Tag Archives: Canada

Nanoscale light confinement without metal (photonic circuits) at the University of Alberta (Canada)

To be more accurate, this is a step forward towards photonic circuits according to an Aug. 20, 2014 news item on Azonano,

The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.

This could result in radical increases in computing speeds and reduced energy use by electronic devices.

“We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnects—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professor leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.”

At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

An Aug. 19, 2014 University of Alberta news release by Richard Cairney (also on EurekAlert), which originated the news item, provides more technical detail and information about funding,

 Jahani and Jacob have used metamaterials to redefine the textbook phenomenon of total internal reflection, discovered 400 years ago by German scientist Johannes Kepler while working on telescopes.

Researchers around the world have been stymied in their efforts to develop effective fibre optics at smaller sizes. One popular solution has been reflective metallic claddings that keep light waves inside the cables. But the biggest hurdle is increased temperatures: metal causes problems after a certain point.

“If you use metal, a lot of light gets converted to heat. That has been the major stumbling block. Light gets converted to heat and the information literally burns up—it’s lost.”

Jacob and Jahani have designed a new, non-metallic metamaterial that enables them to “compress” and contain light waves in the smaller cables without creating heat, slowing the signal or losing data. …

The team’s research is funded by the Natural Sciences and Engineering Research Council of Canada and the Helmholtz-Alberta Initiative.

Jacob and Jahani are now building the metamaterials on a silicon chip to outperform current light confining strategies used in industry.

Given that this work is being performed at the nanoscale and these scientists are located within the Canadian university which houses Canada’s National Institute of Nanotechnology (NINT), the absence of any mention of the NINT comes as a surprise (more about this organization after the link to the researchers’ paper).

Here’s a link to and a citation for the paper,

Transparent subdiffraction optics: nanoscale light confinement without metal by Saman Jahani and Zubin Jacob. Optica, Vol. 1, Issue 2, pp. 96-100 (2014) http://dx.doi.org/10.1364/OPTICA.1.000096

This paper is open access.

In a search for the NINT’s website I found this summary at the University of Alberta’s NINT webpage,

The National Institute for Nanotechnology (NINT) was established in 2001 and is operated as a partnership between the National Research Council and the University of Alberta. Many NINT researchers are affiliated with both the National Research Council and University of Alberta.

NINT is a unique, integrated, multidisciplinary institute involving researchers from fields such as physics, chemistry, engineering, biology, informatics, pharmacy, and medicine. The main focus of the research being done at NINT is the integration of nano-scale devices and materials into complex nanosystems that can be put to practical use. Nanotechnology is a relatively new field of research, so people at NINT are working to discover “design rules” for nanotechnology and to develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application. NINT aims to increase knowledge and support innovation in the area of nanotechnology, as well as to create work that will have long-term relevance and value for Alberta and Canada.

The University of Alberta’s NINT webpage also offers a link to the NINT’s latest rebranded website, The failure to mention the NINT gets more curious when looking at a description of NINT’s programmes one of which is hybrid nanoelectronics (Note: A link has been removed),

Hybrid NanoElectronics provide revolutionary electronic functions that may be utilized by industry through creating circuits that operate using mechanisms unique to the nanoscale. This may include functions that are not possible with conventional circuitry to provide smaller, faster and more energy-efficient components, and extend the development of electronics beyond the end of the roadmap.

After looking at a list of the researchers affiliated with the NINT, it’s apparent that neither Jahani or Jacob are part of that team. Perhaps they have preferred to work independently of the NINT ,which is one of the Canada National Research Council’s institutes.

Life-on-a-chip; protein synthesis could be possible with artificial cells

An Aug. 18, 2014 Weizmann Institute of Science (Israel) news release (also on EurekAlert but dated Aug. 19, 2014) describes an artificial cell system and its ability to synthesize protein,

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis. This achievement is not only likely to help gain a deeper understanding of basic biological processes, but it may, in the future, pave the way toward controlling the synthesis of both naturally-occurring and synthetic proteins for a host of uses.

The system, designed by PhD students Eyal Karzbrun and Alexandra Tayar in the lab of Prof. Roy Bar-Ziv of the Weizmann Institute’s Materials and Interfaces Department, in collaboration with Prof. Vincent Noireaux of the University of Minnesota, comprises multiple compartments “etched” onto a biochip. These compartments – artificial cells, each a mere millionth of a meter in depth – are connected via thin capillary tubes, creating a network that allows the diffusion of biological substances throughout the system. Within each compartment, the researchers insert a cell genome – strands of DNA designed and controlled by the scientists themselves. In order to translate the genes into proteins, the scientists relinquished control to the bacterium E. coli: Filling the compartments with E. coli cell extract – a solution containing the entire bacterial protein-translating machinery, minus its DNA code – the scientists were able to sit back and observe the protein synthesis dynamics that emerged.

