian oils sands market]), has borne fruit. A June 8, 2015 news item on Azonano describes the latest developments,

Abakan Inc., an emerging leader in the advanced coatings and metal formulations markets, today announced that it has begun operations at its joint-development facility in Edmonton, Alberta.

Abakan’s subsidiary, MesoCoat Inc., along with the lead project partner, Northern Alberta Institute of Technology (NAIT) will embark on an 18-month collaborative effort to establish a prototype demonstration facility for developing, testing and commercializing wear-resistant clad pipe and components. Western Economic Diversification Canada is also supporting this initiative through a $1.5 million investment toward NAIT. Improvements in wear resistance are expected to make a significant impact in reducing maintenance and downtime costs while increasing productivity in oil sands and other mining applications.

A June 4, 2015 Abakan news release, which originated the news item, provides more detail about the proposed facility, the difficulties encountered during the setup, and some interesting information about pipes,

Abakan shipped its CermaClad high-speed large-area cladding system for installation at the Northern Alberta Institute of Technology’s (NAIT) campus in Edmonton, Alberta in early 2015. Despite delays associated with the installation of some interrelated equipment and machinery, the CermaClad system and other ancillary equipment are now installed at the Edmonton facility. The Edmonton facility is intended to serve as a pilot-scale wear-resistant clad pipe manufacturing facility for the development and qualification of wear-resistant clad pipes, and as a stepping stone for setting-up a full-scale wear-resistant clad pipe manufacturing facility in Alberta. The new facility will also serve as a platform for Abakan’s introduction to the Alberta oil sands market, which, with proven reserves estimated at more than 169 billion barrels, is one of the largest oil resources in the world and a major source of oil for Canada, the United States and Asia. Since Alberta oil sands production is expected to increase significantly over the next decade, producers want to extend the life of the carbon steel pipes used for the hydro-transportation of tailings with harder, tougher coatings that protect pipes from the abrasiveness of tar-like bituminous oil sands.

“Our aim is to fast-track market entry of our wear-resistant clad pipe products for the transportation of oil sands and mining slurries. We have received commitments from oil sands producers in Canada and mining companies in Mexico and Brazil to field-test CermaClad wear-resistant clad pipe products as soon as our system is ready for testing. Apart from our work with conventional less expensive chrome carbide and the more expensive tungsten carbide wear-resistant cladding on pipes, Abakan also expects to introduce new iron-based structurally amorphous metal (SAM) alloy cladding that in testing has exhibited better performance than tungsten carbide cladding, but at a fraction of the cost.” Robert Miller stated further that “although more expensive than the more widely used chrome carbide cladding, our new alloy cladding is expected to be a significantly better value proposition when you consider an estimated life of three times that of chrome carbide cladding and those cost efficiencies that correspond to less downtime revenue losses, and lower maintenance and replacement costs.”

The costs associated with downtime and maintenance in the Alberta oil sands industry estimated at more than $10 billion a year are expected to grow as production expands, according to the Materials and Reliability in Oil Sands (MARIOS) consortium in Alberta. The development of Alberta’s oil sands has been held up by the lack of materials for transport lines and components that are resistant to the highly abrasive slurry. Due to high abrasion, the pipelines have to be rotated every three to four months and replaced every 12 to 15 months. [emphasis mine] The costs involved just in rotating and replacing the pipes is approximately $2 billion annually. The same is true of large components, for example the steel teeth on the giant electric shovels used to recover oil sands, must be replaced approximately every two days.

Abakan’s combination of high productivity coating processes and groundbreaking materials are expected to facilitate significant efficiencies associated with the extraction of these oil resources. Our proprietary materials combined with CermaClad large-area based fusion cladding technology, have demonstrated in laboratory tests a three to eight times improvement in wear and corrosion resistance when compared with traditional weld overlays at costs comparable to rubber and metal matrix composite alternatives. Abakan intends to complete development and initiate field-testing by end of year 2016 and begin the construction of a full-scale wear-resistant clad pipe manufacturing facility in Alberta in early-2017.

Given that there is extensive talk about expanding oil pipelines from Alberta to British Columbia (where I live), the information about the wear and tear is fascinating and disturbing. Emotions are high with regard to the proposed increase in oil flow to the coast as can be seen in a May 27, 2015 article by Mike Howell for the Vancouver Courier about a city hall report on the matter,

A major oil spill in Vancouver waters could potentially expose up to one million people to unsafe levels of a toxic vapour released from diluted bitumen, city council heard Wednesday in a damning city staff report on Kinder Morgan’s proposal to build a pipeline from Alberta to Burnaby [British Columbia].

