Tag Archives: Canada

2014 Canadian Science Policy Conference extends early bird registration until Sept. 30, 2014

If you register before Oct. 1, 2014 (tomorrow), you will be eligible to receive an ‘early bird’ discount for the 6th annual (2014) Canadian Science Policy Conference being held in Halifax, Nova Scotia from Oct. 15 – 17, 2014.

The revolving/looping banner on the conference website, on Monday, Sept. 29, 2014 featured an all male, all white set of speakers intended to lure participants. An unusual choice in this day and age. In any event, the revolving banner seems to have disappeared.

The agenda for the 2014 conference was previously included in a Sept. 3, 2014 posting about it and a super-saver registrationdiscount available to Sept. 9. As I noted at the time, the organizers needed at least one or two names that would attract registrants and I imagine that having the federal Canadian government Minister of State responsible for Science and Technology, Ed Holder, and, the province of Nova Scotia’s Minister of Economic and Rural Development and Tourism, Minister of Acadian Affairs and the Minister responsible for Nova Scotia Business Inc., and the Innovation Corporation Act – Cape Breton-Richmond, Michael P. Samson, have helped to fill that bill.

The two co-chairs for the 2014 version of this Canadian Science Policy Conference reflect the increasing concern about science, economics, and monetary advancement. Frank McKenna, a former premier of the province of New Brunswick, and a former Canadian ambassador to Washington, DC, is currently, according to his Wikipedia entry,

… Deputy Chair, TD Bank Financial Group effective May 1, 2006.[8] McKenna is responsible for helping to build long-term business relationships that support TD’s growth strategy in Canada and the United States.

McKenna is responsible for supporting the company in its customer acquisition strategy, particularly in the areas of wholesale and commercial banking. In addition, he is responsible for representing TD as it works to expand its North American presence as one of the continent’s ten largest banks, as measured by market capitalization.

As for John Risley, there’s this from a Dec. 19, 2013 article by Stephen Kimber for Canadian publication, Atlantic Business,

Billionaire seafood baron insists that business, not government, must lead Atlantic Canada out of its economic malaise

“The problem with doing profiles…” John Risley begins, and I realize I’ve already lost control of this particular interview before I even ask my first question. “I mean, look,” he continues, kindly enough, “this is your editorial licence, not mine.”

It had all seemed simple enough back in July 2013 during an editorial meeting in St. John’s [Newfoundland and Labrador]. In 2014, Atlantic Business Magazine would celebrate its 25th anniversary – no mean feat in the publishing business anywhere these days – and editor Dawn Chafe and I were trying to figure out an appropriate editorial way to mark that milestone. I’m not sure which of us came up with the idea to profile a series of key Atlantic Canadian business makers and economy shakers, but we quickly agreed John Risley had to be one of them.

Risley, after all, is a member in good standing in Canadian Business magazine’s Top 100 Wealthiest Canadians, the billionaire co-founder of Clearwater Seafoods Inc., “one of North America’s largest vertically integrated seafood companies and the largest holder of shellfish licences and quotas in Canada;” the driving force behind the evolution of Ocean Nutrition, the 16-year-old Nova Scotiabased company that had become the world’s largest producer of Omega-3 fatty acids by the time Risley sold it last year to Dutch-based Royal DSM for $540 million; and a major investor in Columbus Communications, a 10-year-old Barbados-based company providing cable TV‚ digital video, high speed internet access‚ digital telephones and corporate data services in 42 countries in the Caribbean, Central and South America.

These days, Risley lives with his wife Judy in a 32,000-square-foot Georgian-style mansion on a 300-acre sweet spot of ocean-fronted land near idyllic Chester, N.S., that once belonged to the founder of Sunoco, the American petrochemical giant. When he needs to go somewhere, or just get away from it all, he can hop aboard one of his small fleet of corporate aircraft or sail away in a luxurious 240-foot super-yacht “equipped with a helipad and a grand ‘country-house’- style interior.”

It’s not immediately apparent what these two individuals bring to a meeting on Canadian science policy but given the increasing insistence on the commercialization of science, perhaps they don’t really need to know anything about science but can simply share their business insights.

The first plenary session as you might expect from co-chairs whose interests seem to be primarily financial is titled: Procurement and Industrial Technological Benefits (ITB) and Value Propositions on the conference agenda webpage,

The Inside Story: Procurement, Value Propositions, and Industrial and Technological Benefits

Canada’s procurement policy and its associated value proposition and Industrial and Technological Benefit (ITB) policies have the potential to create powerful strategic opportunities for Canadian industry and R&D. These opportunities include increasing demand-side pull instead of the more common supply-side push. In addition, ITBs and value propositions can provide new opportunities for Canadian companies to enter and move up sophisticated global supply chains.

On the other hand, these policies might potentially further complicate an already complicated procurement process and mitigate the primary objective of equipping the Canadian Forces in a timely way. To achieve the significant potential economic development benefits, ITBs and value propositions must be designed and negotiated strategically. This will therefore require priority attention from the responsible departments of government.

An authoritative panel will bring a variety of perspectives to the policy issues. The panel will include members from: a Canadian company with a contract for naval vessel construction; a federal regional development program; a federal ministry responsible for the operation of the policies; a provincial government; and a retired military officer. The panel is chaired by Peter Nicholson who has had extensive experience in science and innovation policy, including its relationship with defense procurement.

An interesting way to kick off the conference: business and military procurement. Happily, there are some more ‘sciencish’ panels but the business theme threatens to dominate the 2014 conference in such a way as to preclude other sorts of conversations and to turn even the more classically ‘science’ panels to business discussions.

While my perspective may seem a little dour, David Bruggeman in his Sept. 26, 2014 posting on the Pasco Phronesis blog offers a more upbeat perspective.

Fishnet of gold atoms improves solar cell performance

Apparently they’re calling the University of Western Ontario by a new name, Western University. Given the university’s location in what is generally acknowledged as central Canada or, sometimes, as eastern Canada, this seems like a geographically confusing approach not only in Canada but elsewhere too. After all, more than one country boasts a ‘west’.

A Sept. 26, 2014 news item on Nanowerk highlights new work on improving solar cell performance (Note: A link has been removed),

Scientists at Western University [Ontario, Canada] have discovered that a small molecule created with just 144 atoms of gold can increase solar cell performance by more than 10 per cent. These findings, published recently by the high-impact journal Nanoscale (“Tessellated gold nanostructures from Au144(SCH2CH2Ph)60 molecular precursors and their use in organic solar cell enhancement”), represent a game-changing innovation that holds the potential to take solar power mainstream and dramatically decrease the world’s dependence on traditional, resource-based sources of energy, says Giovanni Fanchini from Western’s Faculty of Science.