By coding two regulatory genes into the sequence, the scientists created a protein synthesis rate that was periodic, spontaneously switching from periods of being “on” to “off.” The amount of time each period lasted was determined by the geometry of the compartments. Such periodic behavior – a primitive version of cell cycle events – emerged in the system because the synthesized proteins could diffuse out of the compartment through the capillaries, mimicking natural protein turnover behavior in living cells. At the same time fresh nutrients were continuously replenished, diffusing into the compartment and enabling the protein synthesis reaction to continue indefinitely. “The artificial cell system, in which we can control the genetic content and protein dilution times, allows us to study the relation between gene network design and the emerging protein dynamics. This is quite difficult to do in a living system,” says Karzbrun. “The two-gene pattern we designed is a simple example of a cell network, but after proving the concept, we can now move forward to more complicated gene networks. One goal is to eventually design DNA content similar to a real genome that can be placed in the compartments. ”

The scientists then asked whether the artificial cells actually communicate and interact with one another like real cells. Indeed, they found that the synthesized proteins that diffused through the array of interconnected compartments were able to regulate genes and produce new proteins in compartments farther along the network. In fact, this system resembles the initial stages of morphogenesis – the biological process that governs the emergence of the body plan in embryonic development. “We observed that when we place a gene in a compartment at the edge of the array, it creates a diminishing protein concentration gradient; other compartments within the array can sense and respond to this gradient – similar to how morphogen concentration gradients diffuse through the cells and tissues of an embryo during early development. We are now working to expand the system and to introduce gene networks that will mimic pattern formation, such as the striped patterns that appear during fly embryogenesis,” explains Tayar.

With the artificial cell system, according to Bar-Ziv, one can, in principle, encode anything: “Genes are like Lego in which you can mix and match various components to produce different outcomes; you can take a regulatory element from E. coli that naturally controls gene X, and produce a known protein; or you can take the same regulatory element but connect it to gene Y instead to get different functions that do not naturally occur in nature. ” This research may, in the future, help advance the synthesis of such things as fuel, pharmaceuticals, chemicals and the production of enzymes for industrial use, to name a few.

Here’s a link to and a citation for the paper,

Programmable on-chip DNA compartments as artificial cells by Eyal Karzbrun, Alexandra M. Tayar, Vincent Noireaux,and Roy H. Bar-Ziv. Science 15 August 2014: Vol. 345 no. 6198 pp. 829-832 DOI: 10.1126/science.1255550

This paper is behind a paywall.

While trying to find more information about the work on artificial cells and the Weizmann Institute, I discovered a Canadian chapter of what is, in addition to being a scientific research institute in Israel, a worldwide organization. Here’s more from the Weizmann Institute Canada About us webpage,

Weizmann Canada is part of a worldwide network of supporting organizations for the Weizmann Institute of Science, in Rehovot, Israel.

The Weizmann Institute is one of the world’s leading multidisciplinary research institutions. Hundreds of scientists, laboratory technicians and research students embark on fascinating journeys into the unknown. Every day, these researchers attempt to push the limits of scientific knowledge, exploring the Earth’s mysteries and making the world a better place.

Since 1964, Canadian supporters have helped fund some of the world’s most talented scientists who are conducting cutting-edge research, which has a major impact on the world we live in.

Behind every scientist, there is a donor who has made it possible for them to carry out their groundbreaking research.

With over 1200 research projects, there are over 1200 ways in which you can support the Weizmann Institute.

As I noted earlier today in an Aug. 19, 2014 posting about 14nm computer chips and limits to computation, the question about limits can be applied to other areas of endeavour including the creation of artificial cell systems.

Science and the arts: a science rap promotes civil discussion about science and religion; a science movie and a play; and a chemistry article about authenticating a Lawren Harris painting

Canadian-born rapper of science and many other topics, Baba Brinkman sent me an update about his current doings (first mentioned in an Aug. 1, 2014 posting featuring his appearances at the 2014 Edinburgh Fringe Festival, his Rap Guide to Religion being debuted at the Fringe, and his Kickstarter campaign to raise money for the creation of an animated rap album of his news Rap Guide to Religion), Note: Links have been removed,

Greetings from Edinburgh! In the past two and half weeks I’ve done fifteen performances of The Rap Guide to Religion for a steadily building audience here at the Fringe, and we recently had a whole pile of awesome reviews published, which I will excerpt below, but first a funny story.

Yesterday [August 14, 2014] BBC [British Broadcasting Corporation] Sunday Morning TV was in to film my performance. They had a scheme to send a right wing conservative Christian to the show and then film us having an argument afterwards. The man they sent certainly has the credentials. Reverend George Hargreaves is a Pentecostal Minister and former leader of the UK Christian Party, as well as a young earth creationist and strong opponent of abortion and homosexuality. He led the protests that got “Jerry Springer the Opera” shut down in London a few years back, and is on record as saying that religion is not an appropriate subject for comedy. Before he converted to Christianity, the man was also a DJ and producer of pop music for the London gay scene, interesting background.

