Tag Archives: Canada

Canada and its Vancouver tech scene gets a boost

Prime Minister Justin Trudeau has been running around attending tech events both in the Vancouver area (Canada) and in Seattle these last few days (May 17 and May 18, 2017). First he attended the Microsoft CEO Summit as noted in a May 11, 2017 news release from the Prime Minister’s Office (Note: I have a few comments about this performance and the Canadian tech scene at the end of this post),

The Prime Minister, Justin Trudeau, today [May 11, 2017] announced that he will participate in the Microsoft CEO Summit in Seattle, Washington, on May 17 and 18 [2017], to promote the Cascadia Innovation Corridor, encourage investment in the Canadian technology sector, and draw global talent to Canada.

This year’s summit, under the theme “The CEO Agenda: Navigating Change,” will bring together more than 150 chief executive officers. While at the Summit, Prime Minister Trudeau will showcase Budget 2017’s Innovation and Skills Plan and demonstrate how Canada is making it easier for Canadian entrepreneurs and innovators to turn their ideas into thriving businesses.

Prime Minister Trudeau will also meet with Washington Governor Jay Inslee.

Quote

“Canada’s greatest strength is its skilled, hard-working, creative, and diverse workforce. Canada is recognized as a world leader in research and development in many areas like artificial intelligence, quantum computing, and 3D programming. Our government will continue to help Canadian businesses grow and create good, well-paying middle class jobs in today’s high-tech economy.”
— Rt. Honourable Justin Trudeau, Prime Minister of Canada

Quick Facts

  • Canada-U.S. bilateral trade in goods and services reached approximately $882 billion in 2016.
  • Nearly 400,000 people and over $2 billion-worth of goods and services cross the Canada-U.S. border every day.
  • Canada-Washington bilateral trade was $19.8 billion in 2016. Some 223,300 jobs in the State of Washington depend on trade and investment with Canada. Canada is among Washington’s top export destinations.

Associated Link

Here’s a little more about the Microsoft meeting from a May 17, 2017 article by Alan Boyle for GeekWire.com (Note: Links have been removed),

So far, this year’s Microsoft CEO Summit has been all about Canadian Prime Minister Justin Trudeau’s talk today, but there’s been precious little information available about who else is attending – and Trudeau may be one of the big reasons why.

Microsoft co-founder Bill Gates created the annual summit back in 1997, to give global business leaders an opportunity to share their experiences and learn about new technologies that will have an impact on business in the future. The event’s attendee list is kept largely confidential, as is the substance of the discussions.

This year, Microsoft says the summit’s two themes are “trust in technology” (as in cybersecurity, international hacking, privacy and the flow of data) and “the race to space” (as in privately funded space efforts such as Amazon billionaire Jeff Bezos’ Blue Origin rocket venture).

Usually, Microsoft lists a few folks who are attending the summit on the company’s Redmond campus, just to give a sense of the event’s cachet. For example, last year’s headliners included Berkshire Hathaway CEO Warren Buffett and Exxon Mobil CEO Rex Tillerson (who is now the Trump administration’s secretary of state)

This year, however, the spotlight has fallen almost exclusively on the hunky 45-year-old Trudeau, the first sitting head of government or state to address the summit. Microsoft isn’t saying anything about the other 140-plus VIPs attending the discussions. “Out of respect for the privacy of our guests, we are not providing any additional information,” a Microsoft spokesperson told GeekWire via email.

Even Trudeau’s remarks at the summit are hush-hush, although officials say he’s talking up Canada’s tech sector.  …

Laura Kane’s May 18, 2017 article for therecord.com provides a little more information about Trudeau’s May 18, 2017 activities in Washington state,

Prime Minister Justin Trudeau continued his efforts to promote Canada’s technology sector to officials in Washington state on Thursday [May 18, 2017], meeting with Gov. Jay Inslee a day after attending the secretive Microsoft CEO Summit.

Trudeau and Inslee discussed, among other issues, the development of the Cascadia Innovation Corridor, an initiative that aims to strengthen technology industry ties between British Columbia and Washington.

The pair also spoke about trade and investment opportunities and innovation in the energy sector, said Trudeau’s office. In brief remarks before the meeting, the prime minister said Washington and Canada share a lot in common.

But protesters clad in yellow hazardous material suits that read “Keystone XL Toxic Cleanup Crew” gathered outside the hotel to criticize Trudeau’s environmental record, arguing his support of pipelines is at odds with any global warming promises he has made.

Later that afternoon, Trudeau visited Electronic Arts (a US games company with offices in the Vancouver area) for more tech talk as Stephanie Ip notes in her May 18, 2017 article for The Vancouver Sun,

Prime Minister Justin Trudeau was in Metro Vancouver Thursday [may 18, 2017] to learn from local tech and business leaders how the federal government can boost B.C.’s tech sector.

The roundtable discussion was organized by the Vancouver Economic Commission and hosted in Burnaby at Electronic Arts’ Capture Lab, where the video game company behind the popular FIFA, Madden and NHL franchises records human movement to add more realism to its digital characters. Representatives from Amazon, Launch Academy, Sony Pictures, Darkhorse 101 Pictures and Front Fundr were also there.

While the roundtable was not open to media, Trudeau met beforehand with media.

“We’re going to talk about how the government can be a better partner or better get out of your way in some cases to allow you to continue to grow, to succeed, to create great opportunities to allow innovation to advance success in Canada and to create good jobs for Canadians and draw in people from around the world and continue to lead the way in the world,” he said.

“Everything from clean tech, to bio-medical advances, to innovation in digital economy — there’s a lot of very, very exciting things going on”

Comments on the US tech sector and the supposed Canadian tech sector

I wonder at all the secrecy. As for the companies mentioned as being at the roundtable, you’ll notice a preponderance of US companies with Launch Academy and Front Fundr (which is not a tech company but a crowdfunding equity company) supplying Canadian content. As for Darkhorse 101 Pictures,  I strongly suspect (after an online search) it is part of Darkhorse Comics (as US company) which has an entertainment division.

Perhaps it didn’t seem worthwhile to mention the Canadian companies? In that case, that’s a sad reflection on how poorly we and our media support our tech sector.

In fact, it seems Trudeau’s version of the Canadian technology sector is for us to continue in our role as a branch plant remaining forever in service of the US economy or at least the US tech sector which may be experiencing some concerns with the US Trump administration and what appears to be an increasingly isolationist perspective with regard to trade and immigration. It’s a perspective that the tech sector, especially the entertainment component, can ill afford.

As for the Cascadia Innovation Corridor mentioned in the Prime Minister’s news release and in Kane’s article, I have more about that in a Feb. 28, 2017 posting about the Cascadia Data Analytics Cooperative.

I noticed he mentioned clean tech as an area of excitement. Well, we just lost a significant player not to the US this time but to the EU (European Union) or more specifically, Germany. (There’ll be more about that in an upcoming post.)

I’m glad to see that Trudeau remains interested in Canadian science and technology but perhaps he could concentrate on new ways of promoting sectoral health rather than relying on the same old thing.

Inaugural Italian Scientists and Scholars of North America Foundation (ISSNAF) annual meeting

Thanks to a May 17, 2017 announcement I received via email from the ArtSci Salon, I’ve learned of a rather intriguing annual meeting to be held May 19-20, 2017 in Toronto, Ontario,

We are pleased to invite you to attend the Italian Scientists and
Scholars of North America Foundation (ISSNAF) inaugural annual
conference in Canada, which will be held on May 19-20th, 2017 at the
Istituto Italiano di Cultura, Toronto, Ontario.

During the event, the Italian scientific community will meet the
institutions, the industry, academia to discuss breakthrough ideas, to
network, and to award projects of young Italians through the ISSNAF
Young Investigators Awards.

The event is organized under the auspices of H.E. Ambassador CLAUDIO
TAFFURI, Consul General of Italy in Toronto, GIUSEPPE PASTORELLI,
Director of the Istituto Italiano di Cultura in Toronto, ALESSANDRO
RUGGERA and Scientific Attaché of the Italian Embassy in Ottawa, ANNA
GALLUCCIO. This year’s exciting conference will focus on innovation,
exploring innovation as invention and transformation, as well as its
impact on how we live and think.

