Tag Archives: Canadian Light Source (CLS)

Better vaccines for park producers?

From a February 27, 2024 Canadian Light Source (CLS) news release (also received via email) by Erin Matthews,

A long-term, international collaboration between researchers at the University of Manitoba and the Leiden University Medical Centre in the Netherlands has uncovered vital information about the porcine reproductive and respiratory syndrome virus (PRRSV). This pathogen causes severe disease in pigs, leading to significant economic losses for pork producers across the globe.

“This disease in pigs is important worldwide and is economically fairly significant,” says Marjolein Kikkert, Associate Professor of Virology at Leiden University Medical Centre. “The aim of the project was to improve vaccines for this disease, and it turned out that it was very difficult.” It’s estimated that PRRS costs the Canadian pork industry $130M annually.

Kikkert and collaborator Brian Mark, Dean of the Faculty of Science at the University of Manitoba, looked at targeting a type of protein called a protease. PRRSV uses these proteins to suppress a host’s immune system, causing severe illness. By changing the structure, researchers can design altered viruses upon which to base new vaccines.

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), Mark and Kikkert were able to visualize the unique structure of the PRRSV protease. What they learned in their study is valuable for developing new vaccines against PRRSV and also helps inform development of vaccines against emerging human viruses.

The team has conducted similar research on coronaviruses —which also use proteases to suppress human and animal immune systems — and has successfully designed new vaccines.

“The trick and hypothesis we had for improving the PRRSV vaccine didn’t quite work.” Says Kikkert. “However, we did learn a lot about how these viruses work. And it may certainly be a basis for further work into possibilities for improving vaccines against these viruses and coronaviruses.”

The team’s findings also unlock new doors to understanding how viruses like PRRSV use proteins to replicate, making this a significant academic discovery.

“The Canadian Light Source provided the technology we needed to determine the structures of these proteases, and this knowledge has provided tremendous insight into the biochemistry of these viruses, which is the cornerstone of modern vaccine development,” says Mark.

Here’s a link to and a citation for the paper,

Demonstrating the importance of porcine reproductive and respiratory syndrome virus papain-like protease 2 deubiquitinating activity in viral replication by structure-guided mutagenesis by Ben A. Bailey-Elkin, Robert C. M. Knaap, Anuradha De Silva, Ilse M. Boekhoud, Sandra Mous, Niek van Vught, Mazdak Khajehpour, Erwin van den Born, Marjolein Kikkert, Brian L. Mark. PLOS DOI: https://doi.org/10.1371/journal.ppat.1011872 Published: December 14, 2023

This paper is open access.

(nano) Rust and magnets from the Canadian Light Source

An October 5, 2023 news item on phys.org highlights research from the Canadian Light Source (CLS, also known as, the synchrotron located in Saskatoon, Saskatchewan), Note: A link has been removed,

Every motor we use needs a magnet. University of Manitoba researcher Rachel Nickel is studying how rust could make those magnets cheaper and easier to produce.

Her most recent paper, published in the journal Nano Letters, explores a unique type of iron oxide nanoparticle. This material has special magnetic and electric features that could make it useful. It even has potential as a permanent magnet, which we use in car and airplane motors.

What sets it apart from other magnets is that it’s made from two of the most common elements found on earth: iron and oxygen. Right now, we use magnets made out of some of the rarest elements on the planet.

An October 5, 2023 CLS news release (also received via email) by Victoria Martinez, which originated the news item, provides more detail,

“The ability to produce magnets without rare earth elements [emphasis mine] is incredibly exciting,” says Nickel. “Almost everything that we use that has a motor where we need to start a motion relies on a permanent magnet”.

Researchers only started to understand this unique type of rust, called epsilon iron oxide, in the last 20 years.

“Now, what’s special about epsilon iron oxide is it only exists in the nanoscale,” says Nickel. “It’s basically fancy dust. But it is fancy dust with such incredible potential.”

In order to use it in everyday technology, researchers like Nickel need to understand its structure. To study epsilon iron oxide’s structure in different sizes, Nickel and colleagues collected data at the Advanced Photon Source (APS) in Illinois, thanks to the facility’s partnership with the Canadian Light Source (CLS) at the University of Saskatchewan. As the particle sizes change, the magnetic and electric traits of epsilon iron oxide change; the researchers began to see unusual electronic behaviour in their samples at larger sizes.

Nickel hopes to continue research on these particles, pursuing some of the stranger magnetic and electric properties.

“The more we are able to investigate these systems and the more we have access to facilities to investigate these systems, the more we can learn about the world around us and develop it into new and transformative technologies,” she says.

This work was funded through the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation.

For anyone not familiar with the rare earths situation, they’re not all that rare but they are difficult to mine in most regions of the world. China has some of the most accessible rare earth sites in the world. Consequently, they hold a dominant position in the market. Regardless of who has dominance, this is never a good situation and many countries and their researchers are looking at alternatives to rare earths.

Here’s a link to and a citation for the paper,

Nanoscale Size Effects on Push–Pull Fe–O Hybridization through the Multiferroic Transition of Perovskite ϵ-Fe2O3 by Rachel Nickel, Josh Gibbs, Jacob Burgess, Padraic Shafer, Debora Motta Meira, Chengjun Sun, and Johan van Lierop. Nano Lett. 2023, 23, 17, 7845–7851 DOI: https://doi.org/10.1021/acs.nanolett.3c01512 Publication Date: August 25, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Students from Nakoda Oyade Education Centre and scientists at the Canadian Light Source (CLS) use science to help bison

It’s known as Paskwâwimostos – ᐸᐢᑳᐧᐃᐧᒧᐢᑐᐢ – The Bison Project and is being conducted at Canada’s only synchrotron, the Canadian Light Source (CLS) in Saskatoon, Saskatchewan. Here’s more from a November 24, 2022 CLS news release (also received via email), Note: Links have been removed,

Bison have long held a prominent place in the culture of the Carry the Kettle Nakoda Nation, located about 100 kms east of Regina. The once-abundant animals were a vital source of food and furs for the ancestors of today’s Carry the Kettle people.

Now, high school students from Nakoda Oyade Education Centre at Carry the Kettle are using synchrotron imaging to study the health of a local bison herd, with an eye to protecting and growing their numbers.

Armin Eashappie, a student involved in the Bison Project, says the work she and her classmates are doing is a chance to give back to an animal that was once integral to the very existence of her community. “We don’t want them to go extinct, says Eashappie. “They helped us with everything. We got our tools, our clothes, our food from them. We used every single part of the buffalo, nothing was left behind…they
even helped us make our homes – the teepees – we used the hides to cover them up.”

Eashappie’s classmate, Leslie Kaysaywaysemat, says that if their team can identify items the bison are eating that are not good for their health, these could potentially be replaced by other, healthier items. “We want to preserve them and make sure all generations can see how magnificent these creatures are,” he says.

The students, who are participating in the CLS’s Bison Project, gathered samples of bison hair, soil from where the animals graze, and plants they feed on, then analyzed them using the IDEAS beamline at the CLS. The Bison Project, coordinated by the Education group of the CLS, integrates Traditional Knowledge and mainstream science in a transformative research experience for First Nation, Métis, and Inuit
students.

Timothy Eashappie, Elder for the Bison Project, says it’s “awesome” that the students can use the Canadian Light Source machine to learn more about an animal that his people have long taken care of on the prairies. “That’s how we define ourselves – as
Buffalo People,” says Eashappie. “Since the beginning of time, they gave themselves to us, and now these young people are finding out how important these buffalo are to them, because it preserves their language, their culture, and their way of life. And now it’s our turn to take care of the bison.”

