Tag Archives: Canada Foundation for Innovation

Canada and its review of fundamental science

Big thanks to David Bruggeman’s June 14, 2016 post (on his Pasco Phronesis blog) for news of Canada’s Fundamental Science Review, which was launched on June 13, 2016 (Note: Links have been removed),

The panel’s mandate focuses on support for fundamental research, research facilities, and platform technologies.  This will include the three granting councils as well as other research organisations such as the Canada Foundation for Innovation. But it does not preclude the panel from considering and providing advice and recommendations on research matters outside of the mandate.  The plan is to make the panel’s work and recommendations readily accessible to the public, either online or through any report or reports the panel produces.  The panel’s recommendations to Minister Duncan are non-binding. …

As Ivan Semeniuk notes at The Globe and Mail [Canadian ‘national’ newspaper], the recent Nurse Review in the U.K., which led to the notable changes underway in the organization of that country’s research councils, seems comparable to this effort.  But I think it worth noting the differences in the research systems of the two countries, and the different political pressures in play.  It is not at all obvious to this writer that the Canadian review would necessarily lead to similar recommendations for a streamlining and reorganization of the Canadian research councils.

Longtime observers of the Canadian science funding scene may recall an earlier review held under the auspices of the Steven Harper Conservative government known as the ‘Review of Federal Support to R&D’. In fact it was focused on streamlining government funding for innovation and commercialization of science. The result was the 2011 report, ‘Innovation Canada: A Call to Action’, known popularly as the ‘Jenkins report’ after the panel chair, Tom Jenkins. (More about the report and responses to it can be found in my Oct. 21, 2011 post).

It’s nice to see that fundamental science is being given its turn for attention.

A June 13, 2016 Innovation, Science and Economic Development Canada news release provides more detail about the review and the panel guiding the review,

The Government of Canada understands the role of science in maintaining a thriving, clean economy and in providing the evidence for sound policy decisions. To deliver on this role however, federal programs that support Canada’s research efforts must be aligned in such a way as to ensure they are strategic, effective and focused on meeting the needs of scientists first.

That is why the Honourable Kirsty Duncan, Minister of Science, today launched an independent review of federal funding for fundamental science. The review will assess the program machinery that is currently in place to support science and scientists in Canada. The scope of the review includes the three granting councils [Social Sciences and Humanities Research Council {SSHRC}, Natural Sciences and Engineering Research Council {NSERC}, Canadian Institutes of Health Research {CIHR}] along with certain federally funded organizations such as the Canada Foundation for Innovation [CFI].

The review will be led by an independent panel of distinguished research leaders and innovators including Dr. David Naylor, former president of the University of Toronto and chair of the panel. Other panelists include:

  • Dr. Robert Birgeneau, former chancellor, University of California, Berkeley
  • Dr. Martha Crago, Vice-President, Research, Dalhousie University
  • Mike Lazaridis, co-founder, Quantum Valley Investments
  • Dr. Claudia Malacrida, Associate Vice-President, Research, University of Lethbridge
  • Dr. Art McDonald, former director of the Sudbury Neutrino Laboratory, Nobel Laureate
  • Dr. Martha Piper, interim president, University of British Columbia
  • Dr. Rémi Quirion, Chief Scientist, Quebec
  • Dr. Anne Wilson, Canadian Institute for Advanced Research Successful Societies Fellow and professor of psychology, Wilfrid Laurier University

The panel will spend the next six months seeking input from the research community and Canadians on how to optimize support for fundamental science in Canada. The panel will also survey international best practices for funding science and examine whether emerging researchers face barriers that prevent them from achieving career goals. It will look at what must be done to address these barriers and what more can be done to encourage Canada’s scientists to take on bold new research challenges. In addition to collecting input from the research community, the panel will also invite Canadians to participate in the review [emphasis mine] through an online consultation.

Ivan Semeniuk in his June 13, 2016 article for The Globe and Mail provides some interesting commentary about the possible outcomes of this review,

Depending on how its recommendations are taken on board, the panel could trigger anything from minor tweaks to a major rebuild of Ottawa’s science-funding apparatus, which this year is expected to funnel more than $3-billion to Canadian researchers and their labs.

Asked what she most wanted the panel to address, Ms. Duncan cited, as an example, the plight of younger researchers who, in many cases, must wait until they are in their 40s to get federal support.

Another is the risk of losing the benefits of previous investments when funding rules become restrictive, such as a 14-year limit on how long the government can support one of its existing networks of centres of excellence, or the dependence of research projects that are in the national interest on funding streams that require support from provincial governments or private sources.

The current system for proposing and reviewing research grants has been criticized as cumbersome and fraught with biases that mean the best science is not always supported.

In a paper published on Friday in the research journal PLOS One, Trent University biologist Dennis Murray and colleagues combed through 13,526 grant proposals to the Natural Sciences and Engineering Research Council between 2011 and 2014 and found significant evidence that researchers at smaller universities have consistently lower success rates.

Dr. Murray advocates for a more quantitative and impartial system of review to keep such biases at bay.

“There are too many opportunities for human impressions — conscious or unconscious — to make their way into the current evaluation process,” Dr. Murray said.

More broadly, researchers say the time is right for a look at a system that has grown convoluted and less suited to a world in which science is increasingly cross-disciplinary, and international research collaborations are more important.

If you have time, I encourage you to take a look at Semeniuk’s entire article as for the paper he mentions, here’s a link to and a citation for it,

Bias in Research Grant Evaluation Has Dire Consequences for Small Universities by Dennis L. Murray, Douglas Morris, Claude Lavoie, Peter R. Leavitt, Hugh MacIsaac,  Michael E. J. Masson, & Marc-Andre Villard. PLOS http://dx.doi.org/10.1371/journal.pone.0155876  Published: June 3, 2016

This paper is open access.

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. James Wilsdon notes some success in his April 9, 2016 post about Africa and science advice for the Guardian science blogs (Note: Links have been removed),

… some of the brightest talents and most exciting advances in African science were on display at the Next Einstein Forum. This landmark meeting, initiated by the African Institute of Mathematical Sciences, and held in Senegal, brought together almost 1000 researchers, entrepreneurs, businesses and policymakers from across Africa to celebrate and support the continent’s most promising early-career researchers.