So after an hour of cracking jokes at religion’s expense, declaring myself an unapologetic atheist, and explaining why evolutionary science gives a perfectly satisfying naturalistic account of where religion comes from, I sat down with Reverend George and was gobsmacked when he started the interview with: “I don’t know if we’re going to have anything to debate about… I LOVED your show!” We talked for half an hour with the cameras rolling and at one point George said “I don’t know what we disagree about,” so I asked him: “Do you think one of your ancestors was a fish?” He declared that statement a fishy story and denied it, and then we found much to disagree about.

I honestly thought I had written a hard-hitting, provocative and controversial show, but it turns out the religious are loving it as much as the nonbelievers – and I’m not sure how I feel about that. I asked Reverend George why he wasn’t offended, even though he’s officially against comedy that targets religion, and he told me it’s because I take the religious worldview seriously, instead of lazily dismissing it as delusional. The key word here is “lazily” rather than “delusional” because I don’t pull punches about religion being a series of delusions, but I don’t think those delusions are pointless. I think they have evolved (culturally and genetically) to solve adaptive problems in the past, and for religious people accustomed to atheists being derisive and dismissive that’s a (semi) validating perspective.

To listen to songs from The Rap Guide to Religion, you need to back my Kickstarter campaign so I can raise the money to produce a proper record. To check out what the critics here in Edinburgh have to say about my take on religion, read on. And if you want to help organize a gig somewhere, just let me know. The show is open for bookings.

On Sunday Morning [August 17, 2014 GMT] my segment with Reverend George will air on BBC One, so we’ll see what a million British people think of the debate.

All the best from the religious fringe,

Baba

Here’s a link to the BBC One Sunday Morning Live show, where hopefully you’ll be able to catch the segment featuring Baba and Reverend George Hargreaves either livestreamed or shortly thereafter.

A science movie and a science play

Onto the science movie and the play: David Bruggeman on his Pasco Phronesis blog writes about two upcoming movie biopics featuring Alan Turing and Stephen Hawking respectively, in an Aug. 8, 2014 posting. Having covered the Turing movie here (at length) in a July 22, 2014 posting here’s the new information about the Hawking movie from David’s Aug, 8, 2014 posting,

Alan Turing and Stephen Hawking are noted British scientists, well recognized for their work and for having faced significant challenges in their lives.  While they were in different fields and productive in different parts of the 20th century (Hawking is still with us), their stories will compete in movieplexes (at least in the U.S.) this November.

The Theory of Everything is scheduled for release on November 7 and focuses on the early career and life of Hawking.  He’s portrayed by Eddie Redmayne, and the film is directed by James Marsh.  Marsh has several documentaries to his credit, including the Oscar-winning Man on Wire.  Theory is the third film project on Hawking since 2004, but the first to get much attention outside of the United Kingdom (this might explain why it won’t debut in the U.K. until New Year’s Day).  It premieres at the Toronto International Film Festival next month [Sept. 2014].

David features some trailers for both movies and additional information.

Interestingly the science play focuses on the friendship between a female UK scientist and her former student, Margaret Thatcher (a UK Prime Minister). From an Aug. 13, 2014 Alice Bell posting on the Guardian science blog network (Note: Links have been removed),

Adam Ganz’s new play – The Chemistry Between Them, to be broadcast on Radio 4 this month – explores one of the most intriguing friendships in the history of science and politics: Margaret Thatcher and Dorothy Hodgkin.

As well as winning the Nobel Prize in Chemistry for her pioneering scientific work on the structures of proteins, Hodgkin was a left-wing peace campaigner who was awarded the Soviet equivalent of the Nobel Peace Prize, the Order of Lenin. Hardly Thatcher’s type, you might think. But Hodgkin was Thatcher’s tutor at university, and the relationships between science, politics and women in high office are anything but straightforward.

I spoke to Ganz about his interest in the subject, and started by asking him to tell us more about the play.

… they stayed friends throughout Dorothy’s life. Margaret Thatcher apparently had a photo of Dorothy Hodgkin in Downing Street, and they maintained a kind of warm relationship. The play happens in two timescales – one is a meeting in 1983 in Chequers where Dorothy came to plead with Margaret to take nuclear disarmament more seriously at a time when Cruise missiles and SS20s were being stationed in Europe. In fact I’ve set it – I’m not sure of the exact date – shortly after the Korean airliner was shot down, when the Russians feared Nato were possibly planning a first strike. And that is intercut with the time when Margaret is studying chemistry and looking at her journey; what she learned at Somerville, but especially what she learned from Dorothy.

Here’s a link to the BBC 4 webpage for The Chemistry Between Them. I gather the broadcast will be Weds., Aug. 20, 2014 at 1415 hours GMT.

Chemistry and authentication of a Lawren Harris painting

The final item for this posting concerns Canadian art, chemistry, and the quest to prove the authenticity of a painting. Roberta Staley, editor of Canadian Chemical News (ACCN), has written a concise technical story about David Robertson’s quest to authenticate a painting he purchased some years ago,

Fourteen years ago, David Robertson of Delta, British Columbia was holidaying in Ontario when he stopped at a small antique shop in the community of Bala, two hours north of Toronto in cottage country. An unsigned 1912 oil painting caught his attention. Thinking it evocative of a Group of Seven painting, Robertson paid the asking price of $280 and took it home to hang above his fireplace.