Once they’ve completed their analysis, the students will share their findings with the Chief and Council for Carry the Kettle.

The Canadian Light Source (CLS) is a national research facility of the University of Saskatchewan and one of the largest science projects in Canada’s history. More than 1,000 academic, government and industry scientists from around the world use the CLS every year in innovative health, agriculture, environment, and advanced materials research.

The Canada Foundation for Innovation [CFI], Natural Sciences and Engineering Research Council [NSERC], Canadian Institutes of Health Research [CIHR], the Government of Saskatchewan, and the University of Saskatchewan fund CLS operations.

You can find more about the CLS Bison Project here,

The Bison Project integrates Traditional Knowledge (TK) and mainstream Science in an experience that engages First Nation, Métis, and Inuit (FNMI) teachers, students, and communities. The Bison Project creates a unique opportunity to incorporate land-based hunting and herd management, synchrotron science, mainstream science principles and TK.

I found a bit more information about bison and their return in a November 23, 2020 article by Mark A. Bonta for The Daylighter,

For ecologists and environmentalists, it’s more than just a story about the return of a keystone species. 

The bison, it turns out, is an animal that maintains and restores the prairie.

Ecological restoration

Unlike cattle, bison are wallowers, so these powerful animals’ efforts to rid themselves of insect parasites, by rubbing their hide and rolling around on the ground, actually create permanent depressions, called bison wallows, in the landscape. 

These create fertile ground for diverse plant species — and the animals that rely on them. 

Bison also rub against woody plants and kill them off, keeping the prairies open, while their dung fertilizes the soil.

Iconic species like the greater prairie-chicken and the prairie dog all benefit from the restoration of bison. 

Bison herds have also proved highly adaptive to the “new,” post-colonial ecology of the Great Plains.

They are adapting to hunting season, for example, by delaying their migration. This keeps them out of harm’s way — but also increases the risk of human-bison conflicts.

Bonta’s article provides a little more detail about the mixed feelings that the return of the bison have engendered.

FrogHeart’s 2022 comes to an end as 2023 comes into view

I look forward to 2023 and hope it will be as stimulating as 2022 proved to be. Here’s an overview of the year that was on this blog:

Sounds of science

It seems 2022 was the year that science discovered the importance of sound and the possibilities of data sonification. Neither is new but this year seemed to signal a surge of interest or maybe I just happened to stumble onto more of the stories than usual.

This is not an exhaustive list, you can check out my ‘Music’ category for more here. I have tried to include audio files with the postings but it all depends on how accessible the researchers have made them.

Aliens on earth: machinic biology and/or biological machinery?

When I first started following stories in 2008 (?) about technology or machinery being integrated with the human body, it was mostly about assistive technologies such as neuroprosthetics. You’ll find most of this year’s material in the ‘Human Enhancement’ category or you can search the tag ‘machine/flesh’.

However, the line between biology and machine became a bit more blurry for me this year. You can see what’s happening in the titles listed below (you may recognize the zenobot story; there was an earlier version of xenobots featured here in 2021):

This was the story that shook me,

Are the aliens going to come from outer space or are we becoming the aliens?

Brains (biological and otherwise), AI, & our latest age of anxiety

As we integrate machines into our bodies, including our brains, there are new issues to consider:

  • Going blind when your neural implant company flirts with bankruptcy (long read) April 5, 2022 posting
  • US National Academies Sept. 22-23, 2022 workshop on techno, legal & ethical issues of brain-machine interfaces (BMIs) September 21, 2022 posting

I hope the US National Academies issues a report on their “Brain-Machine and Related Neural Interface Technologies: Scientific, Technical, Ethical, and Regulatory Issues – A Workshop” for 2023.

Meanwhile the race to create brainlike computers continues and I have a number of posts which can be found under the category of ‘neuromorphic engineering’ or you can use these search terms ‘brainlike computing’ and ‘memristors’.

On the artificial intelligence (AI) side of things, I finally broke down and added an ‘artificial intelligence (AI) category to this blog sometime between May and August 2021. Previously, I had used the ‘robots’ category as a catchall. There are other stories but these ones feature public engagement and policy (btw, it’s a Canadian Science Policy Centre event), respectively,

  • “The “We are AI” series gives citizens a primer on AI” March 23, 2022 posting
  • “Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT” September 16, 2022 posting

These stories feature problems, which aren’t new but seem to be getting more attention,

While there have been issues over AI, the arts, and creativity previously, this year they sprang into high relief. The list starts with my two-part review of the Vancouver Art Gallery’s AI show; I share most of my concerns in part two. The third post covers intellectual property issues (mostly visual arts but literary arts get a nod too). The fourth post upends the discussion,

  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects” July 28, 2022 posting
  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations” July 28, 2022 posting
  • “AI (artificial intelligence) and art ethics: a debate + a Botto (AI artist) October 2022 exhibition in the Uk” October 24, 2022 posting
  • Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms? August 30, 2022 posting

Interestingly, most of the concerns seem to be coming from the visual and literary arts communities; I haven’t come across major concerns from the music community. (The curious can check out Vancouver’s Metacreation Lab for Artificial Intelligence [located on a Simon Fraser University campus]. I haven’t seen any cautionary or warning essays there; it’s run by an AI and creativity enthusiast [professor Philippe Pasquier]. The dominant but not sole focus is art, i.e., music and AI.)

There is a ‘new kid on the block’ which has been attracting a lot of attention this month. If you’re curious about the latest and greatest AI anxiety,

  • Peter Csathy’s December 21, 2022 Yahoo News article (originally published in The WRAP) makes this proclamation in the headline “Chat GPT Proves That AI Could Be a Major Threat to Hollywood Creatives – and Not Just Below the Line | PRO Insight”
  • Mouhamad Rachini’s December 15, 2022 article for the Canadian Broadcasting Corporation’s (CBC) online news overs a more generalized overview of the ‘new kid’ along with an embedded CBC Radio file which runs approximately 19 mins. 30 secs. It’s titled “ChatGPT a ‘landmark event’ for AI, but what does it mean for the future of human labour and disinformation?” The chat bot’s developer, OpenAI, has been mentioned here many times including the previously listed July 28, 2022 posting (part two of the VAG review) and the October 24, 2022 posting.

Opposite world (quantum physics in Canada)

Quantum computing made more of an impact here (my blog) than usual. it started in 2021 with the announcement of a National Quantum Strategy in the Canadian federal government budget for that year and gained some momentum in 2022:

  • “Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more” July 26, 2022 posting Note: This turned into one of my ‘in depth’ pieces where I comment on the ‘Canadian quantum scene’ and highlight the appointment of an expert panel for the Council of Canada Academies’ report on Quantum Technologies.
  • “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting
  • “Canada, quantum technology, and a public relations campaign?” December 29, 2022 posting

This one was a bit of a puzzle with regard to placement in this end-of-year review, it’s quantum but it’s also about brainlike computing

It’s getting hot in here

Fusion energy made some news this year.

There’s a Vancouver area company, General Fusion, highlighted in both postings and the October posting includes an embedded video of Canadian-born rapper Baba Brinkman’s “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)].

BTW, fusion energy can generate temperatures up to 150 million degrees Celsius.

Ukraine, science, war, and unintended consequences

Here’s what you might expect,

These are the unintended consequences (from Rachel Kyte’s, Dean of the Fletcher School, Tufts University, December 26, 2022 essay on The Conversation [h/t December 27, 2022 news item on phys.org]), Note: Links have been removed,

Russian President Vladimir Putin’s war on Ukraine has reverberated through Europe and spread to other countries that have long been dependent on the region for natural gas. But while oil-producing countries and gas lobbyists are arguing for more drilling, global energy investments reflect a quickening transition to cleaner energy. [emphasis mine]

Call it the Putin effect – Russia’s war is speeding up the global shift away from fossil fuels.