A new cadre of fifteen Next Einstein Fellows and fifty-four ambassadors was announced, and the forum ended with an upbeat declaration of commitment to Africa’s role in world-leading, locally-relevant science. …

… UNESCO’s latest global audit of science, published at the end of 2015, concludes that African science is firmly on the rise. The number of journal articles published on the continent rose by sixty per cent from 2008 to 2014. Research investment rose from $12.9 billion in 2007 to $19.9 billion (US dollars) in 2013. Over the same period, R&D expenditure as a percentage of GDP nudged upwards from 0.36 per cent to 0.45 per cent, and the population of active researchers expanded from 150,000 to 190,000.

If you have the time, do read Wilsdon’s piece which covers some of the more difficult aspects facing the science communities in Africa and more.

In any event, it’s a bit late to bemoan the panel’s makeup but hopefully the government will take note for the future as I’m planning to include some of my critique in my comments to the panel in answer to their request for public comments.

You can find out more about Canada’s Fundamental Science Review here and you can easily participate here and/or go here to subscribe for updates.

Queen’s University (Canada) opens Kingston Nano-Fabrication Lab (KNFL)

First, there’s the opening (from an April 24, 2015 Queen’s University news release; Note: A link has been removed),

Queen’s University has secured its place at the forefront of transforming innovative research with the opening of the Kingston Nano-Fabrication Laboratory (KNFL).

The laboratory, located at Innovation Park, represents a milestone in the 30-year collaboration between Queen’s and CMC Microsystems for advancing Canadian strength in micro-nano innovation.

Some interesting details about the deal and the proposed uses for KNFL can be found in an April 24, 2015 story by Colleen Seto for Canada Foundation for Innovation (CFI),

… a brand-new, 3,000-square-foot, $5 million research facility [KNFL] located at the Queen’s University Innovation Park. The lab includes $2.5 million in new CFI-funded custom equipment for fabricating and prototyping new nano-scale inventions to get them to market quicker.

“We’re making devices, films, coatings, and materials, and examining their properties at the nanoscale,” says Ian McWalter, President and CEO of CMC Microsystems, which manages the operations of KNFL. “This fundamental materials research spills over into experiments of great use to industry, which then looks at how to commercialize he research results.”

The Queen’s University news release describes the longstanding relationship between the company managing the KNFL and the university,

“This facility is the latest manifestation of a long and productive relationship between Queen’s and CMC Microsystems,” says Ian McWalter, president and CEO of CMC. “For more than three decades, this partnership has enabled research and advanced training activities nationwide that would not have otherwise occurred. The KNFL is a significant enhancement, and we look forward to exploring the expanded opportunities that it offers us for building Canadian strength in micro-nano research and innovation.”

The CFI story provides more specifics about the potential workings of the facility,

Take, for example, the possibilities presented by KNFL’s laser micromachining system. “This new tool could be used to engrave channels into a piece of glass or polymer to produce a microfluidic device,” says Andrew Fung, Client Technology Advisor for Microsystems and Nanotechnology at CMC. Microfluidic devices take advantage of the behaviour of fluids at a very small scale to create things like “lab-on-a-chip” technologies that can be used to cheaply and quickly diagnose diseases in developing countries, among many other things. “Microfluidics grew out of silicon-based fabrication, which costs a lot of money,” explains Fung. “These other materials are lower cost, and can be single use, consumable, and disposable for a medical device.”

Much of KNFL’s new equipment was selected to enable rapid prototyping of new nanotechnologies. “Prototypes can be ready within hours or a day, instead of days or weeks. It shortens the whole innovation process so researchers can design, make, test, and get the information they need much faster,” says Fung.

The CFI story also contextualizes this project by noting that it’s part of a larger initiative,

The KNFL is also part of Embedded Systems Canada (emSYSCAN), a $50-million, five-year project aimed at shortening the microsystems development cycle. It involves more than 350 university researchers at 37 institutions across Canada’s National Design Network (NDN), which enables multidisciplinary research and collaboration through shared technologies and expertise.

The KNFL’s open-access model is aimed specifically at supporting the NDN. “The idea is to make [expertise and tools] more available to non-experts and to overcome barriers such as lab training to access this equipment,” says McWalter. “Through the service aspect of our lab, you wouldn’t necessarily twiddle the knobs yourself, but you would contract the lab to do things for you.” This provides vital learning opportunities for students while giving researchers a more efficient means to an end — accessing the equipment they need without having to invest the time and effort to learn how to use it.

Congratulations to the folks at Queen’s University!

State-of-the-art biotech and nanophotonics equipment at Québec’s Institut national de la recherche scientifique (INRS)

Canada Foundation for Innovation (a federal government funding agency) has awarded two infrastructure grants to Québec’s Institut national de la recherche scientifique (INRS) or more specifically their Énergie Matériaux Télécommunications Research Centreaccording to an April 18, 2014 news item on Azonano,

Professor Marc André Gauthier and Professor Luca Razzari of the Énergie Matériaux Télécommunications Research Centre have each been awarded large grants from the John R. Evans Leaders Fund of the Canada Foundation for Innovation (CFI) for the acquisition of state-of-the-art biotech and nanophotonics equipment.

To this funding will be added matching grants from the Ministère de l’Enseignement supérieur, de la Recherche, de la Science et de la Technologie (MESRST). These new laboratories will help us develop new approaches for improving health and information technologies, train the next generation of highly qualified high-tech workers, and transfer technology and expertise to local startups.

An April 17, 2014 INRS news release by Gisèle Bolduc, which originated the news item (Pour ceux qui préfèrent l’actualité en français) , provides more details,

Bio-hybrid materials

Professor Gauthier’snew Laboratory of Bio-Hybrid Materials (LBM) will enable him to tackle the numerous challenges of designing these functional materials and make it possible for the biomedical and biotech sectors to take full advantage of their new and unique properties. Professor Gauthier and his team will work on developing new bio organic reactions involving synthetic and natural molecules and improving those that already exist. They will examine the architecture of protein-polymer grafts and develop methods for adjusting the structure and function of bio-hybrid materials in order to evaluate their therapeutic potential.

