Tag Archives: Canada’s National Design Network (NDN)

Queen’s University (Canada) opens Kingston Nano-Fabrication Lab (KNFL)

First, there’s the opening (from an April 24, 2015 Queen’s University news release; Note: A link has been removed),

Queen’s University has secured its place at the forefront of transforming innovative research with the opening of the Kingston Nano-Fabrication Laboratory (KNFL).

The laboratory, located at Innovation Park, represents a milestone in the 30-year collaboration between Queen’s and CMC Microsystems for advancing Canadian strength in micro-nano innovation.

Some interesting details about the deal and the proposed uses for KNFL can be found in an April 24, 2015 story by Colleen Seto for Canada Foundation for Innovation (CFI),

… a brand-new, 3,000-square-foot, $5 million research facility [KNFL] located at the Queen’s University Innovation Park. The lab includes $2.5 million in new CFI-funded custom equipment for fabricating and prototyping new nano-scale inventions to get them to market quicker.

“We’re making devices, films, coatings, and materials, and examining their properties at the nanoscale,” says Ian McWalter, President and CEO of CMC Microsystems, which manages the operations of KNFL. “This fundamental materials research spills over into experiments of great use to industry, which then looks at how to commercialize he research results.”

The Queen’s University news release describes the longstanding relationship between the company managing the KNFL and the university,

“This facility is the latest manifestation of a long and productive relationship between Queen’s and CMC Microsystems,” says Ian McWalter, president and CEO of CMC. “For more than three decades, this partnership has enabled research and advanced training activities nationwide that would not have otherwise occurred. The KNFL is a significant enhancement, and we look forward to exploring the expanded opportunities that it offers us for building Canadian strength in micro-nano research and innovation.”

The CFI story provides more specifics about the potential workings of the facility,

Take, for example, the possibilities presented by KNFL’s laser micromachining system. “This new tool could be used to engrave channels into a piece of glass or polymer to produce a microfluidic device,” says Andrew Fung, Client Technology Advisor for Microsystems and Nanotechnology at CMC. Microfluidic devices take advantage of the behaviour of fluids at a very small scale to create things like “lab-on-a-chip” technologies that can be used to cheaply and quickly diagnose diseases in developing countries, among many other things. “Microfluidics grew out of silicon-based fabrication, which costs a lot of money,” explains Fung. “These other materials are lower cost, and can be single use, consumable, and disposable for a medical device.”

Much of KNFL’s new equipment was selected to enable rapid prototyping of new nanotechnologies. “Prototypes can be ready within hours or a day, instead of days or weeks. It shortens the whole innovation process so researchers can design, make, test, and get the information they need much faster,” says Fung.

The CFI story also contextualizes this project by noting that it’s part of a larger initiative,

The KNFL is also part of Embedded Systems Canada (emSYSCAN), a $50-million, five-year project aimed at shortening the microsystems development cycle. It involves more than 350 university researchers at 37 institutions across Canada’s National Design Network (NDN), which enables multidisciplinary research and collaboration through shared technologies and expertise.

The KNFL’s open-access model is aimed specifically at supporting the NDN. “The idea is to make [expertise and tools] more available to non-experts and to overcome barriers such as lab training to access this equipment,” says McWalter. “Through the service aspect of our lab, you wouldn’t necessarily twiddle the knobs yourself, but you would contract the lab to do things for you.” This provides vital learning opportunities for students while giving researchers a more efficient means to an end — accessing the equipment they need without having to invest the time and effort to learn how to use it.

Congratulations to the folks at Queen’s University!