In December [2022?], the International Energy Agency [IEA] published two important reports that point to the future of renewable energy.

First, the IEA revised its projection of renewable energy growth upward by 30%. It now expects the world to install as much solar and wind power in the next five years as it installed in the past 50 years.

The second report showed that energy use is becoming more efficient globally, with efficiency increasing by about 2% per year. As energy analyst Kingsmill Bond at the energy research group RMI noted, the two reports together suggest that fossil fuel demand may have peaked. While some low-income countries have been eager for deals to tap their fossil fuel resources, the IEA warns that new fossil fuel production risks becoming stranded, or uneconomic, in the next 20 years.

Kyte’s essay is not all ‘sweetness and light’ but it does provide a little optimism.

Kudos, nanotechnology, culture (pop & otherwise), fun, and a farewell in 2022

This one was a surprise for me,

Sometimes I like to know where the money comes from and I was delighted to learn of the Ărramăt Project funded through the federal government’s New Frontiers in Research Fund (NFRF). Here’s more about the Ărramăt Project from the February 14, 2022 posting,

“The Ărramăt Project is about respecting the inherent dignity and interconnectedness of peoples and Mother Earth, life and livelihood, identity and expression, biodiversity and sustainability, and stewardship and well-being. Arramăt is a word from the Tamasheq language spoken by the Tuareg people of the Sahel and Sahara regions which reflects this holistic worldview.” (Mariam Wallet Aboubakrine)

Over 150 Indigenous organizations, universities, and other partners will work together to highlight the complex problems of biodiversity loss and its implications for health and well-being. The project Team will take a broad approach and be inclusive of many different worldviews and methods for research (i.e., intersectionality, interdisciplinary, transdisciplinary). Activities will occur in 70 different kinds of ecosystems that are also spiritually, culturally, and economically important to Indigenous Peoples.

The project is led by Indigenous scholars and activists …

Kudos to the federal government and all those involved in the Salmon science camps, the Ărramăt Project, and other NFRF projects.

There are many other nanotechnology posts here but this appeals to my need for something lighter at this point,

  • “Say goodbye to crunchy (ice crystal-laden) in ice cream thanks to cellulose nanocrystals (CNC)” August 22, 2022 posting

The following posts tend to be culture-related, high and/or low but always with a science/nanotechnology edge,

Sadly, it looks like 2022 is the last year that Ada Lovelace Day is to be celebrated.

… this year’s Ada Lovelace Day is the final such event due to lack of financial backing. Suw Charman-Anderson told the BBC [British Broadcasting Corporation] the reason it was now coming to an end was:

You can read more about it here:

In the rearview mirror

A few things that didn’t fit under the previous heads but stood out for me this year. Science podcasts, which were a big feature in 2021, also proliferated in 2022. I think they might have peaked and now (in 2023) we’ll see what survives.

Nanotechnology, the main subject on this blog, continues to be investigated and increasingly integrated into products. You can search the ‘nanotechnology’ category here for posts of interest something I just tried. It surprises even me (I should know better) how broadly nanotechnology is researched and applied.

If you want a nice tidy list, Hamish Johnston in a December 29, 2022 posting on the Physics World Materials blog has this “Materials and nanotechnology: our favourite research in 2022,” Note: Links have been removed,

“Inherited nanobionics” makes its debut

The integration of nanomaterials with living organisms is a hot topic, which is why this research on “inherited nanobionics” is on our list. Ardemis Boghossian at EPFL [École polytechnique fédérale de Lausanne] in Switzerland and colleagues have shown that certain bacteria will take up single-walled carbon nanotubes (SWCNTs). What is more, when the bacteria cells split, the SWCNTs are distributed amongst the daughter cells. The team also found that bacteria containing SWCNTs produce a significantly more electricity when illuminated with light than do bacteria without nanotubes. As a result, the technique could be used to grow living solar cells, which as well as generating clean energy, also have a negative carbon footprint when it comes to manufacturing.

Getting to back to Canada, I’m finding Saskatchewan featured more prominently here. They do a good job of promoting their science, especially the folks at the Canadian Light Source (CLS), Canada’s synchrotron, in Saskatoon. Canadian live science outreach events seeming to be coming back (slowly). Cautious organizers (who have a few dollars to spare) are also enthusiastic about hybrid events which combine online and live outreach.

After what seems like a long pause, I’m stumbling across more international news, e.g. “Nigeria and its nanotechnology research” published December 19, 2022 and “China and nanotechnology” published September 6, 2022. I think there’s also an Iran piece here somewhere.

With that …

Making resolutions in the dark

Hopefully this year I will catch up with the Council of Canadian Academies (CCA) output and finally review a few of their 2021 reports such as Leaps and Boundaries; a report on artificial intelligence applied to science inquiry and, perhaps, Powering Discovery; a report on research funding and Natural Sciences and Engineering Research Council of Canada.

Given what appears to a renewed campaign to have germline editing (gene editing which affects all of your descendants) approved in Canada, I might even reach back to a late 2020 CCA report, Research to Reality; somatic gene and engineered cell therapies. it’s not the same as germline editing but gene editing exists on a continuum.

For anyone who wants to see the CCA reports for themselves they can be found here (both in progress and completed).

I’m also going to be paying more attention to how public relations and special interests influence what science is covered and how it’s covered. In doing this 2022 roundup, I noticed that I featured an overview of fusion energy not long before the breakthrough. Indirect influence on this blog?

My post was precipitated by an article by Alex Pasternak in Fast Company. I’m wondering what precipitated Alex Pasternack’s interest in fusion energy since his self-description on the Huffington Post website states this “… focus on the intersections of science, technology, media, politics, and culture. My writing about those and other topics—transportation, design, media, architecture, environment, psychology, art, music … .”

He might simply have received a press release that stimulated his imagination and/or been approached by a communications specialist or publicists with an idea. There’s a reason for why there are so many public relations/media relations jobs and agencies.

Que sera, sera (Whatever will be, will be)

I can confidently predict that 2023 has some surprises in store. I can also confidently predict that the European Union’s big research projects (1B Euros each in funding for the Graphene Flagship and Human Brain Project over a ten year period) will sunset in 2023, ten years after they were first announced in 2013. Unless, the powers that be extend the funding past 2023.

I expect the Canadian quantum community to provide more fodder for me in the form of a 2023 report on Quantum Technologies from the Council of Canadian academies, if nothing else otherwise.

I’ve already featured these 2023 science events but just in case you missed them,

  • 2023 Preview: Bill Nye the Science Guy’s live show and Marvel Avengers S.T.A.T.I.O.N. (Scientific Training And Tactical Intelligence Operative Network) coming to Vancouver (Canada) November 24, 2022 posting
  • September 2023: Auckland, Aotearoa New Zealand set to welcome women in STEM (science, technology, engineering, and mathematics) November 15, 2022 posting

Getting back to this blog, it may not seem like a new year during the first few weeks of 2023 as I have quite the stockpile of draft posts. At this point I have drafts that are dated from June 2022 and expect to be burning through them so as not to fall further behind but will be interspersing them, occasionally, with more current posts.

Most importantly: a big thank you to everyone who drops by and reads (and sometimes even comments) on my posts!!! it’s very much appreciated and on that note: I wish you all the best for 2023.

Gerhard Herzberg , the University of Saskatchewan, and the 1971 Nobel Prize for Chemistry

Half a century ago, a scientist won a Nobel Prize for Chemistry for work he’d done at the University of Saskatchewan and, later, at a National Research Council of Canada laboratory. The Nobel Prize was an unlikely event for more than one reason.