After an introduction by H.E. Ambassador of Italy, CLAUDIO TAFFURI,
and other representatives of Italian institutions, the event will open
with two prominent speakers: PAOLO MACCARIO, Chief Operating Officer
and General Manager at Silfab Ontario Inc. and FRANCO VACCARINO,
President and Vice-Chancellor of Guelph University, who will discuss
current and future strategies in academia and industry required for
students and workers to deal with the disruptive technologies and the
exponential increase in knowledge.

The later part of the day will feature speakers from different
institutions from all over Canada. CORRADO PAINA, President of the
Italian Chamber of Commerce, will address the importance of innovation
and research from the industry prospective. UMBERTO BERARDI, Associate
Professor, Faculty of Engineering and Architecture, Ryerson
University, will bring his experience as winner of the Franco
Strazzabosco Award for Engineers. Nicola Fameli, Research Associate of
Anesthesiology, Pharmacology and Therapeutics, U. of British Columbia
and Franco Mammarella, Group leader [TRIUMF] Canada’s National Laboratory for
Particle and Nuclear Physics, president and vice-president of ARPICO
(Society of Italian Researchers & Professionals in Western Canada),
will explain the importance of developing a global network amongst
researchers. The day will be closed by GABRIELLA GOBBI, Associate
Professor, Dept. Psychiatry, McGill University on the current status
of the Italian Scientific Community in Quebec.

Day One of ISSNAF’s Annual event will conclude with a reception at the
Istituto. Day Two of the event is dedicated to young Italian
researchers and scientists who will present their work and will
receive the ISSNAF Certificate for Young Investigators. The day will
end with a round table and a discussion directed by the ISSNAF Ontario
chapter Chairs, BARBARA CIFRA, VITO MENNELLA AND LEONARDO SALMENA on
how to build a successful academic network and how ISSNAF can
contribute to the process.

The event is limited to 50 people only [emphasis mine]. Please confirm your presence
by May 17th [2017] by sending an email to: iictoronto@esteri.it

Sorry to be posting this so late in the day (fingers crossed it’s not too late).

I did do some searching and found this description of the event on the ARPICO website,

On May 19-20th SIRO (Society of Italian researcher in Ontario) official Chapter of the Italian Scientists and Scholars of North America Foundation (ISSNAF) will host in cooperation with the Embassy of Italy in Ottawa the inaugural Canadian Annual ISSNAF meeting.

The event is organized under the auspices of H.E. Ambassador Claudio Taffuri, Consul General of Italy in Toronto, Giuseppe Pastorelli, and Director of the Istituto Italiano di Cultura in Toronto, Alessandro Ruggera and Scientific Attache’ of the Italian Embassy in Ottawa, Anna Galluccio. This year’s exciting conference will focus on innovation, exploring innovation as invention and transformation and its impact on how we live and think.

During the event, the italian scientific community meets the institutions, the industry, academia to discuss breakthrough ideas, to network, and to award projects of young Italians through the ISSNAF Young Investigators Awards.

For this year the event will be attended by 60 selected researchers and scholars working in Canada. [emphasis mine]

For more information email issnafontario@gmail.com

Good luck at getting to attend the event whether there are 50 or 60 participants.

The insanity of Canadian science outreach (Science Odyssey, May 12 – 21, 2017 and Science RendezVous on May 13, 2017)

When was the last time you saw a six-year old or a twelve-year old attend a political candidates’ meeting or vote in an election? Sadly, most creative science outreach in Canada is aimed at children and teenagers in the misbegotten belief that adults don’t matter and ‘youth are the future’. There are three adult science outreach scenarios although they didn’t tend to be particularly creative. (1) Should scientists feel hard done by elected representatives, they reach out to other adults for support. (2) Should those other adults become disturbed by any scientific or technological ‘advance’ then scientific experts will arrive to explain why that’s wrong. (3) Should the science enterprise want money, then a call goes out (see my May 12, 2017 posting about the Canada Science and Technology Museums Corporation gala and, yes, they were a bit creative about it).

I am oversimplifying the situation but not by much especially if one considers two upcoming national Canadian science events: Science Rendezvous which is a day-long (May 13, 2017) cross country science event taking place during while the Science Odyssey holds a 10-day (May 12 – 2017) cross country science event. The two groups arranged their events separately and then decided to coordinate their efforts. Science Odyssey is a rebranding of the Canada Science and Technology Week organized by the federal government for at least two decades and which was held (until 2016) in the fall of each year. Science Rendezvous (About page) was launched in Toronto in 2008 (University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT)).

Regardless, both events are clearly aimed at children (and families).

I’m not suggesting that exciting science outreach for children should be curtailed. Let’s expand the efforts to9 include the adult and senior populations too.

In all the talk about Canada’s adult and ageing populations, perhaps we could approach it all more creatively. For example, there’s this (from an April 18, 2017 University of California at San Diego University news release (also on EurekAlert) by Inga Kiderra,

Philip Guo caught the coding bug in high school, at a fairly typical age for a Millennial. Less typical is that the UC San Diego cognitive scientist is now eager to share his passion for programming with a different demographic. And it’s not one you’re thinking of – it’s not elementary or middle school-aged kids. Guo wants to get adults age 60 and up.

In the first known study of older adults learning computer programming, Guo outlines his reasons: People are living and working longer. This is a growing segment of the population, and it’s severely underserved by learn-to-code intiatives, which usually target college students and younger. Guo wants to change that. He would like this in-demand skill to become more broadly accessible.

“Computers are everywhere, and digital literacy is becoming more and more important,” said Guo, assistant professor in the Department of Cognitive Science, who is also affiliated with UC San Diego’s Design Lab and its Department of Computer Science and Engineering. “At one time, 1,000 years ago, most people didn’t read or write – just some monks and select professionals could do it. I think in the future people will need to read and write in computer language as well. In the meantime, more could benefit from learning how to code.”

Guo’s study was recently awarded honorable mention by the world’s leading organization in human-computer interaction, ACM SIGCHI. Guo will present his findings at the group’s premier international conference, CHI, in May [2017].

When prior human-computer interaction studies have focused on older adults at all, Guo said, it has been mostly as consumers of new technology, of social networking sites like Facebook, say, or ride-sharing services. While a few have investigated the creation of content, like blogging or making digital music, these have involved the use of existing apps. None, to his knowledge, have looked at older adults as makers of entirely new software applications, so he set out to learn about their motivations, their frustrations and if these provided clues to design opportunities.

The Study

For his study, Guo surveyed users of pythontutor.com. A web-based education tool that Guo started in 2010, Python Tutor helps those learning to program visualize their work. Step by step, it displays what a computer is doing with each line of code that it runs. More than 3.5 million people in more than 180 countries have now used Python Tutor, including those around the world taking MOOCs (massive open online courses). Despite its legacy name, the tool helps people supplement their studies not only of the Python programming language but also Java, JavaScript, Ruby, C and C++, all of which are commonly used to teach programing. The users of Python Tutor represent a wide range of demographic groups.

Guo’s survey included 504 people between the ages of 60 and 85, from 52 different countries. Some were retired and semi-retired while others were still working.

What Guo discovered: Older adults are motivated to learn programming for a number of reasons. Some are age-related. They want to make up for missed opportunities during youth (22 percent) and keep their brains “challenged, fresh and sharp” as they age (19 percent). A few (5 percent) want to connect with younger family members.

Reasons not related to age include seeking continuing education for a current job (14 percent) and wanting to improve future job prospects (9 percent). A substantial group is in it just for personal enrichment: 19 percent to implement a specific hobby project idea, 15 percent for fun and entertainment, and 10 percent out of general interest.

Interestingly, 8 percent said they wanted to learn to teach others.

Topping the list of frustrations for older students of coding was bad pedagogy. It was mentioned by 21 percent of the respondents and ranged from the use of jargon to sudden spikes in difficulty levels. Lack of real-world relevance came up 6 percent of the time. A 74-year-old retired physician wrote: “Most [tutorials] are offered by people who must know how to program but don’t seem to have much training in teaching.”

Other frustrations included a perceived decline in cognitive abilities (12 percent) and no human contact with tutors and peers (10 percent).