For those of us who remember ‘times tables’, the number 144 can have a special meaning as it is the last number (’12’ times ’12’ equals ‘144’) one was obliged to memorize. At least, that was true at my school in Vancouver, Canada but perhaps not elsewhere, eh?

Getting back to the ‘fishnet’, a Sept. 25, 2014 Western University news release, which originated the news item, expands the business possibilities for this work,

Fanchini, the Canada Research Chair in Carbon-based Nanomaterials and Nano-optoelectronics, says the new technology could easily be fast-tracked and integrated into prototypes of solar panels in one to two years and solar-powered phones in as little as five years.

“Every time you recharge your cell phone, you have to plug it in,” says Fanchini, an assistant professor in Western’s Department of Physics and Astronomy. “What if you could charge mobile devices like phones, tablets or laptops on the go? Not only would it be convenient, but the potential energy savings would be significant.”

The Western researchers have already started working with manufacturers of solar components to integrate their findings into existing solar cell technology and are excited about the potential.

“The Canadian business industry already has tremendous know-how in solar manufacturing,” says Fanchini. “Our invention is modular, an add-on to the existing production process, so we anticipate a working prototype very quickly.”

The news release then gives a few technical details,

Making nanoplasmonic enhancements, Fanchini and his team use “gold nanoclusters” as building blocks to create a flexible network of antennae on more traditional solar panels to attract an increase of light. While nanotechnology is the science of creating functional systems at the molecular level, nanoplasmonics investigates the interaction of light with and within these systems.

“Picture an extremely delicate fishnet of gold,” explains Fanchini explains, noting that the antennae are so miniscule they are unseen even with a conventional optical microscope. “The fishnet catches the light emitted by the sun and draws it into the active region of the solar cell.”

According to Fanchini, the spectrum of light reflected by gold is centered on the yellow colour and matches the light spectrum of the sun making it superior for such antennae as it greatly amplifies the amount of sunlight going directly into the device.

“Gold is very robust, resilient to oxidization and not easily damaged, making it the perfect material for long-term use,” says Fanchini. “And gold can also be recycled.”

It has been known for some time that larger gold nanoparticles enhance solar cell performance, but the Western team is getting results with “a ridiculously small amount” – approximately 10,000 times less than previous studies, which is 10,000 times less expensive too.

I hope to hear about a working prototype soon. Meanwhile, here’s a link to and a citation for the paper,

Tessellated gold nanostructures from Au144(SCH2CH2Ph)60 molecular precursors and their use in organic solar cell enhancement by Reg Bauld, Mahdi Hesari, Mark S. Workentin, and Giovanni Fanchini. Nanoscale, 2014,6, 7570-7575 DOI: 10.1039/C4NR01821D
First published online 06 May 2014

This paper is behind a paywall.

One final comment, it seems like a long lead time between publication of the paper and publicity. I wonder if the paper failed to get notice in May 2014, assuming there was a campaign at the time, or if this is considered a more optimal time period for getting noticed.

Nanex Canada (?) opens office in United States

Earlier this month in a Sept. 5, 2014 posting I noted that a Belgian company was opening a Canadian subsidiary in Montréal, Québec, called Nanex Canada. Not unexpectedly, the company has now announced a new office in the US. From a Sept. 23, 2014 Nanex Canada news release on Digital Journal,

Nanex Canada appoints Patrick Tuttle, of Havre de Grace, Maryland as the new USA National Sales Director. Tuttle will be in charge of all operations for the USA marketing and distribution for the Nanex Super hydrophobic Water Repellent Nanotechnology products.

… Nanex Canada is proud to announce a new partnership with Patrick Tuttle to develop the market within the Unites States for Its new line of super hydrophobic products. “We feel this is a very strategic alliance with Mr. Tuttle and his international marketing staff,” said Boyd Soussana, National Marketing Director for the parent company, Nanex Canada.

The products Mr. Tuttle will be responsible for in developing a market for include:

1) Aqua Shield Marine

2) Aqua Shield Leather and Textile

3) Aqua Shield Exterior: Wood, Masonry, Concrete

4) Aqua Shield Sport: Skiing, Snowboarding, Clothing

5) Aqua Shield Clear: Home Glass and Windshield Coating

6) Dryve Shield: For all Auto Cleaning and Shine

Soussana went on to say “the tests we have done in Canada on high dollar vehicles and the feedback from the Marine industry have been excellent. We are hearing from boat owners that they are seeing instant results in cleaning and protection from the Aqua Shield Marine products from the teak, to the rails and the fiberglass as well”

Boyd Soussana told me they did a private test on some very high end vehicles and the owners were very impressed, according to him.

So what is a Super hydrophobic Water Repellent Nanotechnology Product and how does it work?

A superhydrophobic coating is a nanoscopic surface layer that repels water and also can reduce dirt and friction against the surface to achieve better fuel economies for the auto and maritime industries according to Wikipedia.

About Nanex Company

Nanex is a developer of commercialized nanotechnology solutions headquartered in Belgium operating in North America through its Canadian subsidiary Nanex Canada Incorporated. At the start of 2012 it launched its first product, an advanced super hydrophobic formula called Always Dry. By 2014 Nanex had distributors around the world from Korea, Malaysia, and Singapore, to England and Eastern Europe, and had expanded its products into three lines and several formulas.

Given the remarkably short time span between opening a Canadian subsidiary and opening an office in the US, it’s safe to assume that obtaining a toehold in the US market was Nanex’s true objective.

Canadian researchers harvest energy from chewing

Who knew that jaw movements have proved to be amongst the most promising activities for energy-harvesting? Apparently, scientists know and are coming up with ways to enjoy the harvest. From a Sept. 16, 2014 news item on Nanowerk,

A chin strap that can harvest energy from jaw movements has been created by a group of researchers in Canada.

It is hoped that the device can generate electricity from eating, chewing and talking, and power a number of small-scale implantable or wearable electronic devices, such as hearing aids, cochlear implants, electronic hearing protectors and communication devices.

An Institute of Physics (IOP) Sept. 16, 2014 news release (also on EurekAlert), which  generated the news item, explains just why jaw movements are so exciting and how the researchers went about ‘harvesting’,

Jaw movements have proved to be one of the most promising candidates for generating electricity from human body movements, with researchers estimating that an average of around 7 mW of power could be generated from chewing during meals alone.