Plasmonic nanostructures and nonlinear optics

Professor Luca Razzari will use his Laboratory of Nanostructure-Assisted Spectroscopy and Nonlinear Optics (NASNO Lab) to document the properties of plasmonic nanostructures, improve nanospectroscopies and explore new photonic nanodevices. He will also develop new biosensors able to identify very small numbers of biomarkers. This may have an important impact in the early diagnosis of several diseases such as cancer and life-threatening infectious diseases.Besides this, he will investigate a new generation of nanoplasmonic devices for information and communications technology applications.

Congratulations!

A couple of nanoscientists and the Canada Research Chair (CRC) programme

The announcements about Canada’s latest round of Canada Research Chairs were made on Friday, Mar. 15, 2013 (that’s when I received a news release from Simon Fraser University [Vancouver, Canada] about their bonanza). The Canada Research Chairs programme has issued a Mar. 15, 2012 news release but it has no details as to which chairs have been awarded, so I can only offer information from the two agencies touting their nanotechnology chairs.

Simon Fraser University (SFU) had this to say about its latest financial windfall (from the SFU Mar. 15, 2013 news release),

Four Simon Fraser University researchers will gain nearly $2.9 million to continue their research fellowships as Canada Research Chairs in areas as diverse as climate change, marine conservation, children’s health, and nanotechnology.

The funds are part of a $90.6 million injection by the federal government into the Canada Research Chair program, supporting 120 newly awarded and renewed chairs across the country.

Here’s the information about the nanotechnology/materials science chair (from the SFU news release),

Chemistry professor Neil Branda of Chemistry has begun his second seven-year term as SFU’s Tier 1 Canada Research Chair in Materials Science.  Operating at the crossroads of organic chemistry, materials science, and nanotechnology, his research program involves the design and synthesis of photo-responsive compounds and their integration with nanosystems.

Branda, a recognized leader in materials science and co-founder of SFU’s 4D LABS, heads the Prometheus Project, a collaboration of BC’s research universities that will bring global attention to B.C.’s rich capabilities in this industry-relevant field.

I highlighted some information about Branda and the Canada Foundation for Innovation, which had just announced its funding for the Prometheus Project, in a Jan. 15, 2013 posting,

The Federal Government of Canada in the guise of the Canada Foundation for Innovation has just awarded $7.7M to Simon Fraser University (SFU) and its partners for a global innovation hub. From the Jan. 15, 2013 Canada Foundation for Innovation news release,

British Columbia’s research-intensive universities are coming together to create a global hub for materials science and engineering. Simon Fraser University, the University of Victoria, the University of British Columbia and the British Columbia Institute of Technology have received $7.7 million in funding from the Canada Foundation of Innovation to create the Prometheus Project — a research hub for materials science and engineering innovation and commercialization.

“Our goal with the Prometheus Project is to turn our world-class research capacity into jobs and growth for the people of British Columbia,” said Neil Branda, Canada Research Chair in Materials Science at Simon Fraser University and leader of the Prometheus Project. [emphasis added for Mar. 18, 2013 posting]

According to the Mar. 16, 2013 news item on Azonano there was also an announcement in the province of Alberta,

The Honourable Laurie Hawn, Member of Parliament for Edmonton Centre, today announced an investment of $5.8 million to support eight Canada Research Chairs in Alberta as part of the national announcement made by the Honourable Gary Goodyear, Minister of State (Science and Technology).

Today’s event featured Dr. Tian Tang, Canada Research Chair in Nano-biomolecular Hybrid Materials at the University of Alberta. Dr. Tang and her team are working to better understand how nano-sized organic and inorganic materials interact. Their research will help future scientists and innovators develop nano-sized machines that could be useful in electronics, computing, manufacturing and health care. This research will help establish Canada’s leadership in this field, which is expected to be one of the most commercially important and fastest-growing areas of health care and engineering in the 21st century.

Congratulations to all the researchers!

Sci comm, Canada, and the Faster, Pussycat! Kill! Kill! network of Canadian science blog(ger)s

If a hashtag (ou mot-dièse en français) is a way to judge these things, there’s an upswing of interest in Canadian science communication. The hashtag in question is #cancomm (on Twitter) and seems to have developed a life beyond its original designation as a Twitter stream devoted to one of the sessions at the ScienceOnline2013 conference held Jan. 30 – Feb. 2, 2013 in North Carolina, USA.

Before mentioning anything about the latest developments (I sent some interview questions to both of the presenters), here’s more about the ScienceOnline 2013 session titled Communicating science where there is no science communication presented by Marie-Claire Shanahan and Colin Schultz who focused on the situation in Canada,

Scientists, journalists, and communicators working outside of the United States and the UK face fundamentally different problems from those living within well-served media landscapes. For example: Canada has few science magazines, a couple television shows, and a handful of radio programmes aimed at a general science audience (with the exception of the French-speaking Quebec, which has a dynamic science writing community). Government funded research grants do not require outreach or education. [emphasis mine] And, government scientists have been all but barred from talking to journalists. In Canada and other countries with sparse science communication infrastructures, the dominant issues revolve not around journalists vs bloggers, or scientists vs press releases vs the media, but instead focus on what can be done to make science communication exist at all, in any form. This session will explore how scientists, educators, and media people can promote scientific discussions and scientific interest in regions that lack established venues.

A number of salient (and I believe them to be indisputable) points are made. I did highlight one statement which is arguable. There is one funding agency (granted, only one) which includes a requirement for outreach/communication and that is the Canada Foundation for Innovation (CFI). From Section 8 of the CFI’s Policy and Program document (PDF) dated March 2012,

As an independent corporation created by the Government of Canada, the CFI places paramount importance on demonstrating to Canadians the impacts and outcomes of its investments. And as recipients of CFI funding, institutions have an essential role to play in highlighting the impacts, outcomes and benefits of research, through communications activities such as:

• news releases, news conferences and other media relations initiatives;

• print and online publications;

• social media;

• special events (groundbreakings, openings, milestone celebrations, conferences and other public outreach activities);

• presentations;

• correspondence;

• advertising.