The study’s limitations are tied in part to the instrument – self-reporting on an online survey – and in part to the survey respondents themselves. Most hailed from North America and other English-speaking nations. Most, 84 percent, identified themselves as male; this stat is consistent with other surveys of online learning, especially in math and science topics. There was a diverse array of occupations reported, but the majority of those surveyed were STEM professionals, managers and technicians. These learners, Guo said, likely represent “early adopters” and “the more technology-literate and self-motivated end of the general population.” He suggests future studies look both at in-person learning and at a broader swath of the public. But he expects the lessons learned from this group will generalize.

The Implications

Based on this first set of findings and using a learner-centered design approach, Guo proposes tailoring computer-programming tools and curricula specifically for older learners. He notes, for example, that many of his respondents seemed to take pride in their years and in their tech-savvy, so while it may be good to advertise products as targeting this age group, they should not appear patronizing. It might make sense to reframe lessons as brain-training games, like Lumosity, now popular among the older set.

Just as it’s key to understand who the learners are so is understanding where they have trouble. Repetition and frequent examples might be good to implement, as well as more in-person courses or video-chat-based workshops, Guo said, which may lead to improvements in the teaching of programming not just for older adults but across the board.

Context matters, too. Lessons are more compelling when they are put into domains that people personally care about. And Guo recommends coding curricula that enable older adults to tell their life stories or family histories, for example, or write software that organizes health information or assists care-givers.

Guo, who is currently working on studies to extend coding education to other underrepresented groups, advocates a computing future that is fully inclusive of all ages.

“There are a number of social implications when older adults have access to computer programming – not merely computer literacy,” he said. “These range from providing engaging mental stimulation to greater gainful employment from the comfort of one’s home.”

By moving the tech industry away from its current focus on youth, Guo argues, we all stand to gain. [emphasis mine]

Guo joined the UC San Diego cognitive science faculty in 2016 after two years as an assistant professor at the University of Rochester. He received his bachelor’s and master’s degrees in computer science from MIT in 2006 and his Ph.D. from Stanford in 2012. Before becoming a professor, he built online learning tools as a software engineer at Google and a research scientist at edX. He also blogs, vlogs and podcasts at http://pgbovine.net/

When was the last time you heard about a ‘coding’ camp for adults and seniors in Canada? Also,, ask yourself if after you’d reached a certain age (40? 50? more? less?) you’d feel welcome at the Science Rendezvous events (without a child in tow), Science Odyssey events (without a child in tow), or the May 17, 2017 National Science and Innovation Gala in Ottawa (from my May 12, 2017 posting “It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox.”)?

Let’s open the door a bit wider, eh?

Science, technology, engineering, arts, and mathematics (STEAM) for the Canada Science and Technology Museums Corporation gala on May 17, 2017

The Canada National Science and Technology Museums Corporation (CSTMC) gala is known officially as the National Science and Innovation Gala according to a May 11, 2017 announcement (received via email),

FULL STEAM AHEAD TO THE NATIONAL SCIENCE AND INNOVATION GALA

LET’S TALK STEAM
Demonstrating Canada’s commitment to a vibrant, national science
culture, the evening’s panel brings together influencers from the
private and public sectors to discuss the importance of education in the
STEAM (science, technology, engineering, arts, mathematics) fields.

FAMILIAR FACES
Experience a whimsical and wonderful evening hosted by CBC News
Network’s Heather Hiscox. Join her for the presentation of the first
ever STEAM Horizon Awards.

APPETITE FOR INNOVATION
From virtual reality to wearable technologies, the innovation is so real
you can taste it.  Chef Michael Blackie’s culinary creations will
underscore the spirit of ingenuity with a refined but approachable menu.
Prepare your taste buds to savour food and beverages that will fuel your
body and mind.

TIME IS RUNNING OUT. BUY YOUR TICKETS TODAY! [3]

[4]

À TOUTE VAPEUR VERS LE GALA NATIONAL DES SCIENCES ET DE L’INNOVATION

PARLONS STIAM
Témoignant de l’engagement du Canada à créer une culture
scientifique dynamique à l’échelle du pays, le groupe d’experts
invité rassemblera des gens d’influence issus des secteurs privé et
public, afin qu’ils discutent de l’importance de l’éducation dans
les domaines des STIAM (sciences, technologies, ingénierie, arts et
mathématiques).

VISAGES FAMILIERS
Venez vivre l’expérience d’une soirée empreinte de fantaisie et de
merveilleux qu’animera Heather Hiscox, lectrice de nouvelles au
réseau CBC News Network. Assistez à la remise des tout premiers prix
Horizon STIAM.

LE GOÛT DE L’INNOVATION
De la réalité virtuelle aux technologies portables, l’innovation est
si réelle qu’on peut même y goûter. Les créations culinaires du
chef Michael Blackie illustrent cet esprit d’ingéniosité dans un
menu raffiné et invitant. Préparez vos papilles à savourer mets et
boissons qui nourriront votre corps et votre esprit.

LE TEMPS COMMENCE À MANQUER! ACHETEZ VOS BILLETS DÈS MAINTENANT! [5]

THANK YOU TO OUR SPONSORS
MERCI À NOS COMMANDITAIRES

Logistics (from the CSTMC’s gala event page),

WHAT DO YOU NEED TO KNOW?

  • Date: May 17, 2017
  • Time: Doors open at 5:30 p.m.
  • Location: Canada Aviation and Space Museum
  • Dress Code: Semi-formal. Guests are encouraged to add a Steampunk twist to their outfits.

Your ticket includes gourmet food, one drink ticket, entertainment, music performed by a Steampunk DJ, coat check and parking.

Tickets: $150 per person, $1250 for a group of 10.

The email didn’t quite convey the flavour of the gala,

What can you expect?

Heather Hiscox

Familiar Faces

Experience a whimsical and wonderful evening hosted by CBC [Canadian Broadcasting Corporation] News Network’s Heather Hiscox. Join her for the presentation of the first ever STEAM Horizon Awards.

Let’s Talk STEAM

Demonstrating Canada’s commitment to a vibrant, national science culture, the evening’s panel brings together influencers from the private and public sectors [emphasis mine] to discuss the importance of education in the STEAM (science, technology, engineering, arts, mathematics) fields. The panel will exchange insights on a wide-range of topics, including Canadian youth, women and girls in STEAM, and the imperative for coming generations of Canadians to embrace the fields of science and technology.

Let's Talk STEAM
appetite for innovation

Appetite for Innovation

From virtual reality to wearable technologies, the innovation is so real you can taste it. Chef Michael Blackie’s culinary creations will underscore the spirit of ingenuity with a refined but approachable menu. Prepare your taste buds to savour food and beverages that will fuel your body and mind.

Steampunk Factory

Be dazzled by technological wonders spread over different zones as you explore interactive installations developed by leading-edge industry partners and teams from local universities and colleges. From virtual reality to wearable technologies, get a hands-on look at the technologies of tomorrow − steampunk style!

Steampunk Factory
Future-VR

Virtual Reality

Do you have what it takes to be a steampunk aviator or train engineer? Test your skills and open up your mind to new horizons in our aviation simulators and virtual reality environments. If art and design are more your style, our virtual art exhibit will give all new meaning to abstract.

Autonomous Vehicles

Race your drones to the finish line or try your hand at controlling a rover developed to withstand the rigours of Mars. You are no longer required to leave your seat in order to take to the skies or visit other planets!

Autonomous Vehicles
Flying Time Machine

Wonderful Flying Time Machine

Travel back in time aboard the Wonderful Flying Time Machine equipped with a photo booth to make sure you capture the moment in time!

STEAM Horizon Awards

Amidst the wonders and whimsy of the Steampunk soiree, the Gala will also be host to the first ever STEAM Horizon Awards. Funded by the Canada Science and Technology Museums Corporation Foundation and six founding partners, the awards celebrate the important contributions of Canada’s youth in the fields of science, technology, engineering, arts, and math (STEAM). The seven winners, hailing from across Canada, have been invited to the Gala where they will be recognized for their individual achievements and receive a $25 000 prize to go towards their post-secondary education.