Roberta has very kindly made it available as a PDF: ChemistryNews_Art.Mystery.Group.7. It will also be available online at the Canadian Chemical News website soon. (It’s not in the July/August 2014 issue.)

For anyone who might recognize the topic, I wrote a sprawling five-part series (over 5000 words) on the story starting with part one. Roberta’s piece is 800 words and offers her  account of the tests for both Autumn Harbour and the authentic Harris painting, Hurdy Gurdy. I was able to attend only one of them (Autumn Harbour).

David William Robertson, Autumn Harbour’s owner has recently (I received a notice on Aug. 13, 2014) updated his website with all of the scientific material and points of authentication that he feels prove his case.

Have a very nice weekend!

Hemp as a substitute for graphene in supercapacitors

As a member of the Cannabis plant family, hemp has an undeserved reputation due to its cousin’s (marijuana) notoriety and consciousness-altering properties. Hemp is, by contrast, the Puritan in the family, associated by the knowledgeable with virtues of thrift and hard work.

An Aug. 12, 2014 news item on Nanowerk highlights a hemp/supercapacitor presentation at the 248th meeting of the American Chemical Society (ACS),

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. They’re presenting their research, which a Canadian start-up company is working on scaling up, at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society.

David Mitlin, Ph.D., explains that supercapacitors are energy storage devices that have huge potential to transform the way future electronics are powered. Unlike today’s rechargeable batteries, which sip up energy over several hours, supercapacitors can charge and discharge within seconds. But they normally can’t store nearly as much energy as batteries, an important property known as energy density. One approach researchers are taking to boost supercapacitors’ energy density is to design better electrodes. Mitlin’s team has figured out how to make them from certain hemp fibers — and they can hold as much energy as the current top contender: graphene.

An Aug. 12, 2014 ACS news release features David Mitlin, formerly of the University of Alberta (Canada) where this research took place,, Mitlin is now with now with Clarkson University in New York,

“Our device’s electrochemical performance is on par with or better than graphene-based devices,” Mitlin says. “The key advantage is that our electrodes are made from biowaste using a simple process, and therefore, are much cheaper than graphene.”

The race toward the ideal supercapacitor has largely focused on graphene — a strong, light material made of atom-thick layers of carbon, which when stacked, can be made into electrodes. Scientists are investigating how they can take advantage of graphene’s unique properties to build better solar cells, water filtration systems, touch-screen technology, as well as batteries and supercapacitors. The problem is it’s expensive.

Mitlin’s group decided to see if they could make graphene-like carbons from hemp bast fibers. The fibers come from the inner bark of the plant and often are discarded from Canada’s fast-growing industries that use hemp for clothing, construction materials and other products. …

His team found that if they heated the fibers for 24 hours at a little over 350 degrees Fahrenheit, and then blasted the resulting material with more intense heat, it would exfoliate into carbon nanosheets.

Mitlin’s team built their supercapacitors using the hemp-derived carbons as electrodes and an ionic liquid as the electrolyte. Fully assembled, the devices performed far better than commercial supercapacitors in both energy density and the range of temperatures over which they can work. The hemp-based devices yielded energy densities as high as 12 Watt-hours per kilogram, two to three times higher than commercial counterparts. They also operate over an impressive temperature range, from freezing to more than 200 degrees Fahrenheit.

“We’re past the proof-of-principle stage for the fully functional supercapacitor,” he says. “Now we’re gearing up for small-scale manufacturing.”

I have not been able to confirm the name for Mitlin’s startup but I think it’s called Alta Supercaps (Alta being an abbreviation for Alberta,, amongst other things, and supercaps for supercapacitors) as per the information about a new startup on the Mitlin Group webspace (scroll down to the July 2, 2013 news item) which can still be found on the University of Alberta website (as of Aug. 12, 2014).

For those who would like more technical details, there is this July 2013 article by Mark Crawford for the ASME (American Society of Mechanical Engineers); Note: A link has been removed.

Activated carbons, templated carbons, carbon nanofibers, carbon nanotubes, and graphene have all been intensively studied as materials for supercapacitor electrodes. High manufacturing costs is one issue—another is that the power characteristics of many of these carbons are limited. This is a result of high microporosity, which increases ion transport limitations.

“It is becoming well understood that the key to achieving high power in porous electrodes is to reduce the ion transport limitations” says Mitlin. “Nanomaterials based on graphene and their hybrids have emerged as a new class of promising high-rate electrode candidates—they are, however, too expensive to manufacture compared to activated carbons derived from pyrolysis of agricultural wastes, or from the coking operations.”

Biomass, which mainly contains cellulose and lignin by-products, is widely utilized as a feedstock for producing activated carbons. Mitlin decided to test hemp bast fiber’s unique cellular structure to see if it could produce graphene-like carbon nanosheets.