In the context of these activities, the CFI also requests that institutions acknowledge the financial support of the CFI. (p. 81)

At any rate, I did send off some questions in hopes of an interview with both presenters but, as sometimes happens, Marie-Claire Shanahan has not replied and, more uniquely,  Colin Schultz has decided to publish my questions and his answers on his own blog.  My policy with the interviews I conduct is to publish the replies along with the questions in their entirety changing only the typos. I don’t offer any observations of my own after the fact. Since Colin Schultz has published the interview himself, I will treat it as I do anything else I find on web. I do not copy an entire piece but will excerpt the bits I find interesting and comment at will.

According to the ‘secret source’ who attended your presentation, you and Marie-Claire were very harsh in your assessments of the science communication efforts and environment in Canada. Given that most of my readers won’t have attended the presentation, could you summarize the presentation in a few bullet points and note where you agree and disagree with your co-presenter?

… Science Online pulls together brilliant, creative, hard-working and entrepreneurial problem solvers, communicators with a passion for science and a vigilante spirit. Many of these people, however, also have basically no idea what is going on in Canada in terms of the political atmosphere, the size of the mainstream press, or the scope of the science communication community. [emphasis mine] One of the goals I had in mind when putting together my short introduction for the session was that I wanted to tap into these clever minds so that we could all put our heads together and come up with projects that will work within the Canadian cultural context. [emphasis mine]

The Shanahan/Schultz presentation was 60 minutes long.  So, these people got to know Canada and the Canadian science communication scene well enough in 60 minutes to suggest projects that work within the Canadian cultural context. Interesting.

Here’s more from question 1 (Note: I have removed links),

I opened the session with numbers: We have one mainstream science magazine, two TV shows, and one radio show. A 1998 study found that we had 18 full time science journalists at daily newspapers, and I mused that this number probably went down as the media industry crashed and companies cut their staff.

With no official science blogger database that I know of, I pulled from your (Maryse’s) own annual counts (2010, 2011, 2012) and the self-selected bloggers pulled together by the Canadian Science Writers’ Association to estimate that there are likely a few dozen science bloggers in the country. [emphasis mine] Discussions in the room pointed out that there are probably more than listed in those two places, but the order of magnitude on the guess is probably close enough.

I believe my last annual count (2012 roundup) listed approximately 40 – 50 more or less active, including English and French language, Canadian Science blogs/bloggers. (A colleague recently [Feb. 15, 2013] produced a spreadsheet list of approximately 70 active blogs/bloggers.) More from Schultz on the first question,

From the numbers I moved into my second main point, asking: “Why does any of this matter?” Scientific knowledge is borderless, so does it really matter if we hear about Canadian science?

To answer this I suggested that there is a split: for people learning about science, for keeping up with all the cool developments that are taking shape around the world, then no, it doesn’t really matter. Canadian, American, English, Australian—wherever your news comes from doesn’t really make much a difference.

But, there is the other side of it. There are serious scientific issues in Canadian life—the tar sands, oceans management, fisheries research, the climate of the Arctic—that will only really be addressed by Canadians, and outside of the larger issues of climate change or biodiversity, only really affect Canadians. Without established venues to discuss and report and debate science, without an established culture of science communication, there won’t necessarily be the conversation that we need on these and other issues.

I noted that when people aren’t aware of the work being done by Canadian scientists or Canadian federal agencies that it could become easier for those projects to slide away, a case that came to the fore recently with the cutting of federal scientists, the potential closing of the Experimental Lakes, or the issue of muzzling.

Then, there were the 2nd, 3rd, and 4th questions,

Were you trying to be harsh in your assessment? I read the presentation description which didn’t have a single positive comment about efforts in English Canada; did that hold true for the presentation or did you leaven it with some positive comments (and what were those positive comments)? Note: A link has been removed.

There is a lot of good science communication going on in Canada. Personally, I think that Daily Planet is a treasure, and following the session I had people asking how they could see it from abroad. Marie-Claire, and some audience members, raised examples of informal or non-mainstream media projects that are doing great work on science communication and science outreach.

Would it surprise you to know that about the same time you gave your presentation a group (with no prior knowledge of said presentation) had formed to create a Canadian science blogging network? Full disclosure: I am a member of this group.

I heard whispers of this in the hallways at the conference, and think it’s a great idea. Building a blogging network will help draw people together, and help them find one another. I think that we have a lot of really serious issues to tackle, but this is a great place to start.

Purely for fun, I have three names for a national network. (These names are not from the group.) Which one would you join, if you one had one choice?

(a) Canuckian science blog(ger) network?
(b) Canadian science blog(ger) network?
(c) Faster, Pussycat! Kill! Kill! Canadian science blog(ger) network?

The last one, definitely.

You can find the entire set of responses at Colin Schultz’s blog. I wish him good luck as he breathes some life back into it. (His last posting prior to this ‘interview’ was on July 13, 2012, and the posting before that was dated Feb. 8, 2012.)

Note: I did correct two of my own interview typos in the words ‘assessment’ and ‘with’.

There are in fact two groups (that I know of) who have talked about putting together a Canadian science blog(ger) network. There was the group forming at the ScienceOnline 2013 conference and there was another group forming as a consequence of a suggestion in my 2012 roundup. The two groups appear to be coalescing but it’s all very loose at this point. Who knows? There may be other groups who just haven’t made themselves known as yet.

What can be said for certain is this,  Mike Spear at Genome Alberta has created the CanComm.org website for Canadian science communicators, aka, CanComm – Communication with a Science Flavour and a Canadian Twist. Sarah Boon, one of the organizers of our hoped for network, has written a Feb. 23, 2013 post on her Watershed Moments blog that provides pointed and thoughtful insight into many of the current issues on the Canadian science scene and the Canadian science communication scene and includes this (Note: Links have been removed),

It’s not that we don’t have an interested and involved public and the science communicators to engage them. It’s more that we don’t have the infrastructure to link communicators together like the Americans do with the Science Online meeting in Raleigh or the AAAS Meeting in Boston, or blog networks like PLoS Blogs or the Discover and SciAm networks.