The history description I like the best is also the clunkiest (due to links and citations). From the essay by Denisa Popa for the Defining Moments Canada website (Note 1: I have removed the links; Note 2: NSERC is the Natural Sciences and Engineering Research Council of Canada),

Gerhard Herzberg was born in Hamburg, Germany on December 25th, 1904. From an early age Herzberg developed a keen interest in the sciences, particularly astronomy, physics and chemistry (Stoicheff, 2002). … Herzberg initially considered a career in astronomy, but lacked the funds to pursue it any further (NSERC). In 1924, he ultimately decided to pursue engineering physics and enrolled in the Technical University at Darmstadt (NSERC). By the time he was 24 years old, he was well established in his field, publishing a number of academic papers on the topics of atomic and molecular physics, as well as obtaining a Doctorate in Engineering Physics in 1928 (NSERC).

Following his graduation, he entered a postdoctoral fellowship at the University of Göttingen (University of Saskatchewan). Following that, Herzberg returned to Darmstadt where he spent five years conducting research on spectroscopy (University of Saskatchewan).  Spectroscopy is used to analyze the ability of molecules and compounds to emit and absorb different wavelengths of light and electromagnetic radiation (Herschbach, 1999). Through understanding the properties of the light/radiation that is emitted (or absorbed) scientists can learn more about the characteristics of molecules and compounds, including their structure and the types of chemical bonds they contain (Herschbach, 1999). 

While completing his postdoctoral fellowship, Herzberg met Luise Hedwig Oettinger, a university student also focusing on spectroscopic research (Stoicheff, 2002). The pair grew close and eventually married on December 30th, 1929 (Stoicheff, 2002). Over the years Luise, who received her Ph.D from the University of Frankfurt in 1933, co-authored a number of scientific papers with her husband (Stoicheff, 2002). The Herzbergs’ academic life in Germany would soon end in 1934 when the Nazi regime rose to power and began implementing new restrictions against Jewish scholars in academic institutions (Stoicheff, 2002). Herzberg received notice that he would no longer be permitted to teach at Darmstadt because of Luise’s Jewish heritage (Stoicheff, 2002; University of Saskatchewan). With the help of John W. T. Spinks (a chemist who visited and became closely acquainted with Herzberg in Darmstadt) and Walter C. Murray at the University of Saskatchewan, as well as funding from the Carnegie Foundation (as the university’s budget was limited during the depression era), the Herzbergs moved to Saskatoon that following year (NSERC). 

From 1935 to 1945 Herzberg established himself at the University of Saskatchewan, where he continued his research on molecular and atomic spectroscopy, publishing three new books (NSERC). He then spent the following three years at the University of Chicago’s Yerkes Observatory investigating “the absorption spectra of many molecules of astrophysical interest.” (NSERC) In 1948, the Herzbergs relocated back to Canada when Herzberg was invited to “establish a laboratory for fundamental research in spectroscopy” at the National Research Council (NRC) of Canada. (NSERC) It was during his time at the NRC that one of his key discoveries was made–the observation of the spectra of methylene radical (CH2) (Stoicheff, 2002). Scientists describe free radicals as chemical species that have an unpaired electron in the outer valence shell (Winnewisser, 2004). Free radicals can be found as intermediates in a variety of chemical reactions (Herschbach, 1999). It was Herzberg’s contribution to the understanding of free radicals that contributed to his Nobel Prize win in 1971 (NSERC). Dr. Gerhard Herzberg had two children and passed away on March 3rd, 1999 at the age of 94 (Herschbach, 1999). 

Kathryn Warden’s Saskatechwan-forward article was first published in August 2021 in the University of Saskatchewan’s Green & White magazine (Note: A link has been removed),

When Gerhard Herzberg was awarded the Nobel Prize in chemistry 50 years ago for ground-breaking discoveries in a lifelong exploration of the structure of matter, he publicly thanked the University of Saskatchewan.

“It is obvious that the work that has earned me the Nobel Prize was not done without a great deal of help,” Herzberg said in his acceptance speech, acknowledging “the full and understanding support” of successive USask presidents and faculty who “did their utmost to make it possible for me to proceed with my scientific work.”

Herzberg’s brilliance in studying the spectra of atoms and molecules to understand their physical properties significantly advanced astronomy, chemistry and physics—enhancing knowledge of the atmospheres of stars and planets and determining the existence of some molecules never before imagined.

“He was certainly a pioneer,” said USask PhD student Natasha Vetter, winner of both the 2014 Herzberg Scholarship and the 2018 Herzberg Fellowship. “Without his work, the fundamental tools we use as chemists and biochemists wouldn’t exist. I feel pretty honoured to be part of that legacy and to have received those awards.”

While at USask from 1935 to 1945, Herzberg made discoveries that laid the groundwork for his work at Chicago’s Yerkes Observatory and then at the National Research Council (NRC), culminating in his celebrated work on free radicals—highly unstable, short-lived molecules that are everywhere: in our bodies, in materials and in space. They help important reactions take place but an imbalance can cause damage such as cancer or age-related illness. Knowledge of their structure is now used to make pharmaceuticals, medical radiation tests, light sensors, and a wide range of innovative materials.

“This was the beginning of molecular spectroscopy, and it was an exciting time because it was all so new,” said Alexander Moewes, Canada Research Chair in Materials Science with Synchrotron Radiation.

“Herzberg was unravelling the structure of molecules, specifically free radicals. Many of today’s drugs and human biochemistry processes are governed by these molecules. So much that we have developed today would not have been discovered if Herzberg hadn’t done this fundamental research. This can’t be overstated.”

In honour of Herzberg, the University of Saskatchewan is naming both a hall and a lecture theatre at the Canadian Light Source (CLS), Canada’s synchrotron facility, after Herzberg, from a November 10, 2021 University of Saskatchewan news release,

As part of a national initiative to mark the 50th anniversary of Gerhard Herzberg’s Nobel Prize, the University of Saskatchewan (USask) is naming the main experimental hall of the Canadian Light Source (CLS) and a prominent physics lecture theatre on campus after the renowned scientist.

“Canada and the University of Saskatchewan welcomed Herzberg and his wife when no other country or university did,” said Stoicheff [USask President Peter Stoicheff]. “His legacy is evident today in so many ways, including at our Canadian Light Source where scientists from across Canada and around the world continue to unravel the mysteries of atomic structure.”

The Herzberg Experimental Hall is at the heart of the CLS, “the brightest light in Canada.” The enormous hall the size of a football field houses the synchrotron which supplies light to the many beamlines where wide-ranging experiments are conducted. The naming was endorsed by both the CLS board of directors and the CLS Users’ Executive Committee, and subsequently approved by the President’s Advisory Committee on Naming University Assets.

“As the father of modern spectroscopy, Herzberg conducted experiments that fundamentally changed scientific understanding of how molecules absorb and emit light,” said CLS board chair Pierre Lapointe.

“So it is very fitting that we honour his legacy at the Canadian Light Source where scientists from across Canada and around the world carry on the important work of using light to investigate the structure of matter—work that is leading to discoveries in fields as diverse as health, environment and new materials.” 

In his 2020 co-authored book on the history of the CLS, former CLS director Michael Bancroft said Herzberg’s fundamental research program in spectroscopy at USask in the 1930s paved the way for Canada’s only synchrotron.  He states that the close friendship that developed between USask chemistry researcher John Spinks and Herzberg in 1933 and 1934 in Germany, along with Herzberg’s subsequent hiring by USask President Walter Murray in 1935, “were the most important events in eventually landing the Canadian Light Source over 60 years later.” 