Hemp fiber waste was pressure-cooked (hydrothermal synthesis) at 180 °C for 24 hours. The resulting carbonized material was treated with potassium hydroxide and then heated to temperatures as high as 800 °C, resulting in the formation of uniquely structured nanosheets. Testing of this material revealed that it discharged 49 kW of power per kg of material—nearly triple what standard commercial electrodes supply, 17 kW/kg.

Mitlin and his team successfully synthesized two-dimensional, yet interconnected, carbon nanosheets with superior electrochemical storage properties comparable to those of state-of-the-art graphene-based electrodes. “We were able to achieve this by employing a biomass precursor with a unique structure—hemp bast fiber,” says Mitlin. “The resultant graphene-like nanosheets possess fundamentally different properties—such as pore size distribution, physical interconnectedness, and electrical conductivity—as compared to conventional biomass-derived activated carbons.”

This image from Wikimedia was used to illustrate the Crawford article,

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

It seems to me that over the last few months there have been more than the usual number of supercapacitor stories, which makes the race to create the one that will break through in the marketplace fascinating to observe.

Graphene and an artificial retina

A graphene-based artificial retina project has managed to intermingle the European Union’s two major FET (Future and Emerging Technologies) funding projects, 1B Euros each to be disbursed over 10 years, the Graphene Flagship and the Human Brain Project. From an Aug. 7, 2014 Technische Universitaet Muenchen (TUM) news release (also on EurekAlert),

Because of its unusual properties, graphene holds great potential for applications, especially in the field of medical technology. A team of researchers led by Dr. Jose A. Garrido at the Walter Schottky Institut of the TUM is taking advantage of these properties. In collaboration with partners from the Institut de la Vision of the Université Pierre et Marie Curie in Paris and the French company Pixium Vision, the physicists are developing key components of an artificial retina made of graphene.

Retina implants can serve as optical prostheses for blind people whose optical nerves are still intact. The implants convert incident light into electrical impulses that are transmitted to the brain via the optical nerve. There, the information is transformed into images. Although various approaches for implants exist today, the devices are often rejected by the body and the signals transmitted to the brain are generally not optimal.

Already funded by the Human Brain Project as part of the Neurobotics effort, Garrido and his colleagues will now also receive funding from the Graphene Flagship. As of July 2014, the Graphene Flagship has added 86 new partners including TUM according to the news release.

Here’s an image of an ‘invisible’ graphene sensor (a precursor to developing an artificial retina),

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Artificial retinas were first featured on this blog in an Aug. 18, 2011 posting about video game Deus Ex: Human Revolution which features a human character with artificial sight. The post includes links to a video of a scientist describing an artificial retina trial with 30 people and an Israeli start-up company, ‘Nano Retina’, along with information about ‘Eyeborg’, a Canadian filmmaker who on losing an eye in an accident had a camera implanted in the previously occupied eye socket.

More recently, a Feb. 15, 2013 posting featured news about the US Food and Drug Administration’s decision to allow sale of the first commercial artificial retinas in the US in the context of news about a neuroprosthetic implant in a rat which allowed it to see in the infrared range, normally an impossible feat.

Cyborgs (a presentation) at the American Chemical Society’s 248th meeting

There will be a plethora of chemistry news online over the next few days as the American Society’s (ACS) 248th meeting in San Francisco, CA from Aug. 10 -14, 2014 takes place. Unexpectedly, an Aug. 11, 2014 news item on Azonano highlights a meeting presentation focused on cyborgs,

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works — and how to treat its most devastating diseases.

An Aug. 10, 2014 ACS news release on EurekAlert provides more detail about the presentation (Note: Links have been removed),

“By focusing on the nanoelectronic connections between cells, we can do things no one has done before,” says Charles M. Lieber, Ph.D. “We’re really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in neurodegenerative diseases in the future.”

These disorders, such as Parkinson’s, that involve malfunctioning nerve cells can lead to difficulty with the most mundane and essential movements that most of us take for granted: walking, talking, eating and swallowing.

Scientists are working furiously to get to the bottom of neurological disorders. But they involve the body’s most complex organ — the brain — which is largely inaccessible to detailed, real-time scrutiny. This inability to see what’s happening in the body’s command center hinders the development of effective treatments for diseases that stem from it.

By using nanoelectronics, it could become possible for scientists to peer for the first time inside cells, see what’s going wrong in real time and ideally set them on a functional path again.

For the past several years, Lieber has been working to dramatically shrink cyborg science to a level that’s thousands of times smaller and more flexible than other bioelectronic research efforts. His team has made ultrathin nanowires that can monitor and influence what goes on inside cells. Using these wires, they have built ultraflexible, 3-D mesh scaffolding with hundreds of addressable electronic units, and they have grown living tissue on it. They have also developed the tiniest electronic probe ever that can record even the fastest signaling between cells.