To that end, groups like Genome Alberta, the Canadian Science Writers Association (CSWA), the Science Media Centre of Canada (SMCC), and Canadian Science Publishing (CSP) are working with individuals such as myself, @frogheart, @8CrayonScience, @raymondsbrain and others to build a Canadian science communication and (ultimately) blog network. If you’re interested in joining, you can register at cancomm.org.

Full disclosure: One of my pieces got a shoutout in another part of Sarah’s posting and I’m chuffed. Regardless, I still would have described her posting as pointed and thoughtful and I notice I’m not alone as per the #cancomm twitter feed.

For anyone interested in the latest regarding the French language version of hashtag, there’s a Jan. 24, 2013 article in The Connexion; France’s English-language newspaper,

THE French government has caused amusement on the internet by insisting the proper term for “hashtag” in French should be mot-dièse.
I look forward to seeing you all at cancomm.org in any language we can use to communicate.

Big bash in Waterloo for the new Quantum Nano Centre (QNC)

The Quantum Nano Centre (QNC), which was officially opened on Sept. 21, 2012 and mentioned in my Sept. 13, 2012 posting, is enjoying quite the publicity bonanza. Even the architects are getting in on the action as per the Sept. 25, 2012 news item on Nanowerk,

Opening ceremonies were held last week in Waterloo for Canada’s new ‘mind space’, the Mike and Ophelia Lazaridis Quantum Nano Centre (QNC). The massive 26,010-square-metre Centre at the University of Waterloo, designed by Kuwabara Payne McKenna Blumberg (KPMB) is a showcase for Canadian innovation and industry in the fields of quantum computing and nanotechnology – the first of its kind in the world to bring together the two disciplines under one roof.

“Breakthrough science is advancing at dizzying speed today, with quantum physics at atomic and sub-atomic scale”, said Mike Lazaridis, founder of the Centre, “Simultaneously, rapid movement is happening in nanotechnology, where fabrication of materials, devices and systems 100 nanometres or smaller is being explored. This critical nexus of quantum computing and nanotechnology brings the world closer to the cusp of previously unimagined solutions and insights.”

The Quantum Nano Centre was conceptually inspired by the famed Newton Institute in Cambridge, U.K. IQC and Nanotechnology Engineering each occupy their own building and are joined by a six-storey central atrium which acts as an indoor pedestrian route and an informal gathering space. The design organizes ‘mind spaces’ – lounges, offices and meeting rooms – around the edge of the atrium where interdisciplinary interaction can flourish.

KPMB took an Integrated Design Team Approach to the project. As Mitchell Hall, KPMB Design Architect and Principal-in-Charge led the design team said. “We first engaged researchers, both theorists and experimentalists, in deep discussions to understand the ways and patterns of their work. This advance research later provided the groundwork for the development of the interior and exterior of the complex.”

Designed to meet stringent scientific standards – with controls for vibration, temperature fluctuation and electromagnetic radiation – the facility is of the highest international caliber. One of the signature features of the facility is a 929-square-metre cleanroom with fabrication facilities for quantum and nanodevices, as well as an advanced metrology suite, extensive teaching and research laboratories.

The exterior is distinguished by a hexagonal honeycomb lattice of structural steel, a pattern inspired by the stable hexagonal carbon structure of the nanotube. The podium of the building is clad with burnished concrete block to relate to the primarily masonry fabric of the University of Waterloo.

I found an image of the new centre on the Canada Foundation for Innovation website, where that federal government agency also gets in on the party,

Quantum Nano Centre (QNC) in Waterloo, Ontario

Stephen Strauss in his Sept. 20, 2012 article for the Canada Foundation for Innovation suggests,

Take one look at the honeycomb facade of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo, and you get a sense that the place will be a hive of activity.

Indeed, the 285,000-square-foot facility, which opened September 21, will be buzzing with 50 researchers, more than 100 graduate students and some 500 undergraduates. Together, these bright minds will conduct the kind of research for which the university has already become world famous — such as research that aims to replace the traditional silicon-based computer with a cutting-edge quantum computer.

Although still on the drawing board, quantum computers hold promise as the new frontier of superfast computing power. Quantum computers rely on quantum physics and atomic and subatomic particles to create computing power that is much more advanced than the bits and bytes and semiconductors used in today’s computers. Many physicists and computer scientists believe that quantum computers capable of processing vast amounts of data at extremely high speeds could be developed within the next decade. However, working in the quantum and nano realm is tricky business, so structural stability and temperature control had to be carefully considered in the design of the new Centre.

“You have to design an entire building where one atom won’t accidentally bump into another,” [emphasis mine] says Raymond Laflamme, executive director of the Institute for Quantum Computing (IQC) which, along with the Institute for Nanotechnology and the Nanotechnology Engineering program, is moving into the Centre. This is a mighty task when the distance between atoms is only about 1/50,000th the width of a human hair.

I don’t understand Laflamme’s comment about one atom accidentally bumping into another. Perhaps it will make more sense after reading Laflamme’s Sept. 20, 2012 article about a symphony, Quantum: Music at the Frontier of Science, which was premiered in Kitchener (it’s near Waterloo), Ontario in February 2012 and is being remounted for a Sept. 30, 2012 performance in honour of the QNC opening. From Laflamme’s article,

For two evenings last February, the symphony played the concert to sold-out audiences at Kitchener’s Conrad Centre for the Performing Arts.  On September 30 — as part of the grand opening celebrations of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo — we will host the concert again inside the remarkable new building.

With music, visuals and unique “sound experiments,” the concert gives audiences a guided tour along the parallel paths taken by music and quantum science over the past century. From Mozart to Xenakis — and from Newton to Hawking — the concert explores the many unexpected intersections between music and science.

More than a year of planning went into the concert. KW [Kitchener-Waterloo]  Symphony Music Director Edwin Outwater spent many hours with IQC [Institute for Quantum Computing] researchers and staff, wrapping his head around the concerts. He and IQC communications officer Colin Hunter collaboratively wrote a script for the concert, which is performed during the live concerts by a narrator. During the February performances, I joined Edwin onstage several times to talk about the scientific concepts being expressed through the music.

Creating the concert was a revelatory experience.  Too often, it is assumed that science and art are completely separate spheres of human endeavour, but this just isn’t so.