To harvest this energy, the study’s researchers, from Sonomax-ÉTS Industrial Research Chair in In-ear Technologies (CRITIAS) at École de technologie supérieure (ÉTS) in Montreal, Canada, created a chinstrap made from piezoelectric fibre composites (PFC).

PFC is a type of piezoelectric smart material that consists of integrated electrodes and an adhesive polymer matrix. The material is able to produce an electric charge when it stretches and is subjected to mechanical stress.

In their study, the researchers created an energy-harvesting chinstrap made from a single layer of PFC and attached it to a pair of earmuffs using a pair of elastic side straps. To ensure maximum performance, the chinstrap was fitted snugly to the user, so when the user’s jaw moved it caused the strap to stretch.

To test the performance of the device, the subject was asked to chew gum for 60 seconds while wearing the device; at the same time the researchers recorded a number of different parameters.

The maximum amount of power that could be harvested from the jaw movements was around 18 µW, but taking into account the optimum set-up for the head-mounted device, the power output was around 10 µW.

Co-author of the study Aidin Delnavaz said: “Given that the average power available from chewing is around 7 mW, we still have a long way to go before we perfect the performance of the device.

“The power level we achieved is hardly sufficient for powering electrical devices at the moment; however, we can multiply the power output by adding more PFC layers to the chinstrap. For example, 20 PFC layers, with a total thickness of 6 mm, would be able to power a 200 µW intelligent hearing protector.”

One additional motivation for pursuing this area of research is the desire to curb the current dependency on batteries, which are not only expensive to replace but also extremely damaging to the environment if they are not disposed of properly.

“The only expensive part of the energy-harvesting device is the single PFC layer, which costs around $20. Considering the price and short lifetime of batteries, we estimate that a self-powered hearing protector based on the proposed chinstrap energy-harvesting device will start to pay back the investment after three years of use,” continued Delnavaz.

“Additionally, the device could substantially decrease the environmental impact of batteries and bring more comfort to users.

“We will now look at ways to increase the number of piezoelectric elements in the chinstrap to supply the power that small electronic devices demand, and also develop an appropriate power management circuit so that a tiny, rechargeable battery can be integrated into the device.”

Here’s a look at the ‘smart chinstrap’,

Caption: This is the experimental set up of an energy harvesting chin strap. Credit: Smart Materials and Structures/IOP Publishing

Caption: This is the experimental set up of an energy harvesting chin strap.
Credit: Smart Materials and Structures/IOP Publishing

I don’t see anyone rushing to get a chinstrap soon. Hopefully they’ll find a way to address some of the design issues. In the meantime, here’s a link to and a citation for the paper,

Flexible piezoelectric energy harvesting from jaw movements by Aidin Delnavaz and Jérémie Voix. 2014 Smart Mater. Struct. 23 105020 doi:10.1088/0964-1726/23/10/105020

This is an open access paper.

An alliance of nano researchers: Ingenuity Lab and University of Alberta (Canada) professors

This news release from Alberta’s Ingenuity Lab came in this morning (Sept. 16, 2014),

Researchers Form Nano Bond

Ingenuity Sparks Strategic Partnership with UAlberta Professors

September 16, 2014 Edmonton, Alberta – If two heads are better than one, three heads will no doubt be revolutionary. That is what University of Alberta professors Carlo Montemagno,Thomas Thundat and Gane Wong are aiming for.

“The path to discovery lies beyond conventional thinking and the siloed approaches that have hampered our progress thus far,” says Ingenuity Lab Director, Carlo Montemagno, PhD. “By acknowledging the interconnectedness of our systems and facilitating better research integration and the cross pollination of ideas, we give ourselves, and society as a whole, a much better chance of success.”

Whether it is in the oil patch or in the operating room, these heavy hitters will be merging their expertise and research together in the areas of single cell genomics research in breast and prostate cancer and novel physical, chemical and biological detection using micro- and nano- mechanical sensors.

“The purpose of an accelerator is to bring the right people together at the right time,” explains Thundat. “In doing so, we leverage unique knowledge and expertise and significantly boost our ability to develop tangible solutions to the world’s most complex challenges.”

The 10-year provincially funded initiative was launched in November 2013 and is attracting the best and brightest minds from around the world. With a research agenda focused on the province’s most pressing environmental, industrial and health challenges, Ingenuity Lab is a partnership with the University of Alberta and Alberta Innovates Technology Futures and is expected to reach over $100M in funds leveraged from industry partners over the next decade.

“Our hope is that this partnership will help reduce the existing gap between research and development, and end user application,” says Wong. “For example, we have a unique opportunity to engineer and equip industries with next generation tools and resources that will far surpass those currently available.”

The dynamic partnership promises to facilitate deeper learning, critical thinking and enhance networking opportunities. It will also contribute to our province’s competitive advantage by maximising the utility of local resources and channelling existing expertise towards shared goals.

“We are fortunate to have such a dynamic team of influential leaders in our midst,” says Dr. Lorne Babiuk, Vice President of Research at the University of Alberta. “These outstanding individuals have made remarkable progress in their fields and continue to champion leading-edge research, teaching, and learning across our campus and beyond.”

At the risk of adding a slightly sour note, it seems they have high hopes but there’s no detail about what makes this collaboration more newsworthy than any other. That said, I wish them a very fruitful collaboration.

Canada’s Situating Science in Fall 2014

Canada’s Situating Science cluster (network of humanities and social science researchers focused on the study of science) has a number of projects mentioned and in its Fall 2014 newsletter,

1. Breaking News
It’s been yet another exciting spring and summer with new developments for the Situating Science SSHRC Strategic Knowledge Cluster team and HPS/STS [History of Philosophy of Science/Science and Technology Studies] research. And we’ve got even more good news coming down the pipeline soon…. For now, here’s the latest.

1.1. New 3 yr. Cosmopolitanism Partnership with India and Southeast Asia
We are excited to announce that the Situating Science project has helped to launch a new 3 yr. 200,000$ SSHRC Partnership Development Grant on ‘Cosmopolitanism and the Local in Science and Nature’ with institutions and scholars in Canada, India and Singapore. Built upon relations that the Cluster has helped establish over the past few years, the project will closely examine the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. A recent workshop on Globalizing History and Philosophy of Science at the Asia Research Institute at the National University of Singapore helped to mark the soft launch of the project (see more in this newsletter).