As Herzberg was a member of the USask physics department for a decade, the Physics 107 Lecture Theatre, across from a display dedicated to Herzberg, will be named the Dr. Gerhard Herzberg Lecture Theatre.

Chris Putnam’s December 10, 2021 article for the University of Saskatchewan highlights Herzberg’s other interests such as music and humanitarian work.

Finally, Herzberg gave an interview to Mary Christine King on May 5, 1986 (audio file and text) for the Science History Institute. Here’s a little more about Ms. King who died months after the interview,

“… born in China and educated in Ireland. She obtained a BSc degree in chemistry from the University of London in 1968, which was followed by an MSc in polymer and fiber science (1970) and a PhD for a thesis on the hydrodynamic properties of paraffins in solution (1973), both from the University of Manchester Institute of Science and Technology. After working with Joseph Needham at Cambridge, she received a PhD in the history and philosophy of science from the Open University (1980) and thereafter worked at the University of California, Berkeley, and at the University of Ottawa, … King died in an automobile accident in late 1987 …”

The interview is an oral history as recounted by Herzberg.

Chocolate at Canada’s synchrotron (Canadian Light Source; CLS)

An August 31, 2021 Canadian Light Source (CLS) news release by Erin Matthews describes research which could change how chocolate is made,

Scientists used synchrotron technology to show a key ingredient can create the ideal chocolate structure and could revolutionize the chocolate industry.

Structure is key when it comes creating the best quality of chocolate. An ideal internal structure will be smooth and continuous, not crumbly, and result in glossy, delicious, melt-in-your-mouth decadence. However, this sweet bliss is not easy to achieve.

Researchers from the University of Guelph had their first look at the detailed structure of dark chocolate using the Canadian Light Source (CLS) at the University of Saskatchewan. Their results were published today in Nature Communications.

“One of the major problems in chocolate making is tempering,” said Alejandro Marangoni, a professor at the University of Guelph and Canada Research Chair in Food, Health and Aging. “Very much like when you temper steel, you have to achieve a certain crystalline structure in the cocoa butter.”

Skilled chocolate makers [emphasis mine] use specialized tools and training to manipulate cocoa butter for gourmet chocolate. However, Marangoni wondered if adding a special ingredient to chocolate could drive the formation of the correct crystal structure without the complex cooling and mixing procedures typically used by chocolatiers during tempering.

“Imagine if you could add a component that directs the entire crystallization process to a high-quality finished product. You wouldn’t need fancy tempering protocols or industrial machines — you could easily achieve the desired crystalline form just by the addition of this component,” Marangoni said.

His team went to the CLS to see if their secret ingredient, a specific phospholipid, could drive the formation of an ideal chocolate structure. The facility’s bright light, which is millions of times brighter than the sun, allowed the team to get images of the interior structure of their dark chocolate in exquisite detail.

“We have some of the most beautiful micrographs of the finished chocolate that were only possible because we did this work at the CLS,” said Marangoni.

In a world first, the researchers were able to get detailed imaging of the internal structure of dark chocolate, thanks to the synchrotron’s state of the art BMIT beamline.

“Working with the CLS, I would call it a next level interaction,” Marangoni added. “It was extremely easy to set up a project and we had enormous support from beamline scientists.”

In collaboration with CLS Plant Imaging Lead Jarvis Stobbs, Marangoni and colleagues were able to confirm the positive effect their ingredient had on obtaining the ideal structure for chocolate.

“We screened many minor lipid components that would naturally be present in chocolate and identified one preferred group. We then added a very specific molecule, a saturated phospholipid, to the chocolate mass and obtained the desired effect. This phospholipid formed a specific liquid crystal structure that would ‘seed’ the formation of cocoa butter crystals,” said Marangoni.

Their discovery that this phospholipid ingredient will drive the formation of ideal cocoa butter crystals could have a big impact on the way that chocolate is made.

“It could potentially revolutionize the chocolate industry, because we would not need very complex tempering machines,” Marangoni said. “This could open up the possibility for smaller manufacturers to produce chocolate without having the big capital investment for tempering machinery.”

Synchrotron research allows scientists to identify important details that are not possible to find with other techniques. Marangoni said that any small improvement on current manufacturing methods can have a very large impact on the food industry and can potentially save money for companies.

He added that while chocolate research pales in comparison to global problems, he emphasizes the impact food can have on our everyday lives.

“We have more serious problems like climate change and alternative energies and maybe even vegan foods, which we’re working on as well, but chocolate gives us that psychological pleasure. It’s one of these foods that makes us feel happy.”

This video shows the researcher’s delight,

Here’s a link to and a citation for the paper,

Tempering of cocoa butter and chocolate using minor lipidic components by Jay Chen, Saeed M. Ghazani, Jarvis A. Stobbs & Alejandro G. Marangoni. Nature Communications volume 12, Article number: 5018 (2021) DOI: https://doi.org/10.1038/s41467-021-25206-1 Published 31 August 2021

This paper is open access.

According to a Sept. 2, 2021 article by Marc Fawcett-Atkinson for Canada’s National Observer, this work could lead to making chocolate production more sustainable

What happens to the skilled chocolate makers?

That’s one of my big questions. The other is what happens to us? In all these ‘improvements’ of which there are many being touted these days, what I notice is a lack of sensuality. In this particular case, no touch and no smell.

Longer lasting N95 masks thanks to a synchrotron in Saskatchewan (Canada)

A Nov. 3, 2020 Canadian Light Sources (CLS; also known as a synchrotron) news release by Erin Matthews (also on the University of Saskatchewan website), received via email, announces a technique that may make N95 masks last longer,

Through a collaboration between the Canadian Light Source (CLS) and the Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac)—both national research facilities at the University of Saskatchewan (USask) —scientists hope to understand the structural changes happening inside N95 respirator masks after being sterilized for reuse.  

Cutting-edge techniques unique to the CLS enable the team to analyze minute details in the masks that would be impossible to see with other methods. CLS Industrial Scientist Toby Bond is using X-rays produced by the synchrotron to see the tightly woven, microscopic fibres that are crucial to the filtering power of N95 respirators.  

N95 respirators get their name from their ability to filter at least 95 per cent of particles circulating in the air. These particular masks are used by frontline health-care workers for protection against COVID-19.  

However, N95 masks that were intended for one-time use were in short supply globally during the height of the pandemic this spring, and continue to be chronically unavailable in most parts of the world. As a result, health-care agencies and researchers have been looking for ways to sterilize masks for reuse to help ensure an emergency supply. 

While previous research has found that certain methods work better at maintaining the integrity of the masks following decontamination, Bond and colleagues want to understand why this happens and how to extend the lifespan of these critical masks. 

“We want to use the unique tools we have at the CLS to look at the fibres that actually do the filtering,” Bond said. “We use a specialized X-ray microscope to take tiny CT scans before and after exposing the N95 masks to different decontamination protocols. Previous research has shown that certain methods work better than others, but we don’t currently know what’s going on inside the mask at a microscopic level.”  

Bond is working to determine why the N95 mask fibres degrade. This information would enable manufacturers to design more resilient masks and help the medical industry move towards personal protective equipment that is designed to be reusable. 

“One thing that’s unique about a synchrotron CT scan is that we can scan a tiny fraction of the mask at high magnification without having to cut small pieces out of it. This is what allows us to do before-and-after imaging, since we can decontaminate the mask in its real-world environment without altering it,” Bond added. 

One method for decontaminating N95 masks, called vaporized hydrogen peroxide (VHP), is used to sterilize rooms and equipment in VIDO-InterVac.  