STEAM Horizon Awards
robotics

Robotics

Get acquainted with young innovators and their robot inventions. From flying machines to robot dogs, these whimsical inventions offer a peek into the automated future.

Networking

Spend the night mingling with industry innovators and academics alike as we honour the achievements of young Canadians in science, technology, engineering, arts, and math. Take advantage of this opportunity to connect with influential Canadians in STEAM industries in business and government.

networking
Roving Steampunk Performers

Roving Steampunk Performers

From stilt walkers to illusionists, experience a steampunk spectacle like no other as larger than life entertainers present a magical escape from the modern world.

Wearable Technology Fashion Show

Lights, camera, fashion! Enjoy a unique wearable technology fashion show where innovation meets performance and theatre. A collaboration between a number of Canada’s leading wearable technology companies and young innovators, this fashion show will take you to another world − or era!

Wearable Tech
DJ and Dancing

Do the Robot

Let off some steam and dance the night away amid a unique scene of motion and sound as robotic dancers come to life powered by the music of our Steampunk DJ.

Take part in an unforgettable experience. Buy your tickets now! $150 per person, $1250 for a group of 10.

My compliments on the imagination they’ve put into organizing this event. Still, I am wondering about a few things. It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox. Also, the panel seems to be comprised of a set of furniture.. Are they planning something like those unconferences where attendees spontaneously volunteer to present. or in this case, to be a panelist?

If anyone who’s attending is inclined, please do leave comments after you’ve attended. I’d love to know how it all came together.

Sounding out the TRAPPIST-1 planetary system

It’s been a while since a data sonification story has come this way. Like my first posting on the topic (Feb. 7, 2014) this is another astrophysics ‘piece of music’. From the University of Toronto (Canada) and Thought Café (a Canadian animation studio),

For those who’d like a little text, here’s more from a May 10, 2017 University of Toronto news release (also on EurekAlert) by Don Campbell,

When NASA announced its discovery of the TRAPPIST-1 system back in February [2017] it caused quite a stir, and with good reason. Three of its seven Earth-sized planets lay in the star’s habitable zone, meaning they may harbour suitable conditions for life.

But one of the major puzzles from the original research describing the system was that it seemed to be unstable.

“If you simulate the system, the planets start crashing into one another in less than a million years,” says Dan Tamayo, a postdoc at U of T Scarborough’s Centre for Planetary Science.

“This may seem like a long time, but it’s really just an astronomical blink of an eye. It would be very lucky for us to discover TRAPPIST-1 right before it fell apart, so there must be a reason why it remains stable.”

Tamayo and his colleagues seem to have found a reason why. In research published in the journal Astrophysical Journal Letters, they describe the planets in the TRAPPIST-1 system as being in something called a “resonant chain” that can strongly stabilize the system.

In resonant configurations, planets’ orbital periods form ratios of whole numbers. It’s a very technical principle, but a good example is how Neptune orbits the Sun three times in the amount of time it takes Pluto to orbit twice. This is a good thing for Pluto because otherwise it wouldn’t exist. Since the two planets’ orbits intersect, if things were random they would collide, but because of resonance, the locations of the planets relative to one another keeps repeating.

“There’s a rhythmic repeating pattern that ensures the system remains stable over a long period of time,” says Matt Russo, a post-doc at the Canadian Institute for Theoretical Astrophysics (CITA) who has been working on creative ways to visualize the system.

TRAPPIST-1 takes this principle to a whole other level with all seven planets being in a chain of resonances. To illustrate this remarkable configuration, Tamayo, Russo and colleague Andrew Santaguida created an animation in which the planets play a piano note every time they pass in front of their host star, and a drum beat every time a planet overtakes its nearest neighbour.

Because the planets’ periods are simple ratios of each other, their motion creates a steady repeating pattern that is similar to how we play music. Simple frequency ratios are also what makes two notes sound pleasing when played together.

Speeding up the planets’ orbital frequencies into the human hearing range produces an astrophysical symphony of sorts, but one that’s playing out more than 40 light years away.

“Most planetary systems are like bands of amateur musicians playing their parts at different speeds,” says Russo. “TRAPPIST-1 is different; it’s a super-group with all seven members synchronizing their parts in nearly perfect time.”

But even synchronized orbits don’t necessarily survive very long, notes Tamayo. For technical reasons, chaos theory also requires precise orbital alignments to ensure systems remain stable. This can explain why the simulations done in the original discovery paper quickly resulted in the planets colliding with one another.

“It’s not that the system is doomed, it’s that stable configurations are very exact,” he says. “We can’t measure all the orbital parameters well enough at the moment, so the simulated systems kept resulting in collisions because the setups weren’t precise.”

In order to overcome this Tamayo and his team looked at the system not as it is today, but how it may have originally formed. When the system was being born out of a disk of gas, the planets should have migrated relative to one another, allowing the system to naturally settle into a stable resonant configuration.

“This means that early on, each planet’s orbit was tuned to make it harmonious with its neighbours, in the same way that instruments are tuned by a band before it begins to play,” says Russo. “That’s why the animation produces such beautiful music.”

The team tested the simulations using the supercomputing cluster at the Canadian Institute for Theoretical Astrophysics (CITA) and found that the majority they generated remained stable for as long as they could possibly run it. This was about 100 times longer than it took for the simulations in the original research paper describing TRAPPIST-1 to go berserk.

“It seems somehow poetic that this special configuration that can generate such remarkable music can also be responsible for the system surviving to the present day,” says Tamayo.

Here’s a link to and a citation for the paper,

Convergent Migration Renders TRAPPIST-1 Long-lived by Daniel Tamayo, Hanno Rein, Cristobal Petrovich, and Norman Murray. The Astrophysical Journal Letters, Volume 840, Number 2 https://doi.org/10.5281/zenodo.496153 Published 2017 May 10

© 2017. The American Astronomical Society. All rights reserved.

This paper is open access.

Shooting drugs to an infection site with a slingshot

It seems as if I’ve been writing up nanomedicine research a lot lately, so I would have avoided this piece. However, since I do try to cover Canadian nanotechnology regardless of the topic and this work features researchers from l’Université de Montréal (Québec, Canada), here’s one of the latest innovations in the field of nanomedicine. (I have some additional comments about the nano scene in Canada and one major issue concerning nanomedicine at the end of this posting.) From a May 8, 2017 news item on ScienceDaily,

An international team of researchers from the University of Rome Tor Vergata and the University of Montreal has reported, in a paper published this week in Nature Communications, the design and synthesis of a nanoscale molecular slingshot made of DNA that is 20,000 times smaller than a human hair. This molecular slingshot could “shoot” and deliver drugs at precise locations in the human body once triggered by specific disease markers.

A May 8, 2017 University of Montreal news release (also on EurekAlert), which originated the news item, delves further into the research (Note: A link has been removed),

The molecular slingshot is only a few nanometres long and is composed of a synthetic DNA strand that can load a drug and then effectively act as the rubber band of the slingshot. The two ends of this DNA “rubber band” contain two anchoring moieties that can specifically stick to a target antibody, a Y-shaped protein expressed by the body in response to different pathogens such as bacteria and viruses. When the anchoring moieties of the slingshot recognize and bind to the arms of the target antibody the DNA “rubber band” is stretched and the loaded drug is released.

“One impressive feature about this molecular slingshot,” says Francesco Ricci, Associate Professor of Chemistry at the University of Rome Tor Vergata, “is that it can only be triggered by the specific antibody recognizing the anchoring tags of the DNA ‘rubber band’. By simply changing these tags, one can thus program the slingshot to release a drug in response to a variety of specific antibodies. Since different antibodies are markers of different diseases, this could become a very specific weapon in the clinician’s hands.”

“Another great property of our slingshot,” adds Alexis Vallée-Bélisle, Assistant Professor in the Department of Chemistry at the University of Montreal, “is its high versatility. For example, until now we have demonstrated the working principle of the slingshot using three different trigger antibodies, including an HIV antibody, and employing nucleic acids as model drugs. But thanks to the high programmability of DNA chemistry, one can now design the DNA slingshot to ‘shoot’ a wide range of threrapeutic molecules.”