ARI along with Manipal University, Jawaharlal Nehru University, University of King’s College, Dalhousie University, York University, University of Toronto, and University of Alberta, form the partnership from which the team will seek new connections and longer term collaborations. The project’s website will feature a research database, bibliography, syllabi, and event information for the project’s workshops, lecture series, summer schools, and artifact work. When possible, photos, blogs, podcasts and videos from events will be posted online as well. The project will have its own mailing list so be sure to subscribe to that too. Check it all out: www.CosmoLocal.org

2.1. Globalizing History and Philosophy of Science workshop in Singapore August 21-22 2014
On August 21 and 22, scholars from across the globe gathered at the Asia Research Institute at the National University of Singapore to explore key issues in global histories and philosophies of the sciences. The setting next to the iconic Singapore Botanical Gardens provided a welcome atmosphere to examine how and why globalizing the humanities and social studies of science generates intellectual and conceptual tensions that require us to revisit, and possibly rethink, the leading notions that have hitherto informed the history, philosophy and sociology of science.

The keynote by Sanjay Subrahmanyam (UCLA) helped to situate discussions within a larger issue of paradigms of civilization. Workshop papers explored commensurability, translation, models of knowledge exchange, indigenous epistemologies, commercial geography, translation of math and astronomy, transmission and exchange, race, and data. Organizer Arun Bala and participants will seek out possibilities for publishing the proceedings. The event partnered with La Trobe University and Situating Science, and it helped to launch a new 3 yr. Cosmopolitanism project. For more information visit: www.CosmoLocal.org

2.2. Happy Campers: The Summer School Experience

We couldn’t help but feel like we were little kids going to summer camp while our big yellow school bus kicked up dust driving down a dirt road on a hot summer’s day. In this case it would have been a geeky science camp. We were about to dive right into day-long discussions of key pieces from Science and Technology Studies and History and Philosophy of Science and Technology.

Over four and a half days at one of the Queen’s University Biology Stations at the picturesque Elbow Lake Environmental Education Centre, 18 students from across Canada explored the four themes of the Cluster. Each day targeted a Cluster theme, which was introduced by organizer Sergio Sismondo (Sociology and Philosophy, Queen’s). Daryn Lehoux (Classics, Queen’s) explained key concepts in Historical Epistemology and Ontology. Using references of the anti-magnetic properties of garlic (or garlic’s antipathy with the loadstone) from the ancient period, Lehoux discussed the importance and significance of situating the meaning of a thing within specific epistemological contexts. Kelly Bronson (STS, St. Thomas University) explored modes of science communication and the development of the Public Engagement with Science and Technology model from the deficit model of Public Understanding of Science and Technology during sessions on Science Communication and its Publics. Nicole Nelson (University of Wisconsin-Madison) explained Material Culture and Scientific/Technological Practices by dissecting the meaning of animal bodies and other objects as scientific artifacts. Gordon McOuat wrapped up the last day by examining the nuances of the circulation and translation of knowledge and ‘trading zones’ during discussions of Geographies and Sites of Knowledge.

2.3. Doing Science in and on the Oceans
From June 14 to June 17, U. King’s College hosted an international workshop on the place and practice of oceanography in celebration of the work of Dr. Eric Mills, Dalhousie Professor Emeritus in Oceanography and co-creator of the History of Science and Technology program. Leading ocean scientists, historians and museum professionals came from the States, Europe and across Canada for “Place and Practice: Doing Science in and on the Ocean 1800-2012”. The event successfully connected different generations of scholars, explored methodologies of material culture analysis and incorporated them into mainstream historical work. There were presentations and discussions of 12 papers, an interdisciplinary panel discussion with keynote lecture by Dr. Mills, and a presentation at the Maritime Museum of the Atlantic by Canada Science and Technology Museum curator, David Pantalony. Paper topics ranged from exploring the evolving methodology of oceanographic practice to discussing ways that the boundaries of traditional scientific writing have been transcended. The event was partially organized and supported by the Atlantic Node and primary support was awarded by the SSHRC Connection Grant.

2.4. Evidence Dead or Alive: The Lives of Evidence National Lecture Series

The 2014 national lecture series on The Lives of Evidence wrapped up on a high note with an interdisciplinary panel discussion of Dr. Stathis Psillos’ exploration of the “Death of Evidence” controversy and the underlying philosophy of scientific evidence. The Canada Research Chair in Philosophy of Science spoke at the University of Toronto with panelists from law, philosophy and HPS. “Evidence: Wanted Dead of Alive” followed on the heels of his talk at the Institute for Science, Society and Policy “From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value”.

In 6 parts, The Lives of Evidence series examined the cultural, ethical, political, and scientific role of evidence in our world. The series formed as response to the recent warnings about the “Death of Evidence” and “War on Science” to explore what was meant by “evidence”, how it is interpreted, represented and communicated, how trust is created in research, what the relationship is between research, funding and policy and between evidence, explanations and expertise. It attracted collaborations from such groups as Evidence for Democracy, the University of Toronto Evidence Working Group, Canadian Centre for Ethics in Public Affairs, Dalhousie University Health Law Institute, Rotman Institute of Philosophy and many more.

A December [2013] symposium, “Hype in Science”, marked the soft launch of the series. In the all-day public event in Halifax, leading scientists, publishers and historians and philosophers of science discussed several case studies of how science is misrepresented and over-hyped in top science journals. Organized by the recent winner of the Gerhard Herzberg Canada Gold Medal for Science and Engineering, Ford Doolittle, the interdisciplinary talks in “Hype” explored issues of trustworthiness in science publications, scientific authority, science communication, and the place of research in the broader public.

The series then continued to explore issues from the creation of the HIV-Crystal Meth connection (Cindy Patton, SFU), Psychiatric Research Abuse (Carl Elliott, U. Minnesota), Evidence, Accountability and the Future of Canadian Science (Scott Findlay, Evidence for Democracy), Patents and Commercialized Medicine (Jim Brown, UofT), and Clinical Trials (Joel Lexchin, York).

All 6 parts are available to view on the Situating Science YouTube channel.You can read a few blogs from the events on our website too. Some of those involved are currently discussing possibilities of following up on some of the series’ issues.