“With the outbreak of the pandemic and the recognized potential worldwide shortage of respirators, we were approached by the Saskatchewan Health Authority (SHA) to investigate the possibility of using VHP decontamination on N95 respirators to mitigate a potential shortage,” said VIDO-InterVac Biosafety Officer Tracey Thue.  

To date, VIDO-InterVac has sterilized more than 13,000 masks. Studies have demonstrated that N95 masks can undergo multiple VHP decontamination cycles without affecting mask integrity. 

When CLS Laboratory Co-ordinator Burke Barlow suggested that the two groups collaborate, Thue offered to run three styles of N95 respirators through their VHP system for Bond’s research. Bond compared the VHP-treated masks to others that he had treated with Moist Heat Incubation (MHI) and autoclaving. 

Autoclaving is a common decontamination method that uses hot pressurized steam to sterilize medical devices, however it is the most damaging method and certain masks do not survive even one autoclave sterilization cycle. MHI is gentler than the autoclave, but the masks still become less effective after repeated cycles. VHP is considered to be the best method for decontamination of N95s, but it requires specialized equipment that is not widely available in hospitals. 

Bond and his colleagues are using the BMIT beamline at the CLS, a one-of-a-kind tool in North America, to image the inside of the masks in three dimensions without damaging them. The researchers can then look at the structure of individual fibres in the masks to see how they change during decontamination. They can identify shifts in mask fibres as small as a few microns, which is a measurement much smaller than the width of a human hair.  

Analyses over the next few weeks will help clarify what effect these shifts have on the performance of the mask. Aerodynamic and fluid simulations conducted at the CLS will help show how the changes in mask fibre structure affect air flow.   

“Preliminary results show there is a gradual unravelling of the fibres during repeated exposure to MHI in some masks,” said Bond. “This is in contrast to autoclaving the masks, which immediately causes a very significant unravelling after a single decontamination.” 

“In some cases, this unravelling doesn’t affect the filtration, but it does affect the overall structure of the mask, causing it to fit poorly and no longer seal properly to the user’s face,” he added. “This indicates that manufacturers could potentially make an autoclavable mask by changing the structural parts of the mask and leaving the filtration layer as it is.” 

“In terms of Toby’s research at the CLS, being able to go down to the microscopic level and visualize changes in the material or lack there-of is another valuable piece of information,” Thue said. 

Bond emphasized that it’s not just tools and equipment that makes this kind of research possible at the CLS, but also the access to the vast research network at USask.  

“The CLS is a fantastic place to do research like this, since we’re a national facility with a broad network of researchers,” said Bond. “We’ve been able to work with our colleagues at VIDO-InterVac (which is just down the road on the USask campus), and we also have contacts in industry and academia who work in this sector that have helped us with the experiments.” 

Oddly, there is no reference to a published paper for this work or mention of future research into how manufacturers might make use of this information.

Blue quantum dots and your television screen

Scientists used equipment at the Canadian Light Source (CLS; synchrotron in Saskatoon, Saskatchewan, Canada) in the quest for better glowing dots on your television (maybe computers and telephones, too?) screen. From an August 20, 2020 news item on Nanowerk,

There are many things quantum dots could do, but the most obvious place they could change our lives is to make the colours on our TVs and screens more pristine. Research using the Canadian Light Source (CLS) at the University of Saskatchewan is helping to bring this technology closer to our living rooms.

An August 19, 2020 CLS news release (also received via email) by Victoria Martinez, which originated the news item, explains what quantum dots are and fills in with technical details about this research,

Quantum dots are nanocrystals that glow, a property that scientists have been working with to develop next-generation LEDs. When a quantum dot glows, it creates very pure light in a precise wavelength of red, blue or green. Conventional LEDs, found in our TV screens today, produce white light that is filtered to achieve desired colours, a process that leads to less bright and muddier colours.

Until now, blue-glowing quantum dots, which are crucial for creating a full range of colour, have proved particularly challenging for researchers to develop. However, University of Toronto (U of T) researcher Dr. Yitong Dong and collaborators have made a huge leap in blue quantum dot fluorescence, results they recently published in Nature Nanotechnology.

“The idea is that if you have a blue LED, you have everything. We can always down convert the light from blue to green and red,” says Dong. “Let’s say you have green, then you cannot use this lower-energy light to make blue.”

The team’s breakthrough has led to quantum dots that produce green light at an external quantum efficiency (EQE) of 22% and blue at 12.3%. The theoretical maximum efficiency is not far off at 25%, and this is the first blue perovskite LED reported as achieving an EQE higher than 10%.

The Science

Dong has been working in the field of quantum dots for two years in Dr. Edward Sargent’s research group at the U of T. This astonishing increase in efficiency took time, an unusual production approach, and overcoming several scientific hurdles to achieve.

CLS techniques, particularly GIWAXS [grazing incidence wide-angle X-ray scattering] on the HXMA beamline [hard X-ray micro-analysis (HXMA)], allowed the researchers to verify the structures achieved in their quantum dot films. This validated their results and helped clarify what the structural changes achieve in terms of LED performance.

“The CLS was very helpful. GIWAXS is a fascinating technique,” says Dong.

The first challenge was uniformity, important to ensuring a clear blue colour and to prevent the LED from moving towards producing green light.

“We used a special synthetic approach to achieve a very uniform assembly, so every single particle has the same size and shape. The overall film is nearly perfect and maintains the blue emission conditions all the way through,” says Dong.

Next, the team needed to tackle the charge injection needed to excite the dots into luminescence. Since the crystals are not very stable, they need stabilizing molecules to act as scaffolding and support them. These are typically long molecule chains, with up to 18 carbon-non-conductive molecules at the surface, making it hard to get the energy to produce light.

“We used a special surface structure to stabilize the quantum dot. Compared to the films made with long chain molecules capped quantum dots, our film has 100 times higher conductivity, sometimes even 1000 times higher.”

This remarkable performance is a key benchmark in bringing these nanocrystal LEDs to market. However, stability remains an issue and quantum dot LEDs suffer from short lifetimes. Dong is excited about the potential for the field and adds, “I like photons, these are interesting materials, and, well, these glowing crystals are just beautiful.”

Here’s a link to and a citation for the paper,

Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots by Yitong Dong, Ya-Kun Wang, Fanglong Yuan, Andrew Johnston, Yuan Liu, Dongxin Ma, Min-Jae Choi, Bin Chen, Mahshid Chekini, Se-Woong Baek, Laxmi Kishore Sagar, James Fan, Yi Hou, Mingjian Wu, Seungjin Lee, Bin Sun, Sjoerd Hoogland, Rafael Quintero-Bermudez, Hinako Ebe, Petar Todorovic, Filip Dinic, Peicheng Li, Hao Ting Kung, Makhsud I. Saidaminov, Eugenia Kumacheva, Erdmann Spiecker, Liang-Sheng Liao, Oleksandr Voznyy, Zheng-Hong Lu, Edward H. Sargent. Nature Nanotechnology volume 15, pages668–674(2020) DOI: https://doi.org/10.1038/s41565-020-0714-5 Published: 06 July 2020 Issue Date: August 2020

This paper is behind a paywall.

If you search “Edward Sargent,” he’s the last author listed in the citation, here on this blog, you will find a number of postings that feature work from his laboratory at the University of Toronto.

News from the Canadian Light Source (CLS), Canadian Science Policy Conference (CSPC) 2020, the International Symposium on Electronic Arts (ISEA) 2020, and HotPopRobot

I have some news about conserving art; early bird registration deadlines for two events, and, finally, an announcement about contest winners.