“Designing this molecular slingshot was a great challenge,” says Simona Ranallo, a postdoctoral researcher in Ricci’s team and principal author of the new study. “It required a long series of experiments to find the optimal design, which keeps the drug loaded in ‘rubber band’ in the absence of the antibody, without affecting too much its shooting efficiency once the antibody triggers the slingshot.”

The group of researchers is now eager to adapt the slingshot for the delivery of clinically relevant drugs, and to demonstrate its clinical efficiency. [emphasis mine] “We envision that similar molecular slingshots may be used in the near future to deliver drugs to specific locations in the body. This would drastically improve the efficiency of drugs as well as decrease their toxic secondary effects,” concludes Ricci.

Here’s a link to and a citation for the paper,

Antibody-powered nucleic acid release using a DNA-based nanomachine by Simona Ranallo, Carl Prévost-Tremblay, Andrea Idili, Alexis Vallée-Bélisle, & Francesco Ricci. Nature Communications 8, Article number: 15150 (2017) doi:10.1038/ncomms15150 Published online: 08 May 2017

This is an open access paper.

A couple of comments

The Canadian nanotechnology scene is pretty much centered in Alberta and Québec. The two provinces have invested a fair amount of money in their efforts. Despite the fact that the province of Alberta also hosts the federal government’s National Institute of Nanotechnology, it seems that the province of Québec is the one making the most progress in its various ‘nano’ fields of endeavour. Another province that should be mentioned with regard to its ‘nano’ efforts is Ontario. As far as I can tell, nanotechnology there doesn’t enjoy the same level of provincial funding support as the other two but there is some important work coming out of Ontario.

My other comment has to do with nanomedicine. While it is an exciting field, there is a tendency toward a certain hyperbole. For anyone who got excited about the ‘slingshot’, don’t forget this hasn’t been tested on any conditions close to the conditions found in a human body nor have they even used, “... clinically relevant drugs,  … .”  It’s also useful to know that less than 1% of the drugs used in nanoparticle-delivery systems make their way to the affected site (from an April 27, 2016 posting about research investigating the effectiveness of nanoparticle-based drug delivery systems). By the way, it was a researcher at the University of Toronto (Ontario, Canada) who first noted this phenomenon after a meta-analysis of the research,

More generally, the authors argue that, in order to increase nanoparticle delivery efficiency, a systematic and coordinated long-term strategy is necessary. To build a strong foundation for the field of cancer nanomedicine, researchers will need to understand a lot more about the interactions between nanoparticles and the body’s various organs than they do today. …

It’s not clear from the news release, the paper, or the May 8, 2017 article by Sherry Noik for the Canadian Broadcasting Corporation’s News Online website, how this proposed solution would be administered but presumably the same factors which affect other nano-based drug deliveries could affect this new one,

Scientists have for many years been working on improving therapies like chemo and radiation on that score, but most efforts have focused on modifying the chemistry rather than altering the delivery of the drug.

“It’s all about tuning the concentration of the drug optimally in the body: high concentration where you want it to be active, and low concentration where you don’t want to affect other healthy parts,” says Prof. Alexis Vallée-Bélisle of the University of Montreal, co-author of the report published this week in Nature Communications.

“If you can increase the concentration of that drug at the specific location, that drug will be more efficient,” he told CBC News in an interview.

‘Like a weapon’

Restricting the movement of the drug also reduces potentially harmful secondary effects on other parts of the body — for instance, the hair loss that can result from toxic cancer treatments, or the loss of so-called good bacteria due to antibiotic use.

The idea of the slingshot is to home in on the target cells at a molecular level.

The two ends of the strand anchor themselves to the antibody, stretching the strand taut and catapulting the drug to its target.

“Imagine our slingshot like a weapon, and this weapon is being used by our own antibody,” said Vallée-Bélisle, who heads the Laboratory of Biosensors & Nanomachines at U of M. “We design a specific weapon targeting, for example, HIV. We provide the weapon in the body with the bullet — the drug. If the right solider is there, the soldier can use the weapon and shoot the problem.”

Equally important: if the wrong soldier is present, the weapon won’t be deployed.

So rather than delay treatment for an unidentified infection that could be either viral or bacterial, a patient could receive the medication for both and their body would only use the one it needed.

Getting back to my commentary, how does the drug get to its target? Through the bloodstream?  Does it get passed through various organs? How do we increase the amount of medication (in nano-based drug delivery systems) reaching affected areas from less than 1%?

The researchers deserve to be congratulated for this work and given much encouragement and thanks as they grapple with the questions I’ve posed and with all of the questions I don’t know how to ask.

3D bioprinting: a conference about the latest trends (May 3 – 5, 2017 at the University of British Columbia, Vancouver)

The University of British Columbia’s (UBC) Peter Wall Institute for Advanced Studies (PWIAS) is hosting along with local biotech firm, Aspect Biosystems, a May 3 -5, 2017 international research roundtable known as ‘Printing the Future of Therapeutics in 3D‘.

A May 1, 2017 UBC news release (received via email) offers some insight into the field of bioprinting from one of the roundtable organizers,

This week, global experts will gather [4] at the University of British
Columbia to discuss the latest trends in 3D bioprinting—a technology
used to create living tissues and organs.

In this Q&A, UBC chemical and biological engineering professor
Vikramaditya Yadav [5], who is also with the Regenerative Medicine
Cluster Initiative in B.C., explains how bioprinting could potentially
transform healthcare and drug development, and highlights Canadian
innovations in this field.

WHY IS 3D BIOPRINTING SIGNIFICANT?

Bioprinted tissues or organs could allow scientists to predict
beforehand how a drug will interact within the body. For every
life-saving therapeutic drug that makes its way into our medicine
cabinets, Health Canada blocks the entry of nine drugs because they are
proven unsafe or ineffective. Eliminating poor-quality drug candidates
to reduce development costs—and therefore the cost to consumers—has
never been more urgent.

In Canada alone, nearly 4,500 individuals are waiting to be matched with
organ donors. If and when bioprinters evolve to the point where they can
manufacture implantable organs, the concept of an organ transplant
waiting list would cease to exist. And bioprinted tissues and organs
from a patient’s own healthy cells could potentially reduce the risk
of transplant rejection and related challenges.

HOW IS THIS TECHNOLOGY CURRENTLY BEING USED?

Skin, cartilage and bone, and blood vessels are some of the tissue types
that have been successfully constructed using bioprinting. Two of the
most active players are the Wake Forest Institute for Regenerative
Medicine in North Carolina, which reports that its bioprinters can make
enough replacement skin to cover a burn with 10 times less healthy
tissue than is usually needed, and California-based Organovo, which
makes its kidney and liver tissue commercially available to
pharmaceutical companies for drug testing.

Beyond medicine, bioprinting has already been commercialized to print
meat and artificial leather. It’s been estimated that the global
bioprinting market will hit $2 billion by 2021.

HOW IS CANADA INVOLVED IN THIS FIELD?

Canada is home to some of the most innovative research clusters and
start-up companies in the field. The UBC spin-off Aspect Biosystems [6]
has pioneered a bioprinting paradigm that rapidly prints on-demand
tissues. It has successfully generated tissues found in human lungs.

Many initiatives at Canadian universities are laying strong foundations
for the translation of bioprinting and tissue engineering into
mainstream medical technologies. These include the Regenerative Medicine
Cluster Initiative in B.C., which is headed by UBC, and the University
of Toronto’s Institute of Biomaterials and Biomedical Engineering.

WHAT ETHICAL ISSUES DOES BIOPRINTING CREATE?

There are concerns about the quality of the printed tissues. It’s
important to note that the U.S. Food and Drug Administration and Health
Canada are dedicating entire divisions to regulation of biomanufactured
products and biomedical devices, and the FDA also has a special division
that focuses on regulation of additive manufacturing – another name
for 3D printing.

These regulatory bodies have an impressive track record that should
assuage concerns about the marketing of substandard tissue. But cost and
pricing are arguably much more complex issues.

Some ethicists have also raised questions about whether society is not
too far away from creating Replicants, à la _Blade Runner_. The idea is
fascinating, scary and ethically grey. In theory, if one could replace
the extracellular matrix of bones and muscles with a stronger substitute
and use cells that are viable for longer, it is not too far-fetched to
create bones or muscles that are stronger and more durable than their
natural counterparts.