2.5. Other Past Activities and Events
The Frankfurt School: The Critique of Capitalist Culture (July, UBC)

De l’exclusion à l’innovation théorique: le cas de l’éconophysique ; Prosocial attitudes and patterns of academic entrepreneurship (April, UQAM)

Critical Itineraries Technoscience Salon – Ontologies (April, UofT)

Technologies of Trauma: Assessing Wounds and Joining Bones in Late Imperial China (April, UBC)

For more, check out: www.SituSci.ca

You can find some of the upcoming talks and the complete Fall 2014 Situating Science newsletter here.

About one week after receiving the newsletter, I got this notice (Sept. 11, 2014),

We are ecstatic to announce that the Situating Science SSHRC Strategic Knowledge Cluster is shortlisted for a highly competitive SSHRC Partnership Impact Award!

And what an impact we’ve had over the past seven years: Organizing and supporting over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Facilitating the development of 4 new programs of study at partner institutions. Leveraging more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. Hiring over 30 students and 9 postdoctoral fellows. Over 60 videos and podcasts as well as dozens of student blogs and over 50 publications. Launching a new Partnership Development Grant between Canada, India and Southeast Asia. Developing a national consortium…And more!

The winners will be presented with their awards at a ceremony in Ottawa on Monday, November 3, 2014.

From the Sept. 11, 2014 Situating Science press release:

University of King’s College [Nova Scotia, Canada] professor Dr. Gordon McOuat has been named one of three finalists for the Social Sciences and Humanities Research Council of Canada’s (SSHRC) Partnership Award, one of five Impact Awards annually awarded by SSHRC.

Congratulations on the nomination and I wish Gordon McQuat and Situating Science good luck in the competition.

Canadian nano business news: international subsidiary (Nanex) opens in Québec and NanoStruck’s latest results on recovering silver from mine tailings

The Canadian nano business sector is showing some signs of life. Following on my Sept. 3, 2014 posting about Nanotech Security Corp.’s plans to buy a subsidiary business, Fortress Optical Features, there’s an international subsidiary of Nanex (a Belgium-based business) planning to open in the province of Québec and NanoStruck (an Ontario-based company) has announced the results of its latest tests on cyanide-free recovery techniques.

In the order in which I stumbled across these items, I’m starting with the Nanex news item in a Sept. 3, 2014 posting on the Techvibes blog,

Nanex, a Belgian-based innovator and manufacturer of superhydrophobic nanotechnology products, announced last week the creation of its first international subsidiary.

Nanex Canada will be headquartered in Montreal.

For those unfamiliar with the term superhydrophobic, it means water repellent to a ‘super’ degree. For more information the properties of superhydrophobic coatings, the Techvibes post is hosting a video which demonstrates the coating’s properties (there’s a car which may never need washing again).

An Aug. 1, 2014 Nanex press release, which originated the news item, provides more details,

… Nanex Canada Incorporated will be starting operations on October 1st, 2014 and will be headquartered in Montreal, Quebec.

“Nanex’s expansion into Canada is a tremendous leap forward in our international operations, creating not only more efficient and direct channels into all of North America, but also providing access to a new top-notch intellectual pool for our R&D efforts,” Said Boyd Soussana, National Marketing Director at Nanex Canada. “We feel that Quebec and Canada have a great reputation as leaders in the field of advanced technologies, and we are proud to contribute to this scientific landscape.”

Upon launch, Nanex Canada Inc. will begin with retail and sales of its nanotechnology products, which have a wide range of consumer applications. Formal partnerships in B2B [business-to-business] further expanding these applications have been in place throughout Canada beginning in August of 2014. Through its Quebec laboratories Nanex Canada Inc. will also be pursuing R&D initiatives, in order to further develop safe and effective nano-polymers for consumer use, focusing entirely on ease of application and cost efficiency for the end consumer. In addition application of nano-coatings in green technologies will be a priority for North American R&D efforts.

Nanex Company currently manufactures three lines of products: Always Dry, Clean & Coat, and a self-cleaning coating for automotive bodies. These products contain proprietary nano-polymers that when sprayed upon a surface provide advanced abilities including super hydrophobic (extremely water-repellent), oleophobic (extremely oil repellent), and scratch resistance as well as self-cleaning properties.

 

The second piece of news is featured in a Sept. 5, 2014 news item on Azonano,

NanoStruck Technologies Inc. is pleased to announce positive results from test work carried out on silver mine tailings utilizing proprietary cyanide free recovery technologies that returned up to 87.6% of silver from samples grading 56 grams of silver per metric ton (g/t).

A Sept. 4, 2014 NanoStruck news release, which originated the news item, provides more details,

Three leach tests were conducted using the proprietary mixed acid leach process. Roasting was conducted on the sample for two of the leach tests, producing higher recoveries, although the un-roasted sample still produced a 71% recovery rate.

87.6% silver recoveries resulted from a 4 hour leach time at 95 degrees Celsius, with the standard feed grind size of D80 175 micron of roasted material.
84.3% recoveries resulted from a 4 hour leach at 95 degrees Celsius with the standard feed grind size of D80 175 micron with roasted material at a lower acid concentration.
71% recoveries resulted from a 4 hour leach at 95 degrees Celsius from received material, with the standard feed grind size of D80 175 micron with an altered acid mix concentration.

The average recovery for the roasted samples was 86% across the two leach tests performed using the proprietary process.

Bundeep Singh Rangar, Interim CEO and Chairman of the Board, said: “These results further underpin the effectiveness of our processing technology. With our patented process we are achieving excellent recoveries in not only silver tailings, but also gold tailings as well, both of which have vast global markets for us.”

The proprietary process combines a novel mixed acid leach with a solvent extraction stage, utilizing specific organic compounds. No cyanide is used in this environmentally friendly process. The flow sheet design is for a closed loop, sealed unit in which all chemicals are then recycled.

Previous test work undertaken on other gold mine tailings utilizing the proprietary process resulted in a maximum 96.1% recovery of gold. Previous test work undertaken on other silver tailings resulted in a maximum 86.4% recovery of silver.

The technical information contained in this news release has been verified and approved by Ernie Burga, a qualified person for the purpose of National Instrument 43-101, Standards of Disclosure for Mineral Projects, of the Canadian securities administrators.

Should you choose to read the news release in its entirety, you will find that no one is responsible for the information should anything turn out to be incorrect or just plain wrong but, like Nanotech Security Corp., (as I noted in my Sept. 4, 2014 posting), the company is very hopeful.