Canadian Light Source (CLS) and modern art

Rita Letendre. Victoire [Victory], 1961. Oil on canvas, Overall: 202.6 × 268 cm. Art Gallery of Ontario. Gift of Jessie and Percy Waxer, 1974, donated by the Ontario Heritage Foundation, 1988. © Rita Letendre L74.8. Photography by Ian Lefebvre

This is one of three pieces by Rita Letendre that underwent chemical mapping according to an August 5, 2020 CLS news release by Victoria Martinez (also received via email),

Research undertaken at the Canadian Light Source (CLS) at the University of Saskatchewan was key to understanding how to conserve experimental oil paintings by Rita Letendre, one of Canada’s most respected living abstract artists.

The work done at the CLS was part of a collaborative research project between the Art Gallery of Ontario (AGO) and the Canadian Conservation Institute (CCI) that came out of a recent retrospective Rita Letendre: Fire & Light at the AGO. During close examination, Meaghan Monaghan, paintings conservator from the Michael and Sonja Koerner Centre for Conservation, observed that several of Letendre’s oil paintings from the fifties and sixties had suffered significant degradation, most prominently, uneven gloss and patchiness, snowy crystalline structures coating the surface known as efflorescence, and cracking and lifting of the paint in several areas.

Kate Helwig, Senior Conservation Scientist at the Canadian Conservation Institute, says these problems are typical of mid-20th century oil paintings. “We focused on three of Rita Letendre’s paintings in the AGO collection, which made for a really nice case study of her work and also fits into the larger question of why oil paintings from that period tend to have degradation issues.”

Growing evidence indicates that paintings from this period have experienced these problems due to the combination of the experimental techniques many artists employed and the additives paint manufacturers had begun to use.

In order to determine more precisely how these factors affected Letendre’s paintings, the research team members applied a variety of analytical techniques, using microscopic samples taken from key points in the works.

“The work done at the CLS was particularly important because it allowed us to map the distribution of materials throughout a paint layer such as an impasto stroke,” Helwig said. The team used Mid-IR chemical mapping at the facility, which provides a map of different molecules in a small sample.

For example, chemical mapping at the CLS allowed the team to understand the distribution of the paint additive aluminum stearate throughout the paint layers of the painting Méduse. This painting showed areas of soft, incompletely dried paint, likely due to the high concentration and incomplete mixing of this additive. 

The painting Victoire had a crumbling base paint layer in some areas and cracking and efflorescence at the surface in others.  Infrared mapping at the CLS allowed the team to determine that excess free fatty acids in the paint were linked to both problems; where the fatty acids were found at the base they formed zing “soaps” which led to crumbling and cracking, and where they had moved to the surface they had crystallized, causing the snowflake-like efflorescence.

AGO curators and conservators interviewed Letendre to determine what was important to her in preserving and conserving her works, and she highlighted how important an even gloss across the surface was to her artworks, and the philosophical importance of the colour black in her paintings. These priorities guided conservation efforts, while the insights gained through scientific research will help maintain the works in the long term.

In order to restore the black paint to its intended even finish for display, conservator Meaghan Monaghan removed the white crystallization from the surface of Victoire, but it is possible that it could begin to recur. Understanding the processes that lead to this degradation will be an important tool to keep Letendre’s works in good condition.

“The world of modern paint research is complicated; each painting is unique, which is why it’s important to combine theoretical work on model paint systems with this kind of case study on actual works of art” said Helwig. The team hopes to collaborate on studying a larger cross section of Letendre’s paintings in oil and acrylic in the future to add to the body of knowledge.

Here’s a link to and a citation for the paper,

Rita Letendre’s Oil Paintings from the 1960s: The Effect of Artist’s Materials on Degradation Phenomena by Kate Helwig, Meaghan Monaghan, Jennifer Poulin, Eric J. Henderson & Maeve Moriarty. Studies in Conservation (2020): 1-15 DOI: https://doi.org/10.1080/00393630.2020.1773055 Published online: 06 Jun 2020

This paper is behind a paywall.

Canadian Science Policy Conference (CSPC) 2020

The latest news from the CSPC 2020 (November 16 – 20 with preconference events from Nov. 1 -14) organizers is that registration is open and early birds have a deadline of September 27, 2020 (from an August 6, 2020 CSPC 2020 announcement received via email),

It’s time! Registration for the 12th Canadian Science Policy Conference (CSPC 2020) is open now. Early Bird registration is valid until Sept. 27th [2020].

CSPC 2020 is coming to your offices and homes:

Register for full access to 3 weeks of programming of the biggest science and innovation policy forum of 2020 under the overarching theme: New Decade, New Realities: Hindsight, Insight, Foresight.

2500+ Participants

300+ Speakers from five continents

65+ Panel sessions, 15 pre conference sessions and symposiums

50+ On demand videos and interviews with the most prominent figures of science and innovation policy 

20+ Partner-hosted functions

15+ Networking sessions

15 Open mic sessions to discuss specific topics

The virtual conference features an exclusive array of offerings:

3D Lounge and Exhibit area

Advance access to the Science Policy Magazine, featuring insightful reflections from the frontier of science and policy innovation

Many more

Don’t miss this unique opportunity to engage in the most important discussions of science and innovation policy with insights from around the globe, just from your office, home desk, or your mobile phone.

Benefit from significantly reduced registration fees for an online conference with an option for discount for multiple ticket purchases

Register now to benefit from the Early Bird rate!

The preliminary programme can be found here. This year there will be some discussion of a Canadian synthetic biology roadmap, presentations on various Indigenous concerns (mostly health), a climate challenge presentation focusing on Mexico and social vulnerability and another on parallels between climate challenges and COVID-19. There are many presentations focused on COVID-19 and.or health.

There doesn’t seem to be much focus on cyber security and, given that we just lost two ice caps (see Brandon Spektor’s August 1, 2020 article [Two Canadian ice caps have completely vanished from the Arctic, NASA imagery shows] on the Live Science website), it’s surprising that there are no presentations concerning the Arctic.

International Symposium on Electronic Arts (ISEA) 2020

According to my latest information, the early bird rate for ISEA 2020 (Oct. 13 -18) ends on August 13, 2020. (My June 22, 2020 posting describes their plans for the online event.)

You can find registration information here.

Margaux Davoine has written up a teaser for the 2020 edition of ISEA in the form of an August 6, 2020 interview with Yan Breuleux. I’ve excerpted one bit,

Finally, thinking about this year’s theme [Why Sentience?], there might be something a bit ironic about exploring the notion of sentience (historically reserved for biological life, and quite a small subsection of it) through digital media and electronic arts. There’s been much work done in the past 25 years to loosen the boundaries between such distinctions: how do you imagine ISEA2020 helping in that?

The similarities shared between humans, animals, and machines are fundamental in cybernetic sciences. According to the founder of cybernetics Norbert Wiener, the main tenets of the information paradigm – the notion of feedback – can be applied to humans, animals as well as the material world. Famously, the AA predictor (as analysed by Peter Galison in 1994) can be read as a first attempt at human-machine fusion (otherwise known as a cyborg).

The infamous Turing test also tends to blur the lines between humans and machines, between language and informational systems. Second-order cybernetics are often associated with biologists Francisco Varela and Humberto Maturana. The very notion of autopoiesis (a system capable of maintaining a certain level of stability in an unstable environment) relates back to the concept of homeostasis formulated by Willam Ross [William Ross Ashby] in 1952. Moreover, the concept of “ecosystems” emanates directly from the field of second-order cybernetics, providing researchers with a clearer picture of the interdependencies between living and non-living organisms. In light of these theories, the absence of boundaries between animals, humans, and machines constitutes the foundation of the technosciences paradigm. New media, technological arts, virtual arts, etc., partake in the dialogue between humans and machines, and thus contribute to the prolongation of this paradigm. Frank Popper nearly called his book “Techno Art” instead of “Virtual Art”, in reference to technosciences (his editor suggested the name change). For artists in the technological arts community, Jakob von Uexkull’s notion of “human-animal milieu” is an essential reference. Also present in Simondon’s reflections on human environments (both natural and artificial), the notion of “milieu” is quite important in the discourses about art and the environment. Concordia University’s artistic community chose the concept of “milieu” as the rallying point of its research laboratories.