“There are two kinds of truth,” our narrator said during the concert, quoting novelist Raymond Chandler [known for his fictional detective, Philip Marlow, and for writing the novel, The Big Sleep, amongst many others]. “The truth that lights the way, and the truth that warms the heart. The first of these is science, and the second is art.”

Science and art share a common goal — to help us understand our universe and ourselves.  Research at IQC aims to provide important new understanding of nature’s building blocks, and devise methods to turn that understanding into technologies beneficial for society.Since founding IQC a decade ago, I have sought ways to bridge science and the arts, with the belief that scientific discovery itself is a source of beauty and inspiration.  Our collaboration with the Kitchener-Waterloo Symphony was an example — one of many yet to come — of how science and the arts provide different but complementary insights into our universe and ourselves.

I have included a ‘making of …’ video for this symphony, which is, unfortunately, approximately 18 mins. in length (I don’t usually embed anything much over five minutes),

Neither Laflamme’s article nor the ‘making of …’ video helped me to understand that business of constructing a building where atoms don’t accidentally bump into each other. Perhaps I’ll get lucky and somebody who knows will leave a comment.

Aptamers and Maria DeRosa

Today’s (Oct. 25, 2011) next interview is with Maria DeRosa of the DeRosa Lab at Carleton University (Ottawa, Canada) where she and her colleagues work on bionanotechnology projects. (The Highlighting the 2011 Dance Your Ph.D. contest posting featured a Ph.D student from her lab who is one of this year’s contest finalists.)

Before proceeding to the interview, here’s a little bit about the DeRosa Lab (from the website homepage),

The first step in the rational design of novel bionanotechnology is to find the right molecular components for the task. Our group seeks to investigate the use of chemically-modified nucleic acid aptamers, single stranded DNA or RNA sequences that specifically bind to a diverse variety of targets, in biosensing and catalysis.

Here’s some information about Dr. DeRosa,

Dr. Maria DeRosa’s research examines a type of nucleic acid called ‘aptamers’ that can fold into 3D nanoscale shapes capable of binding tightly to a specific molecular target.  Her group is focused on developing a better understanding of how these systems and using this information to design useful nanotechnology, like biosensors or “smart” delivery devices.  Dr. DeRosa received her Ph.D in Chemistry from Carleton University in 2003 and was presented with a University Senate Medal. She was awarded an NSERC Postdoctoral Fellowship to do research at the California Institute of Technology from 2004-2005 with Prof. Jackie Barton, a world-leader in DNA sensor research. In 2005, she returned to Carleton as a faculty member in the Chemistry Department. Her research group has received funding from the Natural Sciences and Engineering Research Council (NSERC), the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), the Canada Foundation for Innovation (CFI) and Alberta Innovates Biosolutions.  DeRosa was a recipient of the John Charles Polanyi Research Award for new researchers in 2006 and an Ontario Early Researcher Award in 2010.

Here’s the interview,

*   Are you one of those people who always wanted to be a scientist or was this something you discovered later?

I was never one of those people who knew what they wanted to do from an early age.  I thought about being a doctor, pharmacist, plumber, engineer, bank teller…  In high school, I had many great math and science teachers that inspired me to go into science when I started at Carleton University.  Then, in my third year I got a summer job working in Dr. Bob Crutchley’s research lab.  He was a great mentor and it was then that I started seriously thinking about a career as a scientist.  I loved the idea of research, that I was working on a problem and no one knew what the answer would be.  I wanted the answers!

*   How did you get interested in aptamers (and could you briefly describe what they are)?

Aptamers are synthetic pieces of DNA that can recognize and stick to a molecular target.  The targets can vary from things that are very small, like a drug molecule to something much larger, like bacteria or viruses.  Because they can recognize and stick to other molecules, people are interested in using them as receptors for sensors.  I had never even heard of them until about 2005.

After my Ph.D., I went to Caltech to do something called a postdoctoral fellowship.  It was a research position in the lab of Dr. Jackie Barton, one of the world’s top DNA researchers (she just won a National Medal of Science a couple days ago).  She wasn’t working with aptamers but she opened me up to the idea of using DNA in an “unnatural” way.  Most of us, when we are thinking of DNA, we think of our genes and that it is the blueprint for life.  But from a chemistry point of view, DNA is just another material that has certain chemical properties that can be useful for other applications.  In Jackie’s lab, I learned how to make synthetic DNA and I started reading about aptamers.  I found the whole field fascinating and I knew that I wanted to be a part of it.

*   What applications are there for your work? (I noticed that you discussed fertilizers in your TEDxCarleton talk. Is agriculture an area of particular interest?)

Applications for aptamers mostly stem from their ability to bind tightly and selectively to other molecules.  So, they are typically used in technology such as biosensors where they can serve to detect low levels of something, like a toxin or a virus for example, in another matrix.  We’re developing aptamers for the detection of mycotoxins (toxins that come from moulds) in crops and food.  We’re also working on aptamers for norovirus (the virus that causes Norwalk, that awful stomach bug) so that we can catch it if it is in meat and other foods before they get sent off to stores.

We are also trying to use aptamers for triggered delivery of drugs and/or nutrients.  In many cases with drugs, we want them to act on certain cells or tissues and not on others.  So, we need to be able to control where the drug is released in the body.  There is a similar problem in agriculture.  We want to give crops certain nutrients from fertilizers but if we deliver them at the wrong time, they will be washed away and not taken up by the crop.  This leads to major economic losses for the farmer and problems for the environment.  With our work, the idea is that we use the aptamer to control the release of whatever we are delivering.  We incorporate the aptamer into a coating that covers the drug or nutrient.  The aptamer is there to recognize a stimulus that we want to use to release the contents.  For drug delivery, that stimulus might be a cancer cell or a disease biomarker.  For fertilizers, that stimulus might a be a plant signal that corresponds to the plant’s need for nutrients.  (We are working with Dr.Carlos Monreal from Agriculture and Agrifood Canada on the fertilizer project, and he is an expert in these plant signals and ‘smart fertilizers’.)  In the absence of that signal, the coating does not allow the release of the drug or nutrient.  But, once the aptamer recognizes that key signal, the aptamer distorts or destroys the coating and it allows the nutrient to be released.