Rapid-fire cell signaling controls all of the body’s movements, including breathing and swallowing, which are affected in some neurodegenerative diseases. And it’s at this level where the promise of Lieber’s most recent work enters the picture.

In one of the lab’s latest directions, Lieber’s team is figuring out how to inject their tiny, ultraflexible electronics into the brain and allow them to become fully integrated with the existing biological web of neurons. They’re currently in the early stages of the project and are working with rat models.

“It’s hard to say where this work will take us,” he says. “But in the end, I believe our unique approach will take us on a path to do something really revolutionary.”

Lieber acknowledges funding from the U.S. Department of Defense, the National Institutes of Health and the U.S. Air Force.

I first covered Lieber’s work in an Aug. 27, 2012 posting  highlighting some good descriptions from Lieber and his colleagues of their work. There’s also this Aug. 26, 2012 article by Peter Reuell in the Harvard Gazette (featuring a very good technical description for someone not terribly familiar with the field but able to grasp some technical information while managing their own [mine] ignorance). The posting and the article provide details about the foundational work for Lieber’s 2014 presentation at the ACS meeting.

Lieber will be speaking next at the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology sometime between August 18 – 21, 2014 in Toronto, Ontario, Canada.

As for some of Lieber’s latest published work, there’s more information in my Feb. 20, 2014 posting which features a link to a citation for the paper (behind a paywall) in question.

Hummingbirds and ‘nano’ spy cameras

Hummingbird-inspired spy cameras have come a long way since the research featured in this Aug. 12, 2011 posting which includes a video of a robot camera designed to look like a hummingbird and mimic some of its extraordinary flying abilities. These days (2014) the emphasis appears to be on mimicking the abilities to a finer degree if Margaret Munro’s July 29, 2014 article for Canada.com is to be believed,

Tiny, high-end military drones are catching up with one of nature’s great engineering masterpieces.

A side-by-side comparison has found a “remarkably similar” aerodynamic performance between hummingbirds and the Black Hornet, the most sophisticated nano spycam yet.

“(The) Average Joe hummingbird” is about on par with the tiny helicopter that is so small it can fit in a pocket, says engineering professor David Lentink, at Stanford University. He led a team from Canada [University of British Columbia], the U.S. and the Netherlands [Wageningen University and Eindhoven University of Technology] that compared the birds and the machine for a study released Tuesday [July 29, 2014].

For a visual comparison with the latest nano spycam (Black Hornet), here’s the ‘hummingbird’ featured in the 2011 posting,

The  Nano Hummingbird, a drone from AeroVironment designed for the US Pentagon, would fit into any or all of those categories.

And, here’s this 2013 image of a Black Hornet Nano Helicopter inspired by hummingbirds,

Black Hornet Nano Helicopter UAVView licenseview terms Richard Watt - Photo http://www.defenceimagery.mod.uk/fotoweb/fwbin/download.dll/45153802.jpgCourtesy: Wikipedia

Black Hornet Nano Helicopter UAVView licenseview terms
Richard Watt – Photo http://www.defenceimagery.mod.uk/fotoweb/fwbin/download.dll/45153802.jpg Courtesy: Wikipedia

A July 30, 2014 Stanford University news release by Bjorn Carey provides more details about this latest research into hummingbirds and their flying ways,

More than 42 million years of natural selection have turned hummingbirds into some of the world’s most energetically efficient flyers, particularly when it comes to hovering in place.

Humans, however, are gaining ground quickly. A new study led by David Lentink, an assistant professor of mechanical engineering at Stanford, reveals that the spinning blades of micro-helicopters are about as efficient at hovering as the average hummingbird.

The experiment involved spinning hummingbird wings – sourced from a pre-existing museum collection – of 12 different species on an apparatus designed to test the aerodynamics of helicopter blades. The researchers used cameras to visualize airflow around the wings, and sensitive load cells to measure the drag and the lift force they exerted, at different speeds and angles.

Lentink and his colleagues then replicated the experiment using the blades from a ProxDynamics Black Hornet autonomous microhelicopter. The Black Hornet is the most sophisticated microcopter available – the United Kingdom’s army uses it in Afghanistan – and is itself about the size of a hummingbird.

Even spinning like a helicopter, rather than flapping, the hummingbird wings excelled: If hummingbirds were able to spin their wings to hover, it would cost them roughly half as much energy as flapping. The microcopter’s wings kept pace with the middle-of-the-pack hummingbird wings, but the topflight wings – those of Anna’s hummingbird, a species common throughout the West Coast – were still about 27 percent more efficient than engineered blades.

Hummingbirds acing the test didn’t particularly surprise Lentink – previous studies had indicated hummingbirds were incredibly efficient – but he was impressed with the helicopter.

“The technology is at the level of an average Joe hummingbird,” Lentink said. “A helicopter is really the most efficient hovering device that we can build. The best hummingbirds are still better, but I think it’s amazing that we’re getting closer. It’s not easy to match their performance, but if we build better wings with better shapes, we might approximate hummingbirds.”