WILL DOCTORS BE PRINTING REPLACEMENT BODY PARTS IN 20 YEARS’ TIME?

This is still some way off. Optimistically, patients could see the
technology in certain clinical environments within the next decade.
However, some technical challenges must be addressed in order for this
to occur, beginning with faithful replication of the correct 3D
architecture and vascularity of tissues and organs. The bioprinters
themselves need to be improved in order to increase cell viability after
printing.

These developments are happening as we speak. Regulation, though, will
be the biggest challenge for the field in the coming years.

There are some events open to the public (from the international research roundtable homepage),

OPEN EVENTS

You’re invited to attend the open events associated with Printing the Future of Therapeutics in 3D.

Café Scientifique

Thursday, May 4, 2017
Telus World of Science
5:30 – 8:00pm [all tickets have been claimed as of May 2, 2017 at 3:15 pm PT]

3D Bioprinting: Shaping the Future of Health

Imagine a world where drugs are developed without the use of animals, where doctors know how a patient will react to a drug before prescribing it and where patients can have a replacement organ 3D-printed using their own cells, without dealing with long donor waiting lists or organ rejection. 3D bioprinting could enable this world. Join us for lively discussion and dessert as experts in the field discuss the exciting potential of 3D bioprinting and the ethical issues raised when you can print human tissues on demand. This is also a rare opportunity to see a bioprinter live in action!

Open Session

Friday, May 5, 2017
Peter Wall Institute for Advanced Studies
2:00 – 7:00pm

A Scientific Discussion on the Promise of 3D Bioprinting

The medical industry is struggling to keep our ageing population healthy. Developing effective and safe drugs is too expensive and time-consuming to continue unchanged. We cannot meet the current demand for transplant organs, and people are dying on the donor waiting list every day.  We invite you to join an open session where four of the most influential academic and industry professionals in the field discuss how 3D bioprinting is being used to shape the future of health and what ethical challenges may be involved if you are able to print your own organs.

ROUNDTABLE INFORMATION

The University of British Columbia and the award-winning bioprinting company Aspect Biosystems, are proud to be co-organizing the first “Printing the Future of Therapeutics in 3D” International Research Roundtable. This event will congregate global leaders in tissue engineering research and pharmaceutical industry experts to discuss the rapidly emerging and potentially game-changing technology of 3D-printing living human tissues (bioprinting). The goals are to:

Highlight the state-of-the-art in 3D bioprinting research
Ideate on disruptive innovations that will transform bioprinting from a novel research tool to a broadly adopted systematic practice
Formulate an actionable strategy for industry engagement, clinical translation and societal impact
Present in a public forum, key messages to educate and stimulate discussion on the promises of bioprinting technology

The Roundtable will bring together a unique collection of industry experts and academic leaders to define a guiding vision to efficiently deploy bioprinting technology for the discovery and development of new therapeutics. As the novel technology of 3D bioprinting is more broadly adopted, we envision this Roundtable will become a key annual meeting to help guide the development of the technology both in Canada and globally.

We thank you for your involvement in this ground-breaking event and look forward to you all joining us in Vancouver for this unique research roundtable.

Kind Regards,
The Organizing Committee
Christian Naus, Professor, Cellular & Physiological Sciences, UBC
Vikram Yadav, Assistant Professor, Chemical & Biological Engineering, UBC
Tamer Mohamed, CEO, Aspect Biosystems
Sam Wadsworth, CSO, Aspect Biosystems
Natalie Korenic, Business Coordinator, Aspect Biosystems

I’m glad to see this event is taking place—and with public events too! (Wish I’d seen the Café Scientifique announcement earlier when I first checked for tickets  yesterday. I was hoping there’d been some cancellations today.) Finally, for the interested, you can find Aspect Biosystems here.

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.

After the April 22, 2017 US March for Science

Since last Saturday’s (April 22, 2017) US March for Science, I’ve stumbled across three interesting perspectives on the ‘movement’. As I noted in my April 14, 2017 posting, the ‘march’ has reached out beyond US borders to become international in scope. (On the day, at least 18 marches were held in Canada alone.)

Canada

John Dupuis wrote about his experience as a featured speaker at the Toronto (Ontario) march in an April 24, 2017 posting on his Confessions of a Science Librarian blog (Note: Links have been removed),

My fellow presenters were Master of Ceremonies Rupinder Brar and speakers Dawn Martin-Hill, Josh Matlow, Tanya Harrison, Chelsea Rochman, Aadita Chaudhury, Eden Hennessey and Cody Looking Horse.

Here’s what I had to say:

Hi, my name is John and I’m a librarian. My librarian superpower is making lists, checking them twice and seeing who’s been naughty and who’s been nice. The nice ones are all of you out here marching for science. And the naughty ones are the ones out there that are attacking science and the environment.

Now I’ve been in the list-making business for quite a few years, making an awful lot of lists of how governments have attacked or ignored science. I did a lot of work making lists about the Harper government and their war on science. The nicest thing I’ve ever seen written about my strange little obsession was in The Guardian.

Here’s what they said, in an article titled, How science helped to swing the Canadian election.

“Things got so bad that scientists and their supporters took to the streets. They demonstrated in Ottawa. They formed an organization, Evidence for Democracy, to bring push back on political interference in science. Awareness-raising forums were held at campuses throughout Canada. And the onslaught on science was painstakingly documented, which tends to happen when you go after librarians.”

Yeah, watch out. Don’t go after libraries and librarians. The Harper govt learned its lesson. And we learned a lesson too. And that lesson was that keeping track of things, that painstakingly documenting all the apparently disconnected little bits and pieces of policies here, regulations changed there and a budget snipped somewhere else, it all adds up.

What before had seemed random and disconnected is suddenly a coherent story. All the dots are connected and everybody can see what’s happened. By telling the whole story, by laying it all out there for everyone to see, it’s suddenly easier for all of us to point to the list and to hold the government of the day accountable. That’s the lesson learned from making lists.

But back in 2013 what I saw the government doing wasn’t the run of the mill anti-science that we’d seen before. Prime Minister Harper’s long standing stated desire to make Canada a global energy superpower revealed the underlying motivation but it was the endless litany of program cuts, census cancellation, science library closures, regulatory changes and muzzling of government scientists that made up the action plan. But was it really a concerted action plan or was it a disconnected series of small changes that were really no big deal or just a little different from normal?

That’s where making lists comes in handy. If you’re keeping track, then, yeah, you see the plan. You see the mission, you see the goals, you see the strategy, you see the tactics. You see that the government was trying to be sneaky and stealthy and incremental and “normal” but that there was a revolution in the making. An anti-science revolution.

Fast forward to now, April 2017, and what do we see? The same game plan repeated, the same anti-science revolution under way [in the US]. Only this time not so stealthy. Instead of a steady drip, it’s a fire hose. Message control at the National Parks Service, climate change denial, slashing budgets and shutting down programs at the EPA and other vital agencies. Incompetent agency directors that don’t understand the mission of their agencies or who even want to destroy them completely.

Once again, we are called to document, document, document. Tell the stories, mobilize science supporters and hold the governments accountable at the ballot box. Hey, like the Guardian said, if we did it in Canada, maybe that game plan can be repeated too.

I invited my three government reps here to the march today, Rob Oliphant, Josh Matlow and Eric Hoskins and I invited them to march with me so we could talk about how evidence should inform public policy. Josh, of course, is up here on the podium with me. As for Rob Oliphant from the Federal Liberals and Eric Hoskins from the Ontario Liberals, well, let’s just say they never answered my tweets.

Keep track, tell the story, hold all of them from every party accountable. The lesson we learned here in Canada was that science can be a decisive issue. Real facts can mobilise people to vote against alternative facts.

Thank you.

I’m not as sure as Dupuis that science was a decisive issue in our 2015 federal election; I’d say it was a factor. More importantly, I think the 2015 election showed Canadian scientists and those who feel science is important that it is possible to give it a voice and more prominence in the political discourse.