I have mentioned NanoStruck several times here:

March 14, 2014 posting

Feb. 19, 2014 posting

Feb. 10, 2014 posting

Dec. 27, 2013 posting

2014 Canadian Science Policy Conference—super saver early bird registration ends Sept. 9*, 2014

The 2014 Canadian Science Policy Conference (CSPC 2014) is being held from Oct. 15 – 17, 2014 in Halifax, Nova Scotia, and is offering 40% off from the regular rates until Sept. 8, 2014 (from the CSPC 2014 registration rate webpage),

Super Saver; 40% discount, Regular Delegate – $510 (Register before Sept 8th)
Super Saver, 40% discount, Academic/NGO – $270 (Register before Sept 8th)
Super Saver, 40% discount, Student – $75 (Register before Sept 8th)

Early Bird Regular Delegate – $725 (on or before Sept 28th)
Early Bird Academic/NGO – $350 (on or before Sept 28th)
Early Bird Student – $100 (on or before Sept 28th)

Regular Delegate Rate – $850 (after Sept 28th)
Regular Academic/NGO – $450 (after Sept 28th)
Regular Student – $150 (after Sept 28th)

This will be the sixth annual CSPC and it features this agenda (from the Agenda at a Glance webpage), Note: Links have been removed,

Wednesday, October 15th, 2014
Time     Activity
3:00pm – 8:00pm     CSPC 2014 Special Workshop     From Research to Implementation: A Lean Entrepreneurship Approach to Advancing Innovation

Thursday, October 16th, 2014
Time     Activity
8:00am – 8:30am     Opening Ceremony

8:30am – 10:00am     Plenary Session     The Inside Story of Procurement and Industrial Technological Benefits (ITB) and Value Propositions

10:00am – 10:30am     Coffee Break

10:30am – 12:00pm

Panel 2     Big problems, big networks, big data
Panel 3     Mitigating the risk of marine geohazards
Panel 4     Building opportunities for collaboration between government and academia to inform public policy

12:00pm- 2:00pm     Lunch

2:00pm – 3:30pm

Panel 5     Partnership that move innovation from Campus to Commerce
Panel 6     The crucial role of small and medium size universities for advancing Canadian social and econ development
Panel 7     Industry-Academic Partnerships in Canada: A View from the Trenches

3:30pm – 4:30pm     Break & Exhibit Display

4:30pm – 6:30pm     Keynote session     Audit on Science Panel

Friday, October 17th, 2014
Time     Activity
8:30am – 10:00am     Panel 8     TBA

10:00am – 10:30am     Coffee Break

10:30am – 12:00pm

Panel 9     Looking to 2020 and beyond: Training the next generation of innovation leaders in Canada
Panel 10     From Excellence to Impact: How Large Infrastructure Stimulate Growth
Panel 11     Communication and Collaboration: Government Science as a Partner for Innovation

12:00pm – 1:30pm     Lunch

1:30pm – 3:00pm

Panel 12     Data management plans- Policy and Practice
Panel 13     Complex International Science, Technology and Innovation Partnerships: Lessons for Canada
Panel 14     Entrepreneurship and Innovation Success in Atlantic

3:00pm – 3:30pm     Coffee Break

3:30pm – 5:00pm     Closing Panel

Oddly, for this gathering, there don’t seem to be any politicians scheduled to speak. Perhaps the organizers are still negotiating; I notice there are some gaps in the agenda.

I have some suggestions: someone or several someones from the expert panel that just (late August 2014) launched its report on ‘Science Culture in Canada’ along with the new CEO of the Canada Science and Technology Museums Corp. (Alex Benay) and maybe one or two people who could generate some excitement (e.g. Justin Trudeau, Tom Jenkins).

By the way, I’m available.

* Sept. 8 changed to Sept. 9, 2014 as per a CSPC update notice (change made Sept. 5, 2014).

Canadian company, Nanotech Security Corp. hopes to purchase Fortress Optical Features

Nanotech Security Corp. started life as a spin-off company from Simon Fraser University in Vancouver, Canada. A  Jan. 17, 2011 posting and a followup Sept. 29, 2011 posting will probably give you more information about the technology and the company’s beginnings than you every thought you’d want.

For those interested in the company’s current expectations, an Aug. 27, 2014 news item on Nanotechnology Now describes Nanotech Security Corp.’s plan to purchase another business (also Canadian with the parent company [which is not being purchased] headquartered in North Vancouver},

Nanotech Security Corp. (TSXV:NTS) (OTCQX:NTSFF) (“Nanotech” or “the Company”) today announces an agreement with Fortress Global Securities Sarl, a subsidiary of TSX listed Fortress Paper Ltd. (“Fortress Paper”), to purchase 100% of Fortress Optical Features Ltd. (“Fortress Optical Features”), a producer of optical thin film (“OTF”) used as security threads in banknotes in several countries. The definitive share and loan purchase agreement (the “Purchase Agreement”) provides for Nanotech to acquire 100% of the issued and outstanding securities of Fortress Optical Features for consideration of up to $17.5 million, of which 3 million Nanotech shares (up to $4.5 million) is contingent on the future operating performance of Fortress Optical Features. Nanotech has also entered into an agreement with Canaccord Genuity Corp. (“Canaccord Genuity”) to act as sole lead manager and book-runner, and including Craig-Hallum Capital Group, in respect of a private placement of subscription receipts of the Company convertible into Nanotech common shares (“Shares”) and Share purchase warrants (“Warrants”) in a targeted range of $9.0 million to $16.0 million as more fully described below. To date, subscription agreements in excess of $8.0 million have been received which is an amount sufficient to pay the cash portion of the acquisition under the Purchase Agreement. All monetary amounts are in Canadian dollars.

An Aug. 26, 2014 Nanotech Security Corp. news release, which originated the news item, provides additional details,

The acquisition of Fortress Optical Features will serve as a platform to accelerate commercialization of Nanotech’s KolourOptik technology by integrating it into Fortress Optical Features’ product line as an addition of KolourOptik images to the OTF threads.

Nanotech will acquire Fortress Optical Features’ state-of-the-art building and vacuum metal deposition equipment, located near Ottawa.

The transaction combines complementary businesses that can leverage established banknote customer relationships to accelerate market entry and leapfrog competitive technologies. To date, Fortress Optical Features’ technology has been utilized by 11 international currencies.

Fortress Optical Features’ CEO Igi LeRoux, and COO, Ron Ridley, will be integrated into the Company’s senior management.