Based on the measurements of Anna’s hummingbirds, Lentink said there is potential to improve microcopter rotor power by up to 27 percent.

The high-fidelity experiment also provided an opportunity to refine previous rough estimates of muscle power. Lentink’s team learned that hummingbirds’ muscles produce a surprising 130 watts of energy per kilogram; the average for other birds, and across most vertebrates, is roughly 100 watts/kg.

Although the current study revealed several details of how a hummingbird hovers in one place, the birds still hold many secrets. For instance, Lentink said, we don’t know how hummingbirds maintain their flight in a strong gust, how they navigate through branches and other clutter, or how they change direction so quickly during aerial “dogfights.”

He also thinks great strides could be made by studying wing aspect ratios, the ratio of wing length to wing width. The aspect ratios of all the hummingbirds’ wings remarkably converged around 3.9. The aspect ratios of most wings used in aviation measure much higher; the Black Hornet’s aspect ratio was 4.7.

“I want to understand if aspect ratio is special, and whether the amount of variation has an effect on performance,” Lentink said. Understanding and replicating these abilities and characteristics could be a boon for robotics and will be the focus of future experiments.

“Those are the things we don’t know right now, and they could be incredibly useful. But I don’t mind it, actually,” Lentink said. “I think it’s nice that there are still a few things about hummingbirds that we don’t know.”

Agreed, it’s nice to know there are still a few mysteries left. You can watch the ‘mysterious’ hummingbird in this video courtesy of the Rivers Ingersoll Lentink Lab at Stanford University,

High speed video of Anna’s hummingbird at Stanford Arizona Cactus Garden.

Here’s a link to and a citation for the paper, H/T to Nancy Owano’s article on phys.org for alerting me to this story.

Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors by Jan W. Kruyt, Elsa M. Quicazán-Rubio, GertJan F. van Heijst, Douglas L. Altshuler, and David Lentink.  J. R. Soc. Interface 6 October 2014 vol. 11 no. 99 20140585 doi: 10.1098/​rsif.2014.0585 Published [online] 30 July 2014

This is an open access paper.

Despite Munro’s reference to the Black Hornet as a ‘nano’ spycam, the ‘microhelicopter’ description in the news release places the device at the microscale (/1,000,000,000). Still, I don’t understand what makes it microscale since it’s visible to the naked eye. In any case, it is small.

Science advice tidbits: Canada and New Zealand

Eight months after the fact, I find out from the Canadian Science Policy Centre website that a private member’s bill calling for the establishment of a parliamentary science officer was tabled (November 2013) in Canada’s House of Commons. From a Nov. 21, 2013 article by Ivan Semeniuk for the Globe and Mail,

With the Harper government facing continued criticism from many quarters over its policies towards science, the opposition has announced it wants to put in place a parliamentary champion to better shield government researchers and their work from political misuse.

In a private member’s bill to be tabled next week the NDP [New Democratic Party] science and technology critic, Kennedy Stewart, calls for the establishment of a parliamentary science officer reporting not to the government nor to the Prime Minister’s office, but to Parliament as a whole.

The role envisioned in the NDP bill is based in part on a U.K. model and is similar in its independence to that of the Parliamentary Budget Officer. The seven-year, one-term appointment would also work in concert with other federal science advisory bodies, including the Science, Technology and Innovation Council – which provides confidential scientific advice to the government but not to Parliament – and the Council of Canadian Academies, which provides publicly accessible information related to science policy but does not make recommendations.

Speaking to a room mainly filled with science policy professionals, Dr. Stewart drew applause for the idea but also skepticism about whether such an ambitious multi-faceted role could be realistically achieved or appropriately contained within one job.

Stewart was speaking about his private member’s bill at the 2013 Canadian Science Policy Conference held in Toronto, Ontario from Nov. 20 – 22, 2013.

More recently and in New Zealand, a national strategic plan for science in society was released (h/t to James Wilsdon’s twitter feed). From a July 29, 2014 Office of the Prime Minister’s Chief Science Advisor media release,

With today’s [July 29, 2014] launch of A Nation of Curious Minds, the national strategic plan for science in society by Ministers Joyce and Parata [Minister of Science and Innovation, Hon Steven Joyce, and Minister of Education, Hon Hekia Parata ], Sir Peter Gluckman, the Prime Minister’s Chief Science Advisor,called it an important next step in a journey. Sir Peter was Chair of the National Science Challenges Panel that recommended Government take action in this area, and was Chair of the Reference Group that advised on the plan.

Sir Peter noted that a stand-out feature of the plan is that it does not simply put the onus on the public – whether students, families, or communities – to become better informed about science. Rather, there is a clear indication of the responsibility of the science sector and the role of the media in making research more accessible and relevant to all New Zealanders. “It is a two-way conversation,” said Sir Peter. “Scientists can no longer assume that their research direction and their results are of interest only to their peers, just as the public and governments need to better understand the types of answers that they can and cannot expect from science.”