*   According to the information on your lab website, you are the recipient of Canada Foundation for Innovation (CFI) Leaders Opportunity Fund (LOF) monies. Are these funds being applied to a particular project in your lab or are they used to support your general area of research?

CFI funds helped us to build our facility called the LADDER (Laboratory for Aptamer Discovery and Development of Emerging Research applications).  That funding allowed us to get the state-of-the-art equipment we need to support all of our research projects.  Without CFI funding, our work would not be possible!

*   Given your TEDxCarleton talk and your involvement in the 2011 Canadian Science Writers conference (researchers’ speed dating [I couldn’t confirm it but I’m pretty sure I saw your name listed for this event]), I gather you’re quite interested in public outreach. Why do you think it’s important?

Yes, I was at that ‘speed dating’ event and I am very committed to science outreach.  The public helps to support my research through funding like NSERC and CFI, so I think it is critical that I can explain to them what it is that I do, why it is important, and why their money is well-spent.  The general public may not know what an aptamer is, but they all realize the importance of keeping our food free of toxins or the need to make drugs that are better able to target disease.

*   I noticed that one of your students is a finalist in the Dance your Ph.D 2011 contest. And it’s not the first time. Do you find a lot of scientists with ‘dance’ tendencies are attracted to your lab? Are you one of those scientists?

My students won the competition last year and then they were finalists again this year!  I’m not sure if dancers are attracted to my lab or if my students are just as committed to outreach as I am!  My students are very excited to talk about their research with anyone who will listen.  This contest is a fun way to explain their work to everyday people.  Friends and family, after watching these dances online, have told me that they finally understand what is going on in my lab.  Maybe I should dance more!  (I’m not a dancer and you will not find me in either video…I support them from the sidelines!)

*   Is there anything you would like to add?

Thanks for profiling me and it has been fun!

Maria, thank you for this intriguing peek into your research, the field of DNA nanotechnology, and your (and shared by your students) commitment to public science outreach. I’m very happy you managed to cram the time to answer these questions into your schedule.

2011 Canadian Science Policy Conference

It’s the third year for the Canadian Science Policy Conference. The first two were held in Toronto and Montréal, respectively. For a refreshing change of pace, they’re holding this year’s conference in Ottawa. (For anyone not familiar with Canadian geography, these locations are all relatively close to each other and this type of scheduling is the source of much grumbling from those of us in the ‘other’ provinces and the territories.)

You’ll be happy to know that the theme for the 2011 conference is: Building Bridges for the Future of Science Policy in Canada. Being held from Nov. 16 – 18, 2011, the conference features a keynote address from three speakers, Rémi Quirion, OC, Ph.D., CQ, FRSC, Chairman of the Board of Directors, Fonds de recherche du Québec; Ian Chubb, Chief Scientist for Australia; and R. Peter MacKinnon, President and Vice-Chancellor, University of Saskatchewan. Unfortunately, there is no information about what they might discuss although one imagines they will focus on the theme for the conference. (Note: One cannot always depend on one’s speakers to keep to the theme. I know this from bittersweet [it’s funny afterwards] experience.)

I’m a little more interested in the talk which ushers in the first full day of the conference. Scheduled for 8:40 am on Thursday, November 17, 2011 the talk is titled, Building Stronger Communities Through Innovation. Here’s a preview from the 2011 CSPC agenda page,

How do we build innovative communities? This is a central challenge for Canada in the 21st century since innovative communities form the foundation of a prosperous country. As more than a decade of research on industry clusters has shown, a robust innovation system can have a profoundly positive impact on local communities when it translates into high quality jobs, industrial growth, new enterprises, improved public infrastructure and services and a cleaner, healthier environment.

But building innovation into our communities takes the involvement of individuals and institutions across the spectrum of society. Universities, colleges, research hospitals, private companies, governments and non-profit agencies, along with the talented, creative people that work in these organizations, must be free to work together and share their knowledge and ideas.

Yet fostering collaboration and knowledge exchange between different organizations, with different interests and capacities can be challenging. Successful collaboration requires time, resources, communication, shared goals, commitment and risk-taking.

A panel of leading Canadian thinkers in inter-sectoral and inter-organizational collaboration will discuss how university and college researchers can work with local businesses to translate new knowledge into new creative products and beneficial services. They will look at the role of research hospitals in contributing to both the health and wealth of local communities. And they will discuss best practices in overcoming the institutional and cultural barriers to collaboration.

The speakers for this session are:

Gilles G. Patry, Ph.D, President and CEO,Canada Foundation for Innovation; Chad Gaffield,, Ph.D, President, Social Sciences and Humanities Research Council; Dr. Kevin Smith, President and CEO, St. Joseph’s Healthcare Hamilton, St Joseph’s Lifecare Centre Brantford; Fred Morley, Executive VP & Chief Economist, Greater Halifax Partnership; Fassi Kafyeke Director, Strategic Technology,Bombardier Aerospace; Hon. Mike Harcourt, Lawyer, Community Activist, and former BC Premier

Given that the report of the Review of Federal Support to R&D has just been released (my posting will be out later today), it would be nice if they mention the report and its likely impact on the science community. It’s probably too late but it would be fabulous if someone from the expert panel could be persuaded to give a talk.

I’m mentioning these two panels simply because I know a speaker on each. David Kent ( CIHR Postdoctoral, University of Cambridge) is moderating the Education and Training of Scientists panel. David is 1/2 of the blogging team for The Black Hole; Science in Canada Issues Affecting Science Trainees blog (Beth Swan is the other 1/2). You can find out more about the conference and David’s latest panel doings in his Oct. 18, 2011 posting. The other panelist is Tim Meyer (Head of Strategic Planning & Communications, TRIUMF) who’s on the Reaching out with Big Science panel. Are they going to talk about blogging and social media or are they going to focus primarily on mainstream media. Given that two of the other speakers are Penny Park (Science Media Centre of Canada) and Jay Ingram (until recently a host for the Daily Planet programme on the Discovery Channel and author), I’m guessing the focus will be mainstream media.

Note Oct. 20, 2011: A few minor grammatical changes made in a bid to make this piece readable. We’ll see how that works.