In presenting the report, deputy city manager Sadhu Johnston outlined scenarios where exposure to the chemical benzene could lead to adverse health effects for residents and visitors, ranging from dizziness to nausea to possible death.

“For folks that are on the seawall, they could be actually struck with this wave of toxic gases that could render them unable to evacuate,” said Johnston, noting 25,000 residents live within 300 metres of the city’s waterfront. “These are serious health impacts. So this is not just about oil hitting shorelines, this is about our residents being exposed to very serious health effects.

  • Kinder Morgan’s own estimate is that pipeline leaks under 75 litres per hour may not be detected.

While I find the presentation’s hysteria a little off-putting, it did alert me to one or two new issues, benzene gas and when spillage from the pipes raises an alarm. For anyone curious about benzene gas and other chemical aspects of an oil spill, there’s a US National Oceanic and Atmospheric Administration (NOAA) webpage titled, Chemistry of an Oil Spill.

Getting back to the pipes, that figure of 75 litres per hour puts a new perspective on the proposed Abakan solution and it suggests that whether or not more and bigger pipes are in our future, we should do a better of job of protecting our environment now. That means better cladding for the pipes and better dispersants and remediation for water, earth, air when there’s a spill.

A race to find substitutes for graphene?

I have two items concerning research which seeks to replace graphene in one application or other.

Black phosporus and the École Polytechniqe de Montréal

A June 2, 2015 news item on Nanotechnology Now features work on developing a two-dimensional black phosphorus material, 2D phosphane,

A team of researchers from Universite de Montreal, Polytechnique Montreal and the Centre national de la recherche scientifique (CNRS) in France is the first to succeed in preventing two-dimensional layers of black phosphorus from oxidating. In so doing, they have opened the doors to exploiting their striking properties in a number of electronic and optoelectronic devices. …

Black phosphorus, a stable allotrope of phosphorus that presents a lamellar structure similar to that of graphite, has recently begun to capture the attention of physicists and materials researchers. It is possible to obtain single atomic layers from it, which researchers call 2D phosphane. A cousin of the widely publicized graphene, 2D phosphane brings together two very sought-after properties for device design.

A June 2, 2015 École Polytechniqe de Montréal news release, which originated the news item, expands on why 2D phosphane is an appealing material,

First, 2D phosphane is a semiconductor material that provides the necessary characteristics for making transistors and processors. With its high-mobility, it is estimated that 2D phosphane could form the basis for electronics that is both high-performance and low-cost.

Furthermore, this new material features a second, even more distinctive, characteristic: its interaction with light depends on the number of atomic layers used. One monolayer will emit red light, whereas a thicker sample will emit into the infrared. This variation makes it possible to manufacture a wide range of optoelectronic devices, such as lasers or detectors, in a strategic fraction of the electromagnetic spectrum.

The news release goes on to describe an important issue with phosphane and how the scientists addressed it,

Until now, the study of 2D phosphane’s properties was slowed by a major problem: in ambient  conditions, very thin layers of the material would degrade, to the point of compromising its future in the industry despite its promising potential.

As such, the research team has made a major step forward by succeeding in determining the physical mechanisms at play in this degradation, and in identifying the key elements that lead to the layers’ oxidation.

“We have demonstrated that 2D phosphane undergoes oxidation under ambient conditions, caused jointly by the presence of oxygen, water and light. We have also characterized the phenomenon’s evolution over time by using electron beam spectroscopy and Raman spectroscopy,” reports Professor Richard Martel of Université de Montréal’s Department of Chemistry.

Next, the researchers developed an efficient procedure for producing these very fragile single-atom layers and keeping them intact.

“We were able to study the vibration modes of the atoms in this new material. Since earlier studies had been carried out on heavily degraded materials, we revealed the as-yet-unsuspected effects of quantum confinement on atoms’ vibration modes,” notes Professor Sébastien Francoeur of Polytechnique’s Department of Engineering Physics.

The study’s results will help the world scientific community develop 2D phosphane’s very special properties with the aim of developing new nanotechnologies that could give rise to high-performance microprocessors, lasers, solar cells and more.