Fortress has the right to appoint one director to the Nanotech board and Nanotech will appoint a director to a Fortress affiliate concerned with security paper production.
Cash portion of the purchase price to be funded by a subscription receipts offering at $1.50, each convertible into a Share and one-half Warrant as fully described below.
Concurrent financing and acquisition closings are scheduled for September 10, 2014.

“We believe this will be a transformational transaction for Nanotech”, stated Doug Blakeway, President and CEO of Nanotech. “By layering our KolourOptik nanotechnology onto Fortress Optical Features’ security threads which are currently used in numerous currencies, we will create a next-generation product for the banknote industry”.

Mr. Blakeway added, “Additionally, the transaction will expand Nanotech’s current IP portfolio for optical security features to include Fortress Optical Features’ 14 current patent applications which should enhance our ability to compete in other commercial spaces such as passports as well as product branding and authentication”.

Fortress Optical Features’ core business is optical thin film material used in security threads incorporated in banknotes in several countries. Originally developed by the Bank of Canada, and subsequently sold to Fortress Optical Features in 2011, this technology was deployed on Canadian banknotes from 1989 until 2011 as well as ten other international currencies. In the twelve month period ending December 31, 2013 Fortress Optical Features generated approximately $2.3 million in revenue and its existing plant could service production of about eight times the level of production which generated this revenue.

Fortress Optical Features recently invested $4.2 million to renovate its existing production facility and added $1.0 million in new equipment over the past few years. As part of the transaction, Nanotech will acquire Fortress Optical Features’ state-of-the-art production facility and high technology OTF production equipment. Fortress Optical Features is currently pursuing business in some of the world’s largest countries and sees potential new opportunities internationally. According to Secura Monde International, the top five banknote producing economies include China, India, the European Union, the United States and Indonesia.

TRANSACTION DETAILS AND CLOSING CONDITIONS

Under the terms of the Purchase Agreement, Nanotech will pay up to $17.5 million to be satisfied by a combination of $7 million cash, 5 million common shares of Nanotech and a secured vendor take-back note of $3 million with an interest rate of 4% per annum. Of this consideration 2 million shares will have a four month hold period from closing and 3 million shares will be escrowed and shall be released based on certain specific performance milestones based on sales of product to new customers over up to 5 years. Shares may be released early in the event of a sale of the business or change of control of Nanotech. Contingent shares not released after 5 years will be cancelled. Details of the share release formula will be found in the Purchase Agreement to be filed at www.sedar.com.

All Shares have a deemed value of $1.50 and the acquisition and financing transactions do not constitute a change of business nor a change of control for Nanotech but will be treated under TSX Venture Exchange policies as a fundamental acquisition.

Completion of the transaction will be subject to customary closing conditions, including receipt of all regulatory approvals of the TSXV as well as the listing of the common shares issuable in connection with the transaction, including those underlying the subscription receipts. If Nanotech elects to terminate the acquisition in reliance on an allowable condition, a $600,000 break fee payable in Shares is due to Fortress Paper. Nanotech and Fortress Optical Features anticipate the transaction and financing will close on or about September 10, 2014.

RELATED AGREEMENT DETAILS

As part of Nanotech’s acquisition of Fortress Optical Features, the parties and/or their affiliates have entered into certain ancillary agreements. These include a supply agreement under which Fortress Optical Features will continue to supply OTF security threads to Fortress Paper’s Swiss-based Landqart specialty paper division. Landqart will enjoy favoured customer status subject to certain minimum purchase obligations. Under a lease and related shared services agreement, a Fortress Paper affiliate will lease approximately 2/3 of the 100,000 sq ft building being acquired as part of Fortress Optical Features assets and the parties will share the costs of steam production, electrical power, security, and administration services. The $3 million note is fully secured against Fortress Optical Features shares and assets.

SUBSCRIPTION RECEIPT OFFERING

Nanotech has entered into an agreement with Canaccord Genuity, acting as sole lead manager and sole bookrunner, and including Craig-Hallum Capital Group, to sell on a best-efforts marketed private placement basis, up to approximately 10,667,000 subscription receipts of the Company (the “Subscription Receipts”) at a price of $1.50 per Subscription Receipt (the “Subscription Price”), for gross proceeds to Nanotech of up to $16.0 million.

The Subscription Receipts will automatically convert, without additional payment, into one common share and one-half of a common share purchase warrant of the Company for each Subscription Receipt upon completion of the transaction. Subject to certain conditions, each whole purchase warrant will entitle the holder to purchase one common share of Nanotech at a price of $1.90 for a period of one year from issuance. The warrants are subject to accelerated expiry in the event that the common shares of Nanotech trade on the TSX Venture Exchange at $2.25 or more for a ten consecutive day period after the four month resale restricted period applicable to the Shares in Canada expires. Completion of the Subscription Receipt offering is subject to certain conditions, including receipt of the approval of the TSXV and all other necessary regulatory approvals.

Net proceeds from the Subscription Receipt offering will be used by the Company to partially fund the purchase price payable for Fortress Optical Features and for general corporate purposes.

The Subscription Price represents a discount of approximately 6% to the closing price of $1.60 per common share of Nanotech on the TSXV on August 25, 2014 and a discount of approximately 7% over the 30-trading day volume-weighted average price of $ 1.61 per common share of Nanotech on the TSXV, up to and including August 25, 2014.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

####

About Nanotech Security Corp.

Nanotech has been a leading innovator in the design and commercialization of advanced security products using nano-optical devices. Nanotech’s KolourOptik™ and Plasmogram™ optically variable devices (“OVD”s) are nanotechnology based product platforms originally inspired by the unique optical properties of the iridescent wings of the Blue Morpho butterfly. Nanotech OVD images produce intense, high definition images that are ideal for brand authentication and for distinguishing currency, documents, personal identification, consumer electronics, etc. from fakes. Nanotech’s KolourOptik OVD platform creates unique, easy to authenticate images through interaction of light with nano-sized (billionth of a meter) arrays of surface indentation structures imbedded through algorithms and electron beams into various substrates. These nanostructures create vivid colour images, activated by a simple tilt or rotation, and achieve higher resolutions than the best LED-displays currently available, as well as having optical properties not achievable with holograms.