Rwanda

Eric Leeuwerck in an April 24, 2017 posting on one of the Agence Science-Press blogs describes his participation from Rwanda (I have provided a very rough translation after),

Un peu partout dans le monde, samedi 22 avril 2017, des milliers de personnes se sont mobilisées pour la « march for science », #sciencemarch, « une marche citoyenne pour les sciences, contre l’obscurantisme ». Et chez moi, au Rwanda ?

J’aurais bien voulu y aller moi à une « march for science », j’aurais bien voulu me joindre aux autres voix, me réconforter dans un esprit de franche camaraderie, à marcher comme un seul homme dans les rues, à dire que oui, nous sommes là ! La science vaincra, « No science, no futur ! » En Arctique, en Antarctique, en Amérique latine, en Asie, en Europe, sur la terre, sous l’eau…. Partout, des centaines de milliers de personnes ont marché ensemble. L’Afrique s’est mobilisée aussi, il y a eu des “march for science” au Kenya, Nigeria, Ouganda…

Et au Rwanda ? Eh bien, rien… Pourquoi suivre la masse, hein ? Pourquoi est-ce que je ne me suis pas bougé le cul pour faire une « march for science » au Rwanda ? Euh… et bien… Je vous avoue que je me vois mal organiser une manif au Rwanda en fait… Une collègue m’a même suggéré l’idée mais voilà, j’ai laissé tomber au moment même où l’idée m’a traversé l’esprit… Cependant, j’avais quand même cette envie d’exprimer ma sympathie et mon appartenance à ce mouvement mondial, à titre personnel, sans vouloir parler pour les autres, avec un GIF tout simple.

March for science RWanda

” March for science ” Rwanda

Je dois dire que je me sens bien souvent seul ici… Les cours de biologie de beaucoup d’écoles sont créationnistes, même au KICS (pour Kigali International Community School), une école internationale américaine (je tiens ça d’amis qui ont eu leurs enfants dans cette école). Sur son site, cette école de grande renommée ici ne cache pas ses penchants chrétiens : “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” et, de plus, est reconnue par le ministère de l’éducation rwandais : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution“. Et puis, il y a cette phrase sur leur page d’accueil : « Join the KICS family and impact the world for christ ».

Je réalise régulièrement des formations en pédagogie des sciences pour des profs locaux du primaire et du secondaire. Lors de ma formation sur la théorie de l’Evolution, qui a eu pas mal de succès, les enseignants de biologie m’ont confié que c’était la première fois, avec moi, qu’ils avaient eu de vrais cours sur la théorie de l’Evolution… (Je passe les débats sur l’athéisme, sur la « création » qui n’est pas un fait, sur ce qu’est un fait, qu’il ne faut pas faire « acte de foi » pour faire de la science et que donc on ne peut pas « croire » en la science, mais la comprendre…). Un thème délicat à aborder a été celui de la « construction des identités meurtrières » pour reprendre le titre du livre d’Amin Maalouf, au Rwanda comment est-ce qu’une pseudoscience, subjective, orientée politiquement et religieusement a pu mener au racisme et au génocide. On m’avait aussi formellement interdit d’en parler à l’époque, ma directrice de l’époque disait « ne te mêle pas de ça, ce n’est pas notre histoire », mais voilà, maintenant, ce thème est devenu un thème incontournable, même à l’Ecole Belge de Kigali !

Une autre formation sur l’éducation sexuelle a été très bien reçue aussi ! J’ai mis en place cette formation, aussi contre l’avis de ma directrice de l’époque (une autre) : des thèmes comme le planning familial, la contraception, l’homosexualité, gérer un débat houleux, les hormones… ont été abordées ! Première fois aussi, m’ont confié les enseignants, qu’ils ont reçu une formation objective sur ces sujets tabous.

Chaque année, je réunis un peu d’argent avec l’aide de l’École Belge de Kigali pour faire ces formations (même si mes directions ne sont pas toujours d’accord avec les thèmes ), je suis totalement indépendant et à part l’École Belge de Kigali, aucune autre institution dont j’ai sollicité le soutien n’a voulu me répondre. Mais je continue, ça relève parfois du militantisme, je l’avoue.

C’est comme mon blog, un des seuls blogs francophones de sciences en Afrique (en fait, je n’en ai jamais trouvé aucun en cherchant sur le net) dans un pays à la connexion Internet catastrophique, je me demande parfois pourquoi je continue… Je perds tellement de temps à attendre que mes pages chargent, à me reconnecter je ne sais pas combien de fois toutes les 5 minutes … En particulier lors de la saison des pluies ! Heureusement que je peux compter sur le soutien inconditionnel de mes communautés de blogueurs : le café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Sans eux, j’aurais arrêté depuis longtemps ! Six ans de blogging scientifique quand même…

Alors, ce n’est pas que virtuel, vous savez ! Chaque jour, quand je vais au boulot pour donner mes cours de bio et chimie, quand j’organise mes formations, quand j’arrive à me connecter à mon blog, je « marche pour la science ».

Yeah. (De la route, de la science et du rock’n’roll : Rock’n’Science !)

(Un commentaire de soutien ça fait toujours plaisir !)

As I noted, this will be a very rough translation and anything in square brackets [] means that I’m even less sure about the translation in that bit,

Pretty much around the world, thousands will march for science against anti-knowledge/anti-science.

I would have liked to join in and to march with other kindred spirits as one in the streets. We are here! Science will triumph! No science .No future. In the Arctic, in the Antarctic, in Latin America, in Asia, in Europe,  on land, on water … Everywhere hundreds of thousands of people are marching together. Africa, too, has mobilized with marches in Kenya, Nigeria, Uganda ..

And in Rwanda? Well, no, nothing. Why follow everyone else? Why didn’t I get my butt in gear and organize a march? [I’m not good at organizing these kinds of things] A colleague even suggested I arrange something . I had an impulse to do it and then it left. Still, I want to express my solidarity with the March for Science without attempting to talk for or represent anyone other than myself. So, here’s a simple gif,

I have to say I often feel myself to be alone here. The biology courses taught in many of the schools here are creationist biology even at the KICS (Kigali International Community School), an international American school (I have friends whose children attend the school). On the school’s site there’s a sign that does nothing to hide its mission: “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” and, further, it is recognized as such by the Rwandan Ministry of Education : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution”. Finally, there’s this on their welcome page : « Join the KICS family and impact the world for christ ».

I regularly give science education prgorammes for local primary and secondary teachers. With regard to my teaching on the theory of evolution some have confided that this is the first time they’ve truly been exposed to a theory of evolution.  (I avoid the debates about atheism and the creation story. Science is not about faith it’s about understanding …). One theme that must be skirted with some delicacy in Rwanda is the notion of constructing a murderous/violent identity to borrow from Amin Maalouf’s book title, ‘Les Identités meurtrières’; in English: In the Name of Identity: Violence and the Need to Belong) as it has elements of a pseudoscience, subjectivity, political and religious connotations and has been used to justify racism and genocide. [Not sure here if he’s saying that the theory of evolution has been appropriated and juxtaposed with notions of violence and identify leading to racism and genocide. For anyone not familiar with the Rwandan genocide of 1994, see this Wikipedia entry.] Ihave been formally forbidden to discuss this period and my director said “Don’t meddle in this. It’s not our history.” But this theme/history has become essential/unavoidable even at the l’Ecole Belge de Kigali (Belgian School of Kigali).

A programme on sex education was well received and that subject too was forbidden to me (by a different director). I included topics such as  family planning, contraception, homosexuality, hormones and inspired a spirited debate. Many times my students have confided that they received good factual information on these taboo topics.

Each year with help from the Belgian School at Kigali, I raise money for these programmes (even if my directors don’t approve of the topics). I’m totally independent and other than the Belgian School at Kigali no other institution that I’ve appraoched has responded. But I continue as I hope that it can help lower milittancy.

My blog is one of the few French language science blogs in Africa (I rarely find any other such blogs when I search). In a country where the internet connection is catastrophically poor, I ask myself why I go on. I lose a lot of time waiting for pages to load or to re-establish a connection, especially in the rainy season. Happily I can depend on the communities of bloggers such as: café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Without them I would have stopped long ago. It has been six years of blogging science …

It is virtual, you know. Each day when I deliver my courses in biology and chemistry, when I organize my programmes, when I post on my blog, ‘I march for science’.