Here’s a link to and a citation for the paper,

Photooxidation and quantum confinement effects in exfoliated black phosphorus by Alexandre Favron, Etienne Gaufrès, Frédéric Fossard, Anne-Laurence Phaneuf-L’Heureux, Nathalie Y-W. Tang, Pierre L. Lévesque, Annick Loiseau, Richard Leonelli, Sébastien Francoeur, & Richard Martel. Nature Materials (2015)  doi:10.1038/nmat4299 Published online 25 May 2015

This paper is behind a paywall.

Now. for the second item about replacing graphene.

China’s new aerogel, a rival to graphene aerogels?

A June 2, 2015 American Institute of Physics news release (also on EurekAlert) describes research into an alternative to expensive graphene aerogels,

The electromagnetic radiation discharged by electronic equipment and devices is known to hinder their smooth operation. Conventional materials used today to shield from incoming electromagnetic waves tend to be sheets of metal or composites, which rely on reflection as a shielding mechanism.

But now, materials such as graphene aerogels are gaining traction as more desirable alternatives because they act as electromagnetic absorbers. They’re widely expected to improve energy storage, sensors, nanoelectronics, catalysis and separations, but graphene aerogels are prohibitively expensive and difficult to produce for large-scale applications because of the complicated purification and functionalization steps involved in their fabrication.

So a team of researchers in China set out to design a cheaper material with properties similar to a graphene aerogel–in terms of its conductivity, as well as a lightweight, anticorrosive, porous structure. In the journal Applied Physics Letters, from AIP Publishing, the researchers describe the new material they created and its performance.

Aming Xie, an expert in organic chemistry, and Fan Wu, both affiliated with PLA University of Science and Technology, worked with colleagues at Nanjing University of Science and Technology to tap into organic chemistry and conducting polymers to fabricate a three-dimensional (3-D) polypyrrole (PPy) aerogel-based electromagnetic absorber.

They chose to concentrate on this method because it enables them to “regulate the density and dielectric property of conducting polymers through the formation of pores during the oxidation polymerization of the pyrrole monomer,” explained Wu.

And the fabrication process is a simple one. “It requires only four common chemical reagents: pyrrole, ferric chloride (FeCl3), ethanol and water — which makes it cheap enough and enables large-scale fabrication,” Wu said. “We’re also able to pour the FeCl3 solution directly into the pyrrole solution — not drop by drop — to force the pyrrole to polymerize into a 3-D aerogel rather than PPy particles.”

In short, the team’s 3-D PPy aerogel is designed to exhibit “desirable properties such as a porous structure and low density,” Wu noted.

Beyond that, its electromagnetic absorption performance — with low loss — shows great promise. “We believe a ‘wide’ absorption range is more useful than high absorption within one frequency,” Wu said. Compared with previous works, the team’s new aerogel has the lowest adjunction and widest effective bandwidth — with a reflection loss below -10 decibels.

In terms of applications, based on the combination of low adjunction and a “wide” effective bandwidth, the researchers expect to see their 3-D PPy aerogel used in surface coatings for aircraft.

Another potential application is as coatings within the realm of corrosion prevention and control. “Common anticorrosion coatings contain a large amount of zinc (70 to 80 percent by weight), and these particles not only serve as a cathode by corroding to protect the iron structure but also to maintain a suitable conductivity for the electrochemistry process,” Wu pointed out. “If our 3-D PPy aerogel could build a conductivity network in this type of coating, the loss of zinc particles could be rapidly reduced.”

The team is now taking their work a step further by pursuing a 3-D PPy/PEDOT-based (poly(3,4-ethylenedioxythiophene) electromagnetic absorber. “Our goal is to grow solid-state polymerized PEDOT particles in the holes of the 3-D PPy aerogel formed by PPy chains,” Wu added.

Here’s a link to and a citation for the paper,

Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption by Aming Xie, Fan Wu, Mengxiao Sun, Xiaoqing Dai, Zhuanghu Xu, Yanyu Qiu, Yuan Wang, and Mingyang Wang. Appl. Phys. Lett. 106, 222902 (2015); http://dx.doi.org/10.1063/1.4921180

This paper is open access.