Additional information about Nanotech and its technologies can be found on its website www.nanosecurity.ca or the Canadian disclosure filings website www.sedar.com or the OTCMarkets disclosure filings website www.otcmarkets.com

ABOUT FORTRESS OPTICAL FEATURES

Fortress Optical Features produces optically variable thin film security material for the security threads contained in certain previous Canadian banknotes and various other international currency denominations. The film is a unique combination of layered or ‘stacked’ thin film materials to produce a predictable colour replay. Additional features of the film include differing optical features or colors which appear when the banknote is tilted. The material was developed by the Bank of Canada in coordination with the National Research Council of Canada in the early 1980s and was first used as a patch on Bank of Canada $20, $50, $100 and $1,000 denominations of Birds of Canada series issued from 1988-1993 and also used on all Canadian Journey denominations issued from 2004 –2011. Fortress Optical Features’ high security products are marketed to security paper manufacturers throughout the world.

Additional information about Fortress Optical Features and its technologies can be found on its website www.fortresspaper.com/company/optical-security-features

This News Release contains forward-looking statements about the proposed acquisition by Nanotech of all of the issued and outstanding securities of Fortress Optical Features and the related offering of Subscription Receipts. Forward-looking statements are frequently, but not always, identified by words such as “expects”, “anticipates”, “believes”, “intends”, “estimates”, “predicts”, “potential”, “targeted” “plans”, “possible” and similar expressions, or statements that events, conditions or results “will”, “may”, “could” or “should” occur or be achieved.

These forward-looking statements include, without limitation, statements about our market opportunities, strategies, competition, and the Company’s views that its nano-optical technology will continue to show promise for mass production and commercial application. The principal risks related to these forward-looking statements are that the Company’s intellectual property claims will not prove sufficiently broad or enforceable to provide the necessary commercial protection and to attract the necessary capital and/or that the Company’s products will not be able to displace entrenched hologram, metalized strip tagging, and other conventional anti-counterfeiting technologies sufficiently to allow for profitability.

There can be no assurance that the transaction will occur or that the anticipated strategic benefits and operational synergies will be realized. The transaction is subject to the successful closing of the Subscription Receipt offering and to various regulatory approvals, including approvals by the TSXV, and the fulfilment of certain conditions, and there can be no assurance that any such approvals will be obtained and/or any such conditions will be met. The transaction and the Subscription Receipt offering could be modified, restructured or terminated.

Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect Nanotech’s expectations only as of the date of this News Release. Nanotech disclaims any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

This News Release is not an offer to sell or the solicitation of an offer to buy any securities in the United States or in any jurisdiction in which such offer, solicitation or sale would be unlawful. The securities described in this News Release have not been and will not be registered under the United States Securities Act of 1933, as amended, or any state securities laws and may not be offered or sold within the United States absent registration or an applicable exemption from the registration requirements of such laws.

This News Release is not an offer to sell or the solicitation of an offer to buy any securities in the United States or in any jurisdiction in which such offer, solicitation or sale would be unlawful. The securities described in this News Release have not been and will not be registered under the United States Securities Act of 1933, as amended, or any state securities laws and may not be offered or sold within the United States absent registration or an applicable exemption from the registration requirements of such laws.

So there you have it. No one is responsible for anything but they hope for the best.

Nanoscale light confinement without metal (photonic circuits) at the University of Alberta (Canada)

To be more accurate, this is a step forward towards photonic circuits according to an Aug. 20, 2014 news item on Azonano,

The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.

This could result in radical increases in computing speeds and reduced energy use by electronic devices.

“We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnects—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professor leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.”

At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

An Aug. 19, 2014 University of Alberta news release by Richard Cairney (also on EurekAlert), which originated the news item, provides more technical detail and information about funding,

 Jahani and Jacob have used metamaterials to redefine the textbook phenomenon of total internal reflection, discovered 400 years ago by German scientist Johannes Kepler while working on telescopes.

Researchers around the world have been stymied in their efforts to develop effective fibre optics at smaller sizes. One popular solution has been reflective metallic claddings that keep light waves inside the cables. But the biggest hurdle is increased temperatures: metal causes problems after a certain point.

“If you use metal, a lot of light gets converted to heat. That has been the major stumbling block. Light gets converted to heat and the information literally burns up—it’s lost.”

Jacob and Jahani have designed a new, non-metallic metamaterial that enables them to “compress” and contain light waves in the smaller cables without creating heat, slowing the signal or losing data. …

The team’s research is funded by the Natural Sciences and Engineering Research Council of Canada and the Helmholtz-Alberta Initiative.

Jacob and Jahani are now building the metamaterials on a silicon chip to outperform current light confining strategies used in industry.

Given that this work is being performed at the nanoscale and these scientists are located within the Canadian university which houses Canada’s National Institute of Nanotechnology (NINT), the absence of any mention of the NINT comes as a surprise (more about this organization after the link to the researchers’ paper).

Here’s a link to and a citation for the paper,

Transparent subdiffraction optics: nanoscale light confinement without metal by Saman Jahani and Zubin Jacob. Optica, Vol. 1, Issue 2, pp. 96-100 (2014) http://dx.doi.org/10.1364/OPTICA.1.000096

This paper is open access.

In a search for the NINT’s website I found this summary at the University of Alberta’s NINT webpage,

The National Institute for Nanotechnology (NINT) was established in 2001 and is operated as a partnership between the National Research Council and the University of Alberta. Many NINT researchers are affiliated with both the National Research Council and University of Alberta.

NINT is a unique, integrated, multidisciplinary institute involving researchers from fields such as physics, chemistry, engineering, biology, informatics, pharmacy, and medicine. The main focus of the research being done at NINT is the integration of nano-scale devices and materials into complex nanosystems that can be put to practical use. Nanotechnology is a relatively new field of research, so people at NINT are working to discover “design rules” for nanotechnology and to develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application. NINT aims to increase knowledge and support innovation in the area of nanotechnology, as well as to create work that will have long-term relevance and value for Alberta and Canada.

The University of Alberta’s NINT webpage also offers a link to the NINT’s latest rebranded website, The failure to mention the NINT gets more curious when looking at a description of NINT’s programmes one of which is hybrid nanoelectronics (Note: A link has been removed),

Hybrid NanoElectronics provide revolutionary electronic functions that may be utilized by industry through creating circuits that operate using mechanisms unique to the nanoscale. This may include functions that are not possible with conventional circuitry to provide smaller, faster and more energy-efficient components, and extend the development of electronics beyond the end of the roadmap.

After looking at a list of the researchers affiliated with the NINT, it’s apparent that neither Jahani or Jacob are part of that team. Perhaps they have preferred to work independently of the NINT ,which is one of the Canada National Research Council’s institutes.