Comments are gladly accepted. [http://www.sciencepresse.qc.ca/blogue/2017/04/24/march-science-rwanda]

All mistakes are mine.

US

My last bit is from an April 24, 2017 article by Jeremy Samuel Faust for Slate.com, (Note: Links have been removed),

Hundreds of thousands of self-professed science supporters turned out to over 600 iterations of the March for Science around the world this weekend. Thanks to the app Periscope, I attended half a dozen of them from the comfort of my apartment, thereby assiduously minimizing my carbon footprint.

Mainly, these marches appeared to be a pleasant excuse for liberals to write some really bad (and, OK, some truly superb) puns, and put them on cardboard signs. There were also some nicely stated slogans that roused support for important concepts such as reason and data and many that decried the defunding of scientific research and ignorance-driven policy.

But here’s the problem: Little of what I observed dissuades me from my baseline belief that, even among the sanctimonious elite who want to own science (and pwn [sic] anyone who questions it), most people have no idea how science actually works. The scientific method itself is already under constant attack from within the scientific community itself and is ceaselessly undermined by its so-called supporters, including during marches like those on Saturday. [April 22, 2017] In the long run, such demonstrations will do little to resolve the myriad problems science faces and instead could continue to undermine our efforts to use science accurately and productively.

Indeed much of the sentiment of the March for Science seemed to fall firmly in the camp of people espousing a gee-whiz attitude in which science is just great and beyond reproach. They feel that way because, so often, the science they’re exposed to feels that way—it’s cherry-picked. Cherry-picking scientific findings that support an already cherished and firmly held belief (while often ignoring equally if not more compelling data that contradicts it) is epidemic—in scientific journals and in the media.

Let’s face it: People like science when it supports their views. I see this every day. When patients ask me for antibiotics to treat their common colds, I tell them that decades of science and research, let alone a basic understanding of microbiology, shows that antibiotics don’t work for cold viruses. Trust me, people don’t care. They have gotten antibiotics for their colds in the past, and, lo, they got better. (The human immune system, while a bit slower and clunkier than we’d like it to be, never seems to get the credit it deserves in these little anecdotal stories.) Who needs science when you have something mightier—personal experience?

Another example is the vocal wing of environmentalists who got up one day and decided that genetically modified organisms were bad for you. They had not one shred of evidence for this, but it just kind of felt true. As a result, responsible scientists will be fighting against these zealots for years to come. While the leaders of March for Science events are on the right side of this issue, many of its supporters are not. I’m looking at you, Bernie Sanders; the intellectual rigor behind your stance requiring GMO labelling reflects a level of scientific understanding that would likely lead for calls for self-defenestration from your own supporters if it were applied to, say, something like climate change.

But it does not stop there. Perhaps as irritating as people who know nothing about science are those who know just a little bit—just enough to think they have any idea as to what is going on. Take for example the clever cheer (and unparalleled public declaration of nerdiness):

What do we want?

Science!

When do we want it?

After peer review!

Of course, the quality of most peer-review research is somewhere between bad and unfair to the pixels that gave their lives to display it. Just this past week, a study published by the world’s most prestigious stroke research journal (Stroke), made headlines and achieved media virality by claiming a correlation between increased diet soda consumption and strokes and dementia. Oh, by the way, the authors didn’t control for body mass index [*], even though, unsurprisingly, people who have the highest BMIs had the most strokes. An earlier study that no one seems to remember showed a correlation of around the same magnitude between obesity and strokes alone. But, who cares, right? Ban diet sodas now! Science says they’re linked to strokes and dementia! By the way, Science used to say that diet sodas cause cancer. But Science was, perish the thought, wrong.

If you can get past the writer’s great disdain for just about everyone, he makes very good points.

To add some clarity with regard to “controlling for body mass index,” there’s a concept in research known as a confounding variable. In this case, people who have a higher body mass index (or are more obese) will tend to have more strokes according to previous research which qualifies as a confounding variable when studying the effect of diet soda on strokes. To control for obesity means you set up the research project in such a way you can compare (oranges to oranges) the stroke rates of obese people who drink x amount of diet soda with obese people who do not drink x amount of diet soda and compare stroke rates of standard weight people who drink x amount of diet soda with other standard weight people who do not drink x amount of diet soda. There are other aspects of the research that would also have be considered but to control for body mass index that’s the way I’d set it up.

One point that Faust makes that isn’t made often enough and certainly not within the context of the ‘evidence-based policy movement’ and ‘marches for science’ is the great upheaval taking place within the scientific endeavour (Note: Links have been removed),

… . There are a dozen other statistical games that researchers can play to get statistical significance. Such ruses do not rise to anything approaching clinical relevance. Nevertheless, fun truthy ones like the diet soda study grab headlines and often end up changing human behaviors.

The reason this problem, what one of my friends delightfully calls statistical chicanery, is so rampant is twofold. First, academics need to “publish or perish.” If researchers don’t publish in peer-reviewed journals, their careers will be short and undistinguished. Second, large pharmaceutical companies have learned how to game the science system so that their patented designer molecules can earn them billions of dollars, often treating made-up diseases (I won’t risk public opprobrium naming those) as well as other that we, the medical establishment, literally helped create (opioid-induced constipation being a recent flagrancy).

Of course, the journals themselves have suffered because their contributors know the game. There are now dozens of stories of phony research passing muster in peer-review journals, despite being intentionally badly written. These somewhat cynical, though hilarious, exposés have largely focused on outing predatory journals that charge authors money in exchange for publication (assuming the article is “accepted” by the rigorous peer-review process; the word rigorous, by the way, now means “the credit card payment went through and your email address didn’t bounce”). But even prestigious journals have been bamboozled. The Lancet famously published fabrications linking vaccines and autism in 1998. and it took it 12 years to retract the studies. Meanwhile, the United States Congress took only three years for its own inquiry to debunk any link. You know it’s bad when the U.S. Congress is running circles around the editorial board of one of the world’s most illustrious medical journals. Over the last couple of decades, multiple attempts to improve the quality of peer-review adjudication have disappointingly and largely failed to improve the situation.

While the scientific research community is in desperate need of an overhaul, the mainstream media (and social media influencers) could in the meantime play a tremendously helpful role in alleviating the situation. Rather than indiscriminately repeating the results of the latest headline-grabbing scientific journal article and quoting the authors who wrote the paper, journalists should also reach out to skeptics and use their comments not just to provide (false) balance in their articles but to assess whether the finding really warrants an entire article of coverage in the first place. Headlines should be vetted not for impact and virality but for honesty. As a reader, be wary of any headline that includes the phrase “Science says,” as well as anything that states that a particular study “proves” that a particular exposure “causes” a particular disease. Smoking causes cancer, heart disease, and emphysema, and that’s about as close to a causal statement as actual scientists will make, when it comes to health. Most of what you read and hear about turns out to be mere associations, and mostly fairly weak ones, at that.

Faust refers mostly to medical research but many of his comments are applicable to other science research as well. By the way, Faust has written an excellent description of p-values for which, if for no other reason, you should read his piece in its entirety.

One last comment about Faust’s piece, he exhorts journalists to take more care in their writing but fails to recognize the pressures on journalists and those who participate in social media. Briefly, journalists are under pressure to produce. Many of the journalists who write about science don’t know much about it and even the ones who have a science background may be quite ignorant about the particular piece of science they are covering, i.e., a physicist might have some problems covering medical research and vice versa. Also, mainstream media are in trouble as they struggle to find revenue models.

As for those of us who blog and others in the social media environment; we are a mixed bag in much the same way that mainstream media is. If you get your science from gossip rags such as the National Enquirer, it’s not likely to be as reliable as what you’d expect from The Guardian or the The New York Times. Still, those prestigious publications have gotten quite wrong on occasion.

In the end, readers (scientists, journalists, bloggers, etc.) need to be skeptical. It’s also helpful to be humble or at least willing to admit you’ve made a mistake (confession: I have my share on this blog, which are noted when I’ve found or when they’ve been pointed out to me).

Final comments

Hopefully, this has given you a taste for the wide ranges of experiences and perspectives on the April 22, 2017 March for Science.