Canadian nanotechnology commercialization efforts: patents and a new facility

Nanotech Security, a Vancouver-area business focused on anti-counterfeiting strategies which has been featured here a number of times, has secured two patents according to a May 30, 2015 news item on Nanotechnology Now,

Nanotech Security Corp. (TSXV: NTS) (OTCQX: NTSFF), announced that the Company has been granted two patents; one from the United States Patent and Trademark Office and one from the European Patent Office. The Company continues to expand the protection of its technology with the addition of these patents to its intellectual property portfolio.

Clint Landrock, Nanotech Chief Technology officer, commented, “We are pleased to be granted these additional patents as they further solidify our hold on the next generation of authentication technologies for the banknote, branding and secure document industries.”

Notech Security’s May 27, 2015 news release, which originated the news item, provides more details about the technology being patented,

Based on these patents the Company has launched “Pearl”, our first foray in plasmonic full colour images.  A nano array image of Vermeer’s famous painting “Girl with a Pearl Earring”, which brilliantly displays her ruby lips, blue scarf and bright white collar and features two distinct authentication viewing modes in one feature.  The user can view the full colour image in both transmission and reflection (shining a light on or through the image) – an effect impossible for a hologram to achieve.  …

Here’s Pearl,

NanotechSecurityPeral

Courtesy Nanotech Security

The news release goes on,

Doug Blakeway, Nanotech Chief Executive Officer, commented, “An initial showing of Pearl to the banknote industry came back with comments of having never seen such a bright visual effect in a security device.”  Immediate interest in Pearl has initiated discussions with issuing authorities.

EPO No. 2,563,602 names Charles MacPherson as the inventor.  The patent covers layered optically variable devices (“OVDs”) such as colour shift foils that uniquely employs additional interactivity using piezoelectric layers to activate the authentication mode of a security device used as threads in products such as banknotes, passports and secure packaging.  This patented multi-layered thin film technology offers Nanotech a competitive edge in the development of colour shifting security devices.

USPTO No. 9,013,272 names Dr. Bozena Kaminska and Clint Landrock as co-inventors.  Building on patents previously granted to Nanotech, this patent secures integral intellectual property, which covers a range of diffractive and plasmonic luminescent devices such as security features used in banknotes.

Nano facility in Alberta

Presumably this Canadian federal government announcement about funding for a nanotechnology facility at the Northern Alberta Institute of Technology (NAIT) is in anticipation of a Fall 2015 election (from a May 31, 2015 news item on Nanotechnology Now,

Today [Friday, May 29, 2015], the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.5 million in funding to support the Northern Alberta Institute of Technology (NAIT) in establishing a centre that will allow small- and medium-sized enterprises (SMEs) to test, develop, and commercialize micro- and nano-coated products.

A May 29, 2015 Western Economic Diversification Canada news release on MarketWired expands on the theme,

Federal funding will enable NAIT to purchase specialized coating handling and blasting equipment, a spray booth, cutting machines, compressors, and to upgrade the facility’s ventilation system and power supply.

The facility, which is also receiving support from MesoCoat Technology Canada, will operate within the existing Nanotechnology Centre for Applied Research, Industry Training and Services (nanoCARTS), and is expected to benefit a wide range of sectors including oil and gas, surface technology and engineering.

Quick Facts

  • Since 2006, the federal government has invested more than $13 billion in new funding in all facets of the innovation ecosystem including advanced research, research infrastructure, talent development, and business innovation.
  • NAIT’s nanoCARTS provides industry with prototyping, product enhancement, testing and characterization services related to nano and micro technology. The new facility will help to expand nanoCARTS’ range of services available to SMEs.
  • NAIT has the expertise in rapid prototyping, materials testing, manufacturing, training and mechanical design to help companies develop and commercialize new products.

Quotes

“Our Government understands that technology advancements help increase Western Canada’s competitive advantage. By investing in the establishment of this new micro- and nano-coated product development centre, we are demonstrating our commitment to supporting jobs and economic growth.”

  • The Honourable Michelle Rempel, Minister of State for Western Economic Diversification

“Applied research is essential in NAIT’s role as a leading polytechnic. This investment strengthens our ability to work with industry to solve their real-world problems. This ultimately helps them to be competitive and innovative. I would like to thank the Government of Canada for its investment.”

  • Dr. Glenn Feltham, President and CEO, NAIT

“We are grateful to the Government of Canada for their financial and strategic support, which has been instrumental in establishing this centre at NAIT. The applied research we are carrying out has the potential to extend the lifespan of piping used in oil production and save billions of dollars in downtime and replacement costs. Wear-resistant clad pipes being developed at this centre are expected to make oil production safer, more efficient and more affordable.”

  • Stephen Goss, CEO, MesoCoat Technology Canada

That would seem to be the sum total of the Canadian commercialization effort at the moment. It contrasts somewhat with the US White House and its recently announced new initiatives to commercialize nanotechnology (see my May 27, 2015 post for a list).

Testing for antibiotic resistance in one hour

University of Toronto researchers have devised a test for antibiotic resistance which cuts down the time from up to three days to one hour. From a May 27, 2015 news item on Azonano,

We live in fear of ‘superbugs': infectious bacteria that don’t respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a “serious and growing issue.” Each year two million people in the U.S. contract antibiotic-resistant infections, and at least 23,000 people die as a direct result.

But tests for antibiotic resistance can take up to three days to come back from the lab, hindering doctors’ ability to treat bacterial infections quickly. Now Ph.D. researcher Justin Besant and his team at the University of Toronto have designed a small and simple chip to test for antibiotic resistance in just one hour, giving doctors a shot at picking the most effective antibiotic to treat potentially deadly infections. Their work was published this week in the international journal Lab on a Chip.

A May 26, 2015 University of Toronto news release (also on EurekAlert), which originated the news item, provides more details about current testing regimes and about the new technique,

Resistant bacteria arise in part because of imprecise use of antibiotics—when a patient comes down with an infection, the doctor wants to treat it as quickly as possible. Samples of the infectious bacteria are sent to the lab for testing, but results can take two to three days. In the meantime, the doctor prescribes her patient a broad-spectrum antibiotic. Sometimes the one-size-fits-all antibiotic works and sometimes it doesn’t, and when the tests come back days later, the doctor can prescribe a specific antibiotic more likely to kill the bacteria.

“Guessing can lead to resistance to these broad-spectrum antibiotics, and in the case of serious infections, to much worse outcomes for the patient,” says Besant. “We wanted to determine whether bacteria are susceptible to a particular antibiotic, on a timescale of hours, not days.”

The problem with most current tests is the time it takes for bacteria to reproduce to detectable levels. Besant and his team, including his supervisor Professor Shana Kelley of the Institute for Biomaterials & Biomedical Engineering and the Faculties of Pharmacy and Medicine, and Professor Ted Sargent of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, drew on their collective expertise in electrical and biomedical engineering to design a chip that concentrates bacteria in a miniscule space—just two nanolitres in volume—in order to increase the effective concentration of the starting sample.

They achieve this high concentration by ‘flowing’ the sample, containing the bacteria to be tested, through microfluidic wells patterned onto a glass chip. At the bottom of each well a filter, composed of a lattice of tiny microbeads, catches bacteria as the sample flows through. The bacteria accumulate in the nano-sized well, where they’re trapped with the antibiotic and a signal molecule called resazurin.

Living bacteria metabolize resazurin into a form called resorufin, changing its electrochemical signature. If the bacteria are effectively killed by the antibiotic, they stop metabolizing resazurin and the electrochemical signature in the sample stays the same. If they are antibiotic-resistant, they continue to metabolize resazurin into resorufin, altering its electrochemical signature. Electrodes built directly into the chip detect the change in current as resazurin changes to resorufin.

“This gives us two advantages,” says Besant. “One, we have a lot of bacteria in a very small space, so our effective starting concentration is much higher. And two, as the bacteria multiply and convert the resazurin molecule, it’s effectively stuck in this nanolitre droplet—it can’t diffuse away into the solution, so it can accumulate more rapidly to detectable levels.”

“Our approach is the first to combine this method of increasing sample concentration with a straightforward electrochemical readout,” says Professor Sargent. “We see this as an effective tool for faster diagnosis and treatment of commonplace bacterial infections.”

Rapid alternatives to existing antibiotic resistance tests rely on fluorescence detection, requiring expensive and bulky fluorescence microscopes to see the result.

“The electronics for our electrochemical readout can easily fit in a very small benchtop instrument, and this is something you could see in a doctor’s office, for example,” says Besant. “The next step would be to create a device that would allow you to test many different antibiotics at many different concentrations, but we’re not there yet.”

Here’s a link to and a citation for the paper,

Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria by Justin D. Besant, Edward H. Sargent, and Shana O. Kelley. Lab Chip, 2015, Advance Article DOI: 10.1039/C5LC00375J First published online 13 May 2015

This paper is behind a paywall.

It was surprising to see Ted (Edward) Sargent mentioned with regard to a lab-on-a-chip project. I have featured research from him and from his laboratory many times here and, as I recall, it’s always been focused on solar cells. This Dec. 9, 2014 post features the latest research solar cell research that I’ve stumbled across from Sargent and the University of Toronto.

Pain in your blood—converting blood cells to neurons at McMaster University (Canada)

Having once spent several months doing a literature search on pain and morphine, I have a particular interest in this breakthrough from McMaster University (Canada) announced in a May 21, 2015 news item on ScienceDaily,

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

Specifically, stem cell scientists at McMaster can now directly convert adult human blood cells to both central nervous system (brain and spinal cord) neurons as well as neurons in the peripheral nervous system (rest of the body) that are responsible for pain, temperature and itch perception. This means that how a person’s nervous system cells react and respond to stimuli, can be determined from his blood.

A May 21, 2015 McMaster University news release on EurekAlert, which originated the news item, describes why this will make a difference for pain management,

Currently, scientists and physicians have a limited understanding of the complex issue of pain and how to treat it. The peripheral nervous system is made up of different types of nerves – some are mechanical (feel pressure) and others detect temperature (heat). In extreme conditions, pain or numbness is perceived by the brain using signals sent by these peripheral nerves.

“The problem is that unlike blood, a skin sample or even a tissue biopsy, you can’t take a piece of a patient’s neural system. It runs like complex wiring throughout the body and portions cannot be sampled for study,” said Bhatia [Mick Bhatia, director of the McMaster Stem Cell and Cancer Research Institute and much more].

“Now we can take easy to obtain blood samples, and make the main cell types of neurological systems – the central nervous system and the peripheral nervous system – in a dish that is specialized for each patient,” said Bhatia. “Nobody has ever done this with adult blood. Ever.

“We can actually take a patient’s blood sample, as routinely performed in a doctor’s office, and with it we can produce one million sensory neurons, that make up the peripheral nerves in short order with this new approach. We can also make central nervous system cells, as the blood to neural conversion technology we developed creates neural stem cells during the process of conversion.”

His team’s revolutionary, patented direct conversion technology has “broad and immediate applications,” said Bhatia, adding that it allows researchers to start asking questions about understanding disease and improving treatments such as: Why is it that certain people feel pain versus numbness? Is this something genetic? Can the neuropathy that diabetic patients experience be mimicked in a dish?

It also paves the way for the discovery of new pain drugs that don’t just numb the perception of pain. Bhatia said non-specific opioids used for decades are still being used today.

“If I was a patient and I was feeling pain or experiencing neuropathy, the prized pain drug for me would target the peripheral nervous system neurons, but do nothing to the central nervous system, thus avoiding non-addictive drug side effects,” said Bhatia.

“You don’t want to feel sleepy or unaware, you just want your pain to go away. But, up until now, no one’s had the ability and required technology to actually test different drugs to find something that targets the peripheral nervous system and not the central nervous system in a patient specific, or personalized manner.”

Bhatia’s team successfully tested their process using fresh blood, but also cryopreserved (frozen) blood. Since blood samples are taken and frozen with many clinical trials, this allows them “almost a bit of a time machine” to go back and explore questions around pain or neuropathy to run tests on neurons created from blood samples of patients taken in past clinical trials where responses and outcomes have already been recorded”.

In the future, the process may have prognostic potential, explained Bhatia, in that one might be able to look at a patient with Type 2 Diabetes and predict whether they will experience neuropathy by running tests in the lab using their own neural cells derived from their blood sample.

“This bench to bedside research is very exciting and will have a major impact on the management of neurological diseases, particularly neuropathic pain,” said Akbar Panju, medical director of the Michael G. DeGroote Institute for Pain Research and Care, a clinician and professor of medicine.

“This research will help us understand the response of cells to different drugs and different stimulation responses, and allow us to provide individualized or personalized medical therapy for patients suffering with neuropathic pain.”