ISEA2020’s theme resonates particularly well with the recent eruption of processing and artificial intelligence technologies. For me, Sentience is a purely human and animal idea: machines can only simulate our ways of thinking and feeling. Partly in an effort to explore the illusion of sentience in computers, Louis-Philippe Rondeau, Benoît Melançon and I have established the Mimesis laboratory at NAD University. Processing and AI technologies are especially useful in the creation of “digital doubles”, “Vactors”, real-time avatar generation, Deep Fakes and new forms of personalised interactions.

I adhere to the epistemological position that the living world is immeasurable. Through their ability to simulate, machines can merely reduce complex logics to a point of understandability. The utopian notion of empathetic computers is an idea mostly explored by popular science-fiction movies. Nonetheless, research into computer sentience allows us to devise possible applications, explore notions of embodiment and agency, and thereby develop new forms of interaction. Beyond my own point of view, the idea that machines can somehow feel emotions gives artists and researchers the opportunity to experiment with certain findings from the fields of the cognitive sciences, computer sciences and interactive design. For example, in 2002 I was particularly marked by an immersive installation at Universal Exhibition in Neuchatel, Switzerland titled Ada: Intelligence Space. The installation comprised an artificial environment controlled by a computer, which interacted with the audience on the basis of artificial emotion. The system encouraged visitors to participate by intelligently analysing their movements and sounds. Another example, Louis-Philippe Demers’ Blind Robot (2012),  demonstrates how artists can be both critical of, and amazed by, these new forms of knowledge. Additionally, the 2016 BIAN (Biennale internationale d’art numérique), organized by ELEKTRA (Alain Thibault) explored the various ways these concepts were appropriated in installation and interactive art. The way I see it, current works of digital art operate as boundary objects. The varied usages and interpretations of a particular work of art allow it to be analyzed from nearly every angle or field of study. Thus, philosophers can ask themselves: how does a computer come to understand what being human really is?

I have yet to attend conferences or exchange with researchers on that subject. Although the sheer number of presentation propositions sent to ISEA2020, I have no doubt that the symposium will be the ideal context to reflect on the concept of Sentience and many issues raised therein.

For the last bit of news.

HotPopRobot, one of six global winners of 2020 NASA SpaceApps COVID-19 challenge

I last wrote about HotPopRobot’s (Artash and Arushi with a little support from their parents) response to the 2020 NASA (US National Aeronautics and Space Administration) SpaceApps challenge in my July 1, 2020 post, Toronto COVID-19 Lockdown Musical: a data sonification project from HotPopRobot. (You’ll find a video of the project embedded in the post.)

Here’s more news from HotPopRobot’s August 4, 2020 posting (Note: Links have been removed),

Artash (14 years) and Arushi (10 years). Toronto.

We are excited to become the global winners of the 2020 NASA SpaceApps COVID-19 Challenge from among 2,000 teams from 150 countries. The six Global Winners will be invited to visit a NASA Rocket Launch site to view a spacecraft launch along with the SpaceApps Organizing team once travel is deemed safe. They will also receive an invitation to present their projects to NASA, ESA [European Space Agency], JAXA [Japan Aerospace Exploration Agency], CNES [Centre National D’Etudes Spatiales; France], and CSA [Canadian Space Agency] personnel. https://covid19.spaceappschallenge.org/awards

15,000 participants joined together to submit over 1400 projects for the COVID-19 Global Challenge that was held on 30-31 May 2020. 40 teams made to the Global Finalists. Amongst them, 6 teams became the global winners!

The 2020 SpaceApps was an international collaboration between NASA, Canadian Space Agency, ESA, JAXA, CSA,[sic] and CNES focused on solving global challenges. During a period of 48 hours, participants from around the world were required to create virtual teams and solve any of the 12 challenges related to the COVID-19 pandemic posted on the SpaceApps website. More details about the 2020 SpaceApps COVID-19 Challenge:  https://sa-2019.s3.amazonaws.com/media/documents/Space_Apps_FAQ_COVID_.pdf

We have been participating in NASA Space Challenge for the last seven years since 2014. We were only 8 years and 5 years respectively when we participated in our very first SpaceApps 2014.

We have grown up learning more about space, tacking global challenges, making hardware and software projects, participating in meetings, networking with mentors and teams across the globe, and giving presentations through the annual NASA Space Apps Challenges. This is one challenge we look forward to every year.

It has been a fun and exciting journey meeting so many people and astronauts and visiting several fascinating places on the way! We hope more kids, youths, and families are inspired by our space journey. Space is for all and is yours to discover!

If you have the time, I recommend reading HotPopRobot’s August 4, 2020 posting in its entirety.

McGill University team gets better understanding of nonribosomal peptide synthetases (NRPSs) also described as nanomachines

This research from McGill University (Montréal, Canada) focuses on enzymes and their possible utility as nanomachines for producing drugs. (For the uninitiated, nano means billionth, which, in turn, means these enzymes are measured at the nanoscale.)

An April 30, 2020 McGill University news release (also on EurekAlert) describes the work,

Many of the drugs and medicines that we rely on today are natural products taken from microbes like bacteria and fungi. Within these microbes, the drugs are made by tiny natural machines – mega-enzymes known as nonribosomal peptide synthetases (NRPSs). A research team led by McGill University has gained a better understanding of the structures of NRPSs and the processes by which they work. This improved understanding of NRPSs could potentially allow bacteria and fungi to be leveraged for the production of desired new compounds and lead to the creation of new potent antibiotics, immunosuppressants and other modern drugs.

“NRPSs are really fantastic enzymes that take small molecules like amino acids or other similar sized building blocks and assemble them into natural, biologically active, potent compounds, many of which are drugs,” said Martin Schmeing, Associate Professor in the Department of Biochemistry at McGill University, and corresponding author on the article that was recently published in Nature Chemical Biology. “An NRPS works like a factory assembly line that consists of a series of robotic workstations. Each station has multi-step workflows and moving parts that allow it to add one building block substrate to the growing drug, elongating and modifying it, and then passing it off to the next little workstation, all on the same huge enzyme.”

Ultra-intensive light beam allows scientists to see proteins

n their paper featured on the cover of the May 2020 issue of Nature Chemical Biology, the team reports visualizing an NRPS mechanical system by using the CMCF beamline at the Canadian Light Source (CLS). The CLS is a Canadian national lab [these types of labs are sometimes called synchrotrons] that produces the ultra-intense beams of X-rays required to image proteins, as even mega-enzymes are too small to see with any light microscope.

“Scientists have long been excited about the potential of bioengineering NRPSs by identifying the order of building blocks and reorganizing the workstations in the enzyme to create new drugs, but the effort has rarely been successful,” said Schmeing. “This is the first time anyone has seen how these enzymes transform keto acids into a building block that can be put into a peptide drug. This helps us understand how the NRPSs can use so very many building blocks to make the many different compounds and therapeutics.”

Here’s a link to and a citation for the paper,

Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis by Diego A. Alonzo, Clarisse Chiche-Lapierre, Michael J. Tarry, Jimin Wang & T. Martin Schmeing. Nature Chemical Biology volume 16, pages493–496(2020) Published: 17 February 2020

This paper is behind a paywall.