The plan also calls for a Participatory Science Platform. Curiosity aroused, I chased down more information, From p. 31 (PDF) of New Zealand’s national strategic plan for science in society,

The participatory science platform builds on traditional concepts in citizen science and enhances these through collaborative approaches more common to community-based participatory research. [emphasis mine] Participatory science is a method of undertaking scientific research where volunteers can be meaningfully involved in research in collaboration with science professionals (including post- graduate students or researchers and private sector scientists) and builds on international models of engagement.

The goal is to involve schools/kura and/or community-based organisations such as museums and associations in projects with broad appeal, that have both scientific value and pedagogical rigour, and that resonate with the community. In addition, several ideas are being tested for projects of national significance that would integrate with the National Science Challenges and be national in reach.

The participatory science platform has the potential to:

›offer inspiring and relevant learning opportunities for students and teachers
›engage learners and participants beyond the school/kura community to reach parents, whānau
and wider communities
›offer researchers opportunities to become involved in locally relevant  lines of enquiry, where data can be enriched by the local knowledge and contribution of citizens.

The participatory science platform is built on four core components and incorporates mātauranga
Māori:

1. A process that seeks ideas for participatory science projects both from the community (including early childhood education services and kōhanga reo, schools/kura, museums and other organisations, Kiwi authorities or community associations) and from science professionals (from post-graduate students to principal investigators in both the public and private sectors
2. A managed process for evaluating these ideas for both pedagogical potential (in the case of schools/kura) and scientific quality, and for ensuring their practicality and relevance to the participating partners (science sector and community-based)
3. A web-based match-making process between interested community-based partners and science professionals
4. A resource for teachers and other community or learning leaders to assist in developing their projects to robust standards.

The platform’s website will serve as a match-making tool between scientists and potential community-based partners seeking to take part in a research project by offering a platform for community-initiated and scientist-initiated research.

A multi-sectoral management and review panel will be established to maintain quality control over the programme and advise on any research ethics requirements.

All projects will have an institutional home which will provide a coordination role. This could be a school, museum, zoo, science centre, iwi office or research institute, university or other tertiary
organisation.

The projects will be offered as opportunities for community-based partners to participate in scientific research as a way to enhance their local input, their science knowledge and their interest,
and (in the case of schools) to strengthen learning programmes through stronger links to relevant learning environments and expertise.

Once matches are made between community-based partners and scientists, these partners would self-direct their involvement in carrying out the research according to an agreed plan and approach.

A multi-media campaign will accompany the launch of programme, and a dedicated website/social media site will provide a sustained channel of communication for ideas that continue to emerge. It will build on the momentum created by the Great New Zealand Science Project and leverages the legacy of that project, including its Facebook page. [emphasis mine]

To enable more sophisticated projects, a limited number of seed grants will be made available to help foster a meaningful level of community involvement. The seed grants will part-fund science professionals and community/school groups to plan together the research question, data collection, analysis and knowledge translation strategy for the project. In addition, eligible costs could include research tools or consumables that would not otherwise be accessible to community partners.

I admire the ambitiousness and imagination of the Participatory Science Platform project and hope that it will be successful. As for the rest of the report, there are 52 pp. in the PDF version for those who want to pore over it.

For anyone unfamiliar (such as me) with the Great New Zealand Science Project, it was a public consultation where New Zealanders were invited to submit ideas and comments about science to the government.  As a consequence of the project, 10 research areas were selected as New Zealand’s National Science Challenges. From a June 25, 2014 government update,

On 1 May 2013 Prime Minister John Key and Hon Steven Joyce, Minister of Science and Innovation, announced the final 10 National Science Challenges.

The ten research areas identified as New Zealand’s first National Science Challenges are:

Ageing well – harnessing science to sustain health and wellbeing into the later years of life …

A better start – improving the potential of young New Zealanders to have a healthy and successful life …

Healthier lives – research to reduce the burden of major New Zealand health problems …

High value nutrition – developing high value foods with validated health benefits …

New Zealand’s biological heritage – protecting and managing our biodiversity, improving our biosecurity, and enhancing our resilience to harmful organisms …

Our land and water  – Research to enhance primary sector production and productivity while maintaining and improving our land and water quality for future generations …

Sustainable seas – enhance utilisation of our marine resources within environmental and biological constraints.

The deep south – understanding the role of the Antarctic and the Southern Ocean in determining our climate and our future environment …

Science for technological innovation – enhancing the capacity of New Zealand to use physical and engineering sciences for economic growth …

Resilience to nature’s challenges – research into enhancing our resilience to natural disasters …

The release of “A Nation of Curious Minds, the national strategic plan for science in society” is timely, given that the 2014 Science Advice to Governments; a global conference for leading practitioners is being held mere weeks away in Auckland, New Zealand (Aug. 28, – 29, 2014).

In Canada, we are waiting for the Council of Canadian Academies’ forthcoming assessment  The State of Canada’s Science Culture, sometime later in 2014. The assessment is mentioned at more length here in the context of a Feb. 22, 2013 posting where I commented on the expert panel assembled to investigate the situation and write the report.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.