Here’s a link to and a citation for the paper,

Single Transcription Factor Conversion of Human Blood Fate to NPCs with CNS and PNS Developmental Capacity by Jong-Hee Lee, Ryan R. Mitchell, Jamie D. McNicol, Zoya Shapovalova, Sarah Laronde, Borko Tanasijevic, Chloe Milsom, Fanny Casado, Aline Fiebig-Comyn, Tony J. Collins, Karun K. Singh, and Mickie Bhatia.
Publication stage: In Press Corrected Proof Open Access DOI: http://dx.doi.org/10.1016/j.celrep.2015.04.056 Open access funded by the Author(s)

This is an open access paper. h/t Speaking Up For Science May 21, 2015 item

Research into nanosilver’s antibiotic properties and nanogold’s detection skills

There is a puzzling and exciting announcement from the Canadian Light Source in a May 27, 2015 news item on Nanowerk,

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the patient and the environment?

These are the questions that researchers from Dalhousie University and the Canadian Light Source are trying to find out.

Perhaps I’m misreading the announcement but the statement that nanosilver and nanogold don’t contaminate the patient or the environment is a bit exuberant. There are published studies examining questions about whether or not nanosilver may affect the environment and health and the answer is that no one is certain yet. You can read more about two studies highlighted in my February 28, 2013 posting titled:  Silver nanoparticles, water, the environment, and toxicity. As for nanosilver and nanogold not contaminating patients, that too is a problematic statement. For example, I have this paper which cites several studies on nanogold and possible toxicity. The paper itself is a plea to standardize testing and protocols so researchers can do a better job of establishing toxicity issues with nanogold.

GoldNP_ToxicityMar2015

Reservations aside, it’s good to learn of some Canadian research in this area. From a May 26, 2015 Canadian Light Source news release, which originated the news item, provides more details about the research and its current focus on nanosilver,

“Gold and silver are both exciting materials,” said Peng Zhang, Associate Professor of Chemistry at Dalhousie. “We can use gold to either detect or kill cancer cells. Silver is also excited and a very promising material as an antibacterial agents.”

Zhang said that if you compare silver to current antibiotics, silver does not show drug-resistant behaviour. “But with silver, so far, we are not finding that,” he added.

Finding out why silver is such a great antibacterial agent is the focus of Zhang’s research, recently published in the journal Langmuir.

“We want to understand the relationship between the atomic structure and bioactivity of nanosilver as to why it is so efficient at inhibiting bacterial activity. It’s a big puzzle.”

Zhang said it is very hard to understand what is happening at the atomic level. Using small nanosilver particles is the most effective way, because when you make silver small, you can expect higher activity because of the increased surface area.

This poses another problem however, as the nanosilver needs to be stabilized with a coating or the silver particles will bond together forming large pieces of silver that do not efficiently interact with the bacteria.

Zhang’s group used two different coatings to compare the effectiveness of the silver as an antibacterial agent. The first was a small amino acid coating and the other was a larger polymer coating. And after testing the interactions between the nanosilver and the bacteria, and looking at the atomic structure of nanosilver using the CLS and the Advanced Photon Source, the researchers were surprised to find that the thicker, larger polymer coating actually created a better delivery method for sliver to inhibit the bacteria.

“We proposed that the small amino acid coating would bind so tightly to the silver surface that it would be difficult for  the silver atoms to interact with the bacteria, whereas the polymers are actually very good at staying in place and still releasing sufficient amount of silver with the bacteria.”

Zhang said the next steps will be to find out if the nanosilver is actually attacking good cells in living systems before they can make any further progress on determining whether nanosilver is an effective and efficient antibactieral agent that could be used to cure human and animal diseases.

Here’s an illustration provided by the researchers,

The atomic structure of nanosilver, revealed by synchrotron X-ray spectroscopy, is proving to be a determinant of silver’s antibacterial activity. Padmos, J. Daniel, et al. "Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles." Langmuir 31.12 (2015): 3745-3752.

The atomic structure of nanosilver, revealed by synchrotron X-ray spectroscopy, is proving to be a determinant of silver’s antibacterial activity.
Padmos, J. Daniel, et al. “Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles.” Langmuir 31.12 (2015): 3745-3752.

Here’s a link to and a citation for the paper,

Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles by J. Daniel Padmos, Robert T. M. Boudreau, Donald F. Weaver, and Peng Zhang. Langmuir, 2015, 31 (12), pp 3745–3752
DOI: 10.1021/acs.langmuir.5b00049 Publication Date (Web): March 15, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.