ETA Oct. 24, 2011: I can’t believe missed this panel (Science Culture, Organized and Prioritized: Three National and International Initiatives) which features another person I’ve had the pleasure of encountering, Denise Amyot, President and Chief Executive Office of the Canada Science and Technology Museums Corporation (CSTMC). In order to make up for my oversight I’m including a description here,

Culture is big: annually, some 290 million citizens actively participate in the exhibitions, programs, events and outreach initiatives organized by 2,400 science centres worldwide. Other types of institutions, radio, internet, and film build further on that reach. This session will examine three recent initiatives that seek to organize, define, and take strategic advantage of the work of hundreds of diverse science engagement and knowledge creation organisations nationally and internationally. Increasingly, strategic focus among this diverse set of content and communication partners is bringing new attention to science engagement for the benefit of national and global society.

This session will examine Inspiring Australia, an initiative of the Australian government to create regional networks of diverse engagement organizations and connect them effectively with the science knowledge creators in order to better execute science engagement in that country. We will also examine an initiative to benchmark “science culture” in order to better measure future progress . And finally we will examine a global initiative by science centres to use science engagement in a truly global context.

Well, the first initiative is clearly from Australia (perhaps this explains Ian Chubb’s role as one of the conference’s opening keynote speakers and as one of three speakers on this panel) and the third initiative is coming from the science centres (one of the panelists is from the Ontario Science Centre) so perhaps the second initiative is coming from the CSTMC?

Not enough money for Canadian business schools? Canada Foundation for Innovation replies

March 22, 2011 (http://www.frogheart.ca/?p=3151)  I posted about a  interview with Roger Martin, Dean of the Rotman School of Management at the University of Toronto, about Canadian business schools, innovation and research that was published in the March 16, 2011, Globe & Mail newspaper. (http://www.theglobeandmail.com/report-on-business/managing/business-education/canada-will-shrivel-under-business-school-neglect-dean-says/article1942997/page2/). In response to this interview question, Martin made the claim the Canada Foundation for Innovation funded a greater numbers of arts funding requests and humanities funding requests over business funding requests,

Wouldn’t some people argue leadership comes as much from the liberal arts and other social sciences?

We’re getting liberal arts education, but the arts are getting an incredibly rich allocation of the money at all levels. It is only business that is not.

Of all the money given out by the Canada Foundation for Innovation [CFI], a big federal grants program, nine times more has gone to arts and literature than to business. I am not even talking social and human sciences – that is 41 times.

The view is that having educated managers is not relevant to economic success. We assume we need educated lawyers to have good law firms; we need educated scientists to have good science; you need educated engineers to have good engineering, but in business it is assumed you do not need education.

There was a response from the president and CEO (chief executive officer) of the CFI in the March 18, 2011 issue of the Globe & Mail. The paper published an excerpt, this is the full text of the response (received by request from the CFI media relations coordinator, Yves Melanson),

I read with interest the report of your interview with Roger Martin in Wednesday’s edition of the Globe and Mail on the “Lack of government research funding for business education”. As President and CEO of the Canada Foundation for Innovation (CFI), I was particularly interested by the reference made to the CFI.

Your readers might be interested to know that the Canada Foundation for Innovation was created by the Government of Canada to support state-of-the-art infrastructure (facilities and equipment), in universities, colleges, research hospitals and non-profit research institutions, allowing them to: a) attract/retain the world’s top talent; b) conduct world-class research and technology development that leads to social, economic and environmental benefits to Canada; c) train the next generation of highly qualified personnel; and d) support private-sector innovation that strengthens Canada’s position in today’s knowledge economy.

The CFI is called upon to invest in equipment, laboratories, information databases and computing systems required by all researchers, including those in our business schools. The CFI does not allocate funding to any specific discipline or area of research. Applications are submitted by the institutions to the CFI and funding is awarded through highly competitive programs. All applications, whether they are in health, science or business administration are judged according to the same criteria – excellence and the benefits to Canada. Moreover, the CFI requires that applications be well aligned with the university’s overall Strategic Research Plan.

While the success rate of applications from business schools compares favourably to the overall CFI success rate, the number of applications from business schools is surprisingly low. Of the more than 900 applications in the humanities and social sciences that have been submitted to the CFI to date, only 50 came from business schools (with a 70% success rate). [emphasis mine] Researchers in our business schools have received CFI research infrastructure funding, and, given the high quality of their research, will no doubt receive more in the future. The CFI’s doors are open to business school researchers, and will remain so, but they must apply!

Gilles G. Patry
President and CEO
Canada Foundation for Innovation

I haven’t seen responses from the other funding agencies but based on this one from the CFI, it would seem that the business schools are not pursuing the grants available to them for research.

The full video from the Canada Foundation for Innovation celebrating the 100th International Women’s Day

The full video produced by the Canada Foundation for Innovation (CFI), Women and Science was released today. Go here to enjoy roughly 7.5 minutes with five different and highly accomplished women ranging from an ethnomusicologist to a spinal cord researcher to the president of the University of Alberta. Personally, I found the evolutionary biologist (I think she studies spiders) who described her area of research as being about self-sacrifice and cannibalism quite intriguing. There’s also Suzanne Fortier, the president of the Natural Sciences and Engineering Research Council (a major funding agency for Canadian science), discussing careers, balance, and a life in science.

Accompanying the video are stories by Elizabeth Howell. Here’s an excerpt from the webpage,

When Karen Kidd thinks back on the women who inspired her as a young scientist, she can’t come up with any.

“All the researchers I worked with were men. I didn’t have a female mentor until more recently,” says Kidd, an ecotoxicologist at the University of New Brunswick in Saint John who earned her PhD in 1996.

She doesn’t feel her experience impeded her career, but the Canada Research Chair in Chemical Contamination of Food Webs acknowledges that there is a need for more women in science. And she recognizes that there are barriers which sometimes keep them away.

“Self-promotion and marketing — I think that’s what we [women] tend to do poorly,” she says. “It’s important to get out there and show others what you’re capable of. I think it’s really critical in this field, because it’s a competitive field for receiving grants and getting published. You have to be willing to sell yourself and